1
|
Čabarkapa I, Čolović R, Đuragić O, Popović S, Kokić B, Milanov D, Pezo L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. BIOFOULING 2019; 35:361-375. [PMID: 31088182 DOI: 10.1080/08927014.2019.1610169] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to determine the bioactive compounds in four essential oils (EO's) from Origanum heracleoticum, Origanum vulgare, Thymus vulgaris and Thymus serpyllum and to assess their antimicrobial and anti-biofilm activity against Salmonella Enteritidis. Strains were previously characterized depending on the expression of the extracellular matrix components cellulose and curli fimbriae as rdar (red, dry and rough) and bdar morphotype (brown, dry and rough). This study revealed that the EO's and EOC's (carvacrol and thymol) investigated showed inhibition of biofilm formation at sub-minimum inhibitory concentration. Comparing the efficacy of EO's and EOC's in the inhibition of biofilm formation between the strains with different morphotype (rdar and bdar) did not show a statistically significant difference. Results related to the effectiveness of EO's and EOC's (the essential oil components, carvacrol and thymol) on eradication of preformed 48 h old biofilms indicated that biofilm reduction occurred in a dose-dependent manner over time.
Collapse
|
|
6 |
61 |
2
|
Aćimović M, Zorić M, Zheljazkov VD, Pezo L, Čabarkapa I, Stanković Jeremić J, Cvetković M. Chemical Characterization and Antibacterial Activity of Essential Oil of Medicinal Plants from Eastern Serbia. Molecules 2020; 25:molecules25225482. [PMID: 33238598 PMCID: PMC7700605 DOI: 10.3390/molecules25225482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate wild growing Satureja kitaibelii, Thymus serpyllum, Origanum vulgare, Achillea millefolium and Achillea clypeolata with respect to their essential oil (EO) content, composition and antimicrobial activity. The five species were collected at Mt. Rtanj and the village of Sesalac, Eastern Serbia. The main EO constituents of Lamiaceae plants were p-cymene (24.4%), geraniol (63.4%) and germacrene D (21.5%) in Satureja kitaibelii, Thymus serpyllum and Origanum vulgare ssp. vulgare, respectively. A. millefolium EO had multiple constituents with major ones being camphor (9.8%), caryophyllene oxide (6.5%), terpinen-4-ol (6.3%) and 1,8-cineole (5.6%), while the main EO constituents of A. clypeolata were 1,8-cineole (45.1%) and camphor (18.2%). Antimicrobial testing of the EO showed that Staphylococcus aureus (Gram-positive) was more sensitive to all of the tested EOs than Escherichia coli (Gram-negative). S. kitaibelii EO showed the highest antimicrobial activity against both tested bacterial strains. This is the first study to characterize the EO composition and antimicrobial activity of these five medicinal species from Eastern Serbia in comparison with comprehensive literature data. The results can be utilized by the perfumery, cosmetics, food and pharmaceutical industries, but also for healing purposes in self-medication.
Collapse
|
Journal Article |
5 |
9 |
3
|
Kovačević Z, Tomanić D, Čabarkapa I, Šarić L, Stanojević J, Bijelić K, Galić I, Ružić Z, Erdeljan M, Kladar N. Chemical Composition, Antimicrobial Activity, and Withdrawal Period of Essential Oil-Based Pharmaceutical Formulation in Bovine Mastitis Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416643. [PMID: 36554523 PMCID: PMC9779522 DOI: 10.3390/ijerph192416643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 05/14/2023]
Abstract
Due to the emergence of antibiotic-resistant bacteria, the risk it represents to public health, and the possible consequences for animal health and welfare, there is an increasing focus on reducing antimicrobial usage (AMU) in animal husbandry. Therefore, a great interest in developing alternatives to AMU in livestock production is present worldwide. Recently, essential oils (EOs) have gained great attention as promising possibilities for the replacement of antibiotics. The current study aimed to test the potential of using a novel EO-based pharmaceutical formulation (Phyto-Bomat) in bovine mastitis treatment. The antibacterial activity was performed using the microdilution technique. Lactating dairy cows were treated with 15 mL of Phyto-Bomat in the inflamed quarter for 5 consecutive days in order to analyze blood and milk samples for thymol and carvacrol residues using gas chromatography and mass spectrometry (GC-MS). Antimicrobial activity expressed as the minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) indicates that this formulation has the highest activity against Gram-positive strains. The dominant compounds in Phyto-Bomat were thymol and carvacrol, at 12.58 ± 1.23 mg/mL and 23.11 ± 2.31 mg/mL, respectively. The quantification of these two compounds in evaluated biological samples showed that 24 h after administration the concentration of thymol and carvacrol in milk samples was at the same level as before application. On the other hand, thymol and carvacrol were detectable in plasma samples even after 24 h post-treatment, with values ranging from 0.15-0.38 and 0.21-0.66 µg/mL, respectively. The tested formulation showed encouraging results of antibacterial activity against bovine mastitis pathogens, as well as the withdrawal period of dominant compounds, which implies that further testing regarding the bacteriological and clinical cure rates in clinical settings is needed.
Collapse
|
research-article |
3 |
7 |
4
|
Milanov D, Petrović T, Todorović D, Aleksić N, Čabarkapa I. Toxin genotypes of Clostridium perfringens in animal feed and their role in the ethiology of enterotoxemia in domestic animals. FOOD AND FEED RESEARCH 2018. [DOI: 10.5937/ffr1801067m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
|
7 |
4 |
5
|
Čolović D, Lević J, Čabarkapa I, Čolović R, Lević L, Sedej I. Stability of an extruded, linseed-based functional feed additive with the supplementation of vitamin E and carvacrol. JOURNAL OF ANIMAL AND FEED SCIENCES 2015. [DOI: 10.22358/jafs/65618/2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
10 |
3 |
6
|
Tomičić R, Čabarkapa I, Varga A, Tomičić Z. Antimicrobial activity of essential oils against Listeria monocytogenes. FOOD AND FEED RESEARCH 2018. [DOI: 10.5937/ffr1801037t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
|
7 |
3 |
7
|
Milanov D, Aleksić N, Vidaković S, Ljubojević D, Čabarkapa I. Salmonella spp. in pet feed and risk it poses to humans. FOOD AND FEED RESEARCH 2019. [DOI: 10.5937/ffr1901137m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
|
6 |
3 |
8
|
Čolović D, Rakita S, Banjac V, Đuragić O, Čabarkapa I. Plant food by-products as feed: Characteristics, possibilities, environmental benefits, and negative sides. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1573431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
|
6 |
2 |
9
|
Lazarević J, Čabarkapa I, Rakita S, Banjac M, Tomičić Z, Škrobot D, Radivojević G, Kalenjuk Pivarski B, Tešanović D. Invasive Crayfish Faxonius limosus: Meat Safety, Nutritional Quality and Sensory Profile. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16819. [PMID: 36554699 PMCID: PMC9779498 DOI: 10.3390/ijerph192416819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The aim of the present study was to evaluate the safety parameters, nutritional value and sensory profile of the meat from spiny-cheek crayfish (Faxonius limosus), captured from the Danube River in Serbia. To achieve this, we determined their microbiological safety, chemical composition, minerals and heavy metals, fatty acid and amino acid profile, as well as a sensory profile of the meat. The obtained results showed that the meat from crayfish was microbiologically safe. Crayfish meat has a high nutritional quality, high protein content (18.12%) and a total of 17 detected amino acids, of which essential amino acids constituted 6.96 g/100 g sample. Additionally, the crayfish meat was characterized by high levels of essential polyunsaturated fatty acids (PUFA), particularly n-3 PUFA, at an optimal ratio of n-3/n-6 and with low values of atherogenic and thrombogenic indices. Predominant macrominerals in the meat are K, followed by Na, Ca, P and Mg, whereas the content of microminerals was in the following order: Zn > Cu > Fe > Mn. The concentrations of accumulated toxic metals (Cd, Pb, As and Hg) did not exceed the maximum allowed levels. Sensory analysis confirmed that the meat from spiny-cheek crayfish has the potential to become a new food source of essential nutrients.
Collapse
|
research-article |
3 |
2 |
10
|
Tomičić Z, Pezo L, Spasevski N, Lazarević J, Čabarkapa I, Tomičić R. Diversity of amino acids composition in cereals. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-34322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The quality of protein is based on their amino acid composition, especially on the content and availability of essential amino acids. Cereals are important sources of protein for human nutrition, but are limited in the amounts of essential amino acids, notably lysine. The aim of this study was to analyze the chemical composition and amino acid profiles of different cereals that are important for nutritional purposes in human diet. The content of protein, moisture and crude fat in cereals varied significantly from 7.83 to 13.22%, 11.45 to 13.80%, and from 1.67 to 6.35%, respectively. The obtained results showed that oat had the highest contents of crude protein (13.22%), crude fat (6.35%) and crude cellulose (9.42%) compared to other cereals. Significant (p < 0.05) variation existed in the content of essential and nonessential amino acids among samples with the highest level in oat and wheat. Essential amino acids accounted for one-third of the total amino acids in the tested cereals. Glutamic acid was found to be the most abundant amino acid. It could be concluded that the amino acid composition of oat is the most favorable among cereals due to its high protein content and the content of lysine which can be found in limited amounts in most of the cereals.
Collapse
|
|
3 |
1 |
11
|
Čabarkapa I, Aćimović M, Pezo L, Tadić V. A Validation Model for Prediction of Kovats Retention Indices of Compounds Isolated from Origanum spp. and Thymus spp. Essential Oils. J MEX CHEM SOC 2021. [DOI: 10.29356/jmcs.v65i4.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract. This work aimed to obtain a validated model for the prediction of retention times of compounds isolated from Origanum heracleoticum, Origanum vulgare, Thymus vulgaris, and Thymus serpyllum essential oils. In total 68 experimentally obtained retention times of compounds, which were separated and detected by GC-MS were further used to build the prediction models. The quantitative structure–retention relationship was employed to foresee the Kovats retention indices of compounds acquired by GC-MS analysis, using eight molecular descriptors selected by a genetic algorithm. The chosen descriptors were used as inputs for the four artificial neural networks, to construct a Kovats retention indices predictive quantitative structure–retention relationship model. The coefficients of determination in the training cycle were 0.830; 0.852; 0.922 and 0.815 (for compounds found in O. heracleoticum, O. vulgare, T. vulgaris and T. serpyllum essential oils, respectively), demonstrating that these models could be used for prediction of Kovats retention indices, due to low prediction error and high r2.
Resumen. El objetivo de este trabajo es la obtención de modelos validados para la predicción del tiempo de retención de los compuestos aislados de aceites esenciales de Origanum heracleoticum, Origanum vulgare, Thymus vulgaris y Thymus serpyllum. Se han obtenido un total de 68 tiempos de retención de compuestos, separándose y detectándose por cromatografía de gases con detección por espectrometría de masas (GC-MS) con posterior desarrollo de modelos de predicción. La relación cuantitativa estructura-retención ha sido utilizada para predecir el índice de retención Kovats de los compuestos obtenidos por análisis de GC-MS, utilizando ocho descriptores moleculares seleccionados mediante algoritmo genético. Los descriptores seleccionados han sido utilizados como entrada para las cuatro redes neuronales artificiales y así elaborar los índices predictivos del modelo de relación cuantitativa estructura-retención. Los coeficientes de determinación en el ciclo de entrenamiento fueron de 0.830; 0.852; 0.922 y 0.815 (para los compuestos identificados en los aceites esenciales del O. heracleoticum, O. vulgare, T. vulgaris y T. serpyllum respectivamente) demostrando así que estos modelos son útiles en la predicción de los índices de retención de Kovats con un error de bajo predicción y alta r2.
Collapse
|
|
4 |
|
12
|
Tomičić Z, Pezo L, Spasevski N, Lazarević J, Čabarkapa I, Tomičić R. Diversity of amino acids composition in cereals. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-34322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The quality of protein is based on their amino acid composition, especially on the content and availability of essential amino acids. Cereals are important sources of protein for human nutrition, but are limited in the amounts of essential amino acids, notably lysine. The aim of this study was to analyze the chemical composition and amino acid profiles of different cereals that are important for nutritional purposes in human diet. The content of protein, moisture and crude fat in cereals varied significantly from 7.83 to 13.22%, 11.45 to 13.80%, and from 1.67 to 6.35%, respectively. The obtained results showed that oat had the highest contents of crude protein (13.22%), crude fat (6.35%) and crude cellulose (9.42%) compared to other cereals. Significant (p < 0.05) variation existed in the content of essential and nonessential amino acids among samples with the highest level in oat and wheat. Essential amino acids accounted for one-third of the total amino acids in the tested cereals. Glutamic acid was found to be the most abundant amino acid. It could be concluded that the amino acid composition of oat is the most favorable among cereals due to its high protein content and the content of lysine which can be found in limited amounts in most of the cereals.
Collapse
|
|
3 |
|
13
|
Šovljanski O, Aćimović M, Tomić A, Lončar B, Miljković A, Čabarkapa I, Pezo L. Antibacterial and Antifungal Potential of Helichrysum italicum (Roth) G. Don Essential Oil. Antibiotics (Basel) 2024; 13:722. [PMID: 39200022 PMCID: PMC11350649 DOI: 10.3390/antibiotics13080722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Helichrysum italicum (Roth) G. Don is a typical Mediterranean plant, with limited distribution on the islands of Sardinia, Corsica, and the Iberian Peninsula, as well as the islands of the Adriatic Sea and the Balkan Peninsula. In these regions, H. italicum is mainly collected from spontaneous nature, while in recent years, there has been a pronounced cultivation trend due to increased demand and market requirements for constant quality of raw materials. Bearing in mind that biological activity is linked with chemical composition, this review aimed to collect data from different scientific databases (Scopus, PubMed, Web of Science, and Google Scholar) on the antimicrobial activity of essential oil and its chemical composition. A total of 20 papers investigating the antibacterial, antibiofilm, and antifungal activities of H. italicum essential oil were found. Furthermore, in these samples, several compounds occurred as dominant: neryl acetate, α-pinene, and γ-curcumene. These compounds are known for their antimicrobial properties, which likely contribute to the essential oil's efficacy against various microbial strains.
Collapse
|
Review |
1 |
|
14
|
Todorić O, Pezo L, Šarić L, Kolarov V, Varga A, Čabarkapa I, Kocić-Tanackov S. Comparison of the Efficiency of Selected Disinfectants against Planktonic and Biofilm Populations of Escherichia coli and Staphylococcus aureus. Microorganisms 2023; 11:1593. [PMID: 37375095 DOI: 10.3390/microorganisms11061593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study is to compare the efficacy of selected food disinfectants on planktonic populations of Staphylococcus aureus and Escherichia coli and on the same microorganisms (MOs) incorporated in a biofilm. Two disinfectants were used for treatment: peracetic acid-based disinfectant (P) and benzalkonium chloride-based disinfectant (D). Testing of their efficacy on the selected MO populations was performed using a quantitative suspension test. The standard colony counting procedure was used to determine their efficacy on bacterial suspensions in tryptone soy agar (TSA). The germicidal effect (GE) of the disinfectants was determined based on the decimal reduction ratio. For both MOs, 100% GE was achieved at the lowest concentration (0.1%) and after the shortest exposure time (5 min). Biofilm production was confirmed with a crystal violet test on microtitre plates. Both E. coli and S. aureus showed strong biofilm production at 25 °C with E. coli showing significantly higher adherence capacity. Both disinfectants show a significantly weaker GE on 48 h biofilms compared to the GE observed after application of the same concentrations on planktonic cells of the same MOs. Complete destruction of the viable cells of the biofilms was observed after 5 min of exposure to the highest concentration tested (2%) for both disinfectants and MOs tested. The anti-quorum sensing activity (anti-QS) of disinfectants P and D was determined via a qualitative disc diffusion method applied to the biosensor bacterial strain Chromobacterium violaceum CV026. The results obtained indicate that the disinfectants studied have no anti-QS effect. The inhibition zones around the disc therefore only represent their antimicrobial effect.
Collapse
|
|
2 |
|
15
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
|
Review |
1 |
|
16
|
Milanov D, Mišić D, Čabarkapa I, Ljubojević D, Živkov Baloš M. NATURAL ANTIBIOTIC RESISTANCE GENES IN SOIL BACTERIA AND INFLUENCE OF ORGANIC FERTILISERS ON THEIR PREVALENCE AND HORIZONTAL TRANSFER. ARCHIVES OF VETERINARY MEDICINE 2017. [DOI: 10.46784/e-avm.v9i2.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All natural antibiotics available to modern medicine are products of soil-dwelling bacteria and fungi. In addition, all resistance genes which are being detected in human pathogens existed in soil bacteria even before antibiotics were discovered and brought into use. However, the concentrations of natural antibiotics in soil are usually subinhibitory – insuffi cient for the selection of resistant subpopulations of microorganisms. The consumption of organic fertilisers for agricultural soil amendment increases proportionally to the consumers’ growing demand for organically produced food. Manure originating from industrial pig, cattle and poultry farms is not only the source of nutrients which stimulate the vital functions of soil microorganisms, but also of antibiotics and bacteria harbouring various resistance mechanisms. The application of organic fertilizer leads to disruption of the natural balance between bacterial communities in the soil through several mechanisms, and infl uences the increase in the prevalence of resistance genes and promotes their horizontal transfer. Whether as-yet-unknown resistance genes in soil bacteria may pose threat to human health if transferred from commensal bacteria in the environment to pathogen species, or migrate to clinical settings via food chain or in some other possible route - remains an open question.
Collapse
|
|
8 |
|
17
|
Nikolić I, Čabarkapa I, Pavlić B, Kravić S, Đilas M, Iličić M, Bulut S, Kocić-Tanackov S. Antibacterial and antibiofilm effect of essential oils on staphylococci isolated from cheese - application of the oil mixture in a cheese model. Int J Food Microbiol 2024; 425:110873. [PMID: 39182346 DOI: 10.1016/j.ijfoodmicro.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The aim of the research was to examine the antimicrobial and antibiofilm effects of angelica, immortelle, laurel, hyssop, and sage plant dust essential oils (EOs) against isolated strains of Staphylococcus spp. from cheeses, in vitro and in the model of white cheese. MALDI-TOF MS analysis confirmed two Staphylococcus aureus strains and two coagulase-negative, identified as S. saprophyticus and S. warneri. All isolates produce biofilm, where the strains of S. aureus showed slightly better adherence. The main component of angelica EO was β-phellandrene (48.19 %), while α-pinene (20.33 %) were dominant in immortelle EO, in hyssop EO cis-pinocamphone (37.25 %), in laurel EO 1,8-cineole (43.15 %) and in sage EO epirosmanol (26.25 %). The sage EO exhibited the strongest antistaphylococcal activity against all isolates. Synergism was also detected in combination of sage with hyssop or laurel EO. Better antibiofilm activity was confirmed for sage EO compared to hyssop EO. The mixture of sage/laurel EOs reduced the total number of staphylococci in the cheese after 4 days. Results indicate that in vitro applied EOs showed significant antistaphylococcal and antibiofilm activity, while the oil mixture reduced the initial total number of staphylococci.
Collapse
|
|
1 |
|
18
|
Tomičić R, Čebela M, Tomičić Z, Čabarkapa I, Kocić-Tanackov S, Raspor P. ZnO nanoparticles enhance the efficiency of sodium hypochlorite disinfectant in reducing the adhesion of pathogenic bacteria to stainless steel surfaces. Food Microbiol 2025; 129:104760. [PMID: 40086982 DOI: 10.1016/j.fm.2025.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
The use of commercial disinfectant in combination with other antimicrobial agent such as ZnO nanoparticles to improve disinfection efficacy could be a promising strategy in the control of pathogenic bacteria. In this context, the aim of study was to determine the minimum inhibitory concentration (MIC) of sodium hypochlorite disinfectant, ZnO nanoparticles as well as Mn-, Ce-, and Co-doped ZnO nanoparticles (doping concentrations 10%, 20%, 30%) against gram-negative bacteria Escherichia coli and Salmonella Typhimurium, and gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes using the broth microdilution method CLSI M07-A10, while the checkerboard microdilution method was carried out to assess the type interaction of sodium hypochlorite in combination with pure ZnO nanoparticles. The results specified that ZnO nanoparticles were agents that required higher concentrations to inhibit bacterial growth than sodium hypochlorite, whereby a synergistic effect was achieved in their combination. It was also revealed that doping of Mn and Co in ZnO nanoparticles improved antibacterial activity against gram-positive bacteria. Generally, this study aimed to evaluate the effectiveness of individual treatments (sodium hypochlorite and ZnO nanoparticles) and their combination on initial bacterial adhesion to stainless steel surfaces (AISI 304) exposed to different temperatures (7 °C, 25 °C, 37 °C) and pH (4.5, 7.0, 8.5) using colony-forming units count method. It was evident that ZnO nanoparticles were more effective than sodium hypochlorite in reducing bacterial adherence, while the combined tretmant showed a better effect than any individual treatment alone, highlighting its advantages as a novel disinfectant to prevent bacterial biofilms. Furthermore, data that temperature and pH affected bacterial adhesion provide comprehensive insight how bacteria survive in the food processing environments, which could assist in assessment the risk of contamination.
Collapse
|
|
1 |
|