1
|
Pinto JP, Kalathur RK, Oliveira DV, Barata T, Machado RSR, Machado S, Pacheco-Leyva I, Duarte I, Futschik ME. StemChecker: a web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res 2015; 43:W72-7. [PMID: 26007653 PMCID: PMC4489266 DOI: 10.1093/nar/gkv529] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/10/2015] [Indexed: 11/25/2022] Open
Abstract
Stem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes—so-called stemness signatures—considered essential to define stem cells. However, their usage has been hindered by the lack of comprehensive resources and easy-to-use tools. For this we developed StemChecker, a novel stemness analysis tool, based on the curation of nearly fifty published stemness signatures defined by gene expression, RNAi screens, Transcription Factor (TF) binding sites, literature reviews and computational approaches. StemChecker allows researchers to explore the presence of stemness signatures in user-defined gene sets, without carrying-out lengthy literature curation or data processing. To assist in exploring underlying regulatory mechanisms, we collected over 80 target gene sets of TFs associated with pluri- or multipotency. StemChecker presents an intuitive graphical display, as well as detailed statistical results in table format, which helps revealing transcriptionally regulatory programs, indicating the putative involvement of stemness-associated processes in diseases like cancer. Overall, StemChecker substantially expands the available repertoire of online tools, designed to assist the stem cell biology, developmental biology, regenerative medicine and human disease research community. StemChecker is freely accessible at http://stemchecker.sysbiolab.eu.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
84 |
2
|
Machado-Oliveira G, Guerreiro E, Matias AC, Facucho-Oliveira J, Pacheco-Leyva I, Bragança J. FBXL5 modulates HIF-1α transcriptional activity by degradation of CITED2. Arch Biochem Biophys 2015; 576:61-72. [PMID: 25956243 DOI: 10.1016/j.abb.2015.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
Abstract
CITED2 is a ubiquitously expressed nuclear protein exhibiting a high affinity for the cysteine-histidine-rich domain 1 (CH1) of the transcriptional co-activators CBP/p300. CITED2 is particularly efficient in the inhibition of the hypoxia-inducible factor-1α (HIF-1α) dependent transcription by competing with it for the interaction with the CH1 domain. Here we report a direct and specific interaction between CITED2 and the F-box and leucine rich repeat protein 5 (FBXL5), a substrate adaptor protein which is part of E3 ubiquitin ligase complexes mediating protein degradation by the proteasome. We demonstrated that depletion of FBXL5 by RNA interference led to an increase of CITED2 protein levels. Conversely, overexpression of FBXL5 caused the decrease of CITED2 protein levels in a proteasome-dependent manner, and impaired the interaction between CITED2 and the CH1 domain of p300 in living cells. In undifferentiated mouse embryonic stem cells, the overexpression of FBXL5 also reduced Cited2 protein levels. Finally, we evidenced that FBXL5 overexpression and the consequent degradation of CITED2 enabled the transcriptional activity of the N-terminal transactivation domain of HIF-1α. Collectively, our results highlighted a novel molecular interaction between CITED2 and FBXL5, which might regulate the steady state CITED2 protein levels and contribute to the modulation of gene expression by HIF-1α.
Collapse
|
|
10 |
18 |
3
|
Pacheco-Leyva I, Matias AC, Oliveira DV, Santos JMA, Nascimento R, Guerreiro E, Michell AC, van De Vrugt AM, Machado-Oliveira G, Ferreira G, Domian I, Bragança J. CITED2 Cooperates with ISL1 and Promotes Cardiac Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reports 2016; 7:1037-1049. [PMID: 27818139 PMCID: PMC5161512 DOI: 10.1016/j.stemcr.2016.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/07/2023] Open
Abstract
The transcriptional regulator CITED2 is essential for heart development. Here, we investigated the role of CITED2 in the specification of cardiac cell fate from mouse embryonic stem cells (ESC). The overexpression of CITED2 in undifferentiated ESC was sufficient to promote cardiac cell emergence upon differentiation. Conversely, the depletion of Cited2 at the onset of differentiation resulted in a decline of ESC ability to generate cardiac cells. Moreover, loss of Cited2 expression impairs the expression of early mesoderm markers and cardiogenic transcription factors (Isl1, Gata4, Tbx5). The cardiogenic defects in Cited2-depleted cells were rescued by treatment with recombinant CITED2 protein. We showed that Cited2 expression is enriched in cardiac progenitors either derived from ESC or mouse embryonic hearts. Finally, we demonstrated that CITED2 and ISL1 proteins interact physically and cooperate to promote ESC differentiation toward cardiomyocytes. Collectively, our results show that Cited2 plays a pivotal role in cardiac commitment of ESC.
Collapse
|
research-article |
9 |
18 |
4
|
Kranc KR, Oliveira DV, Armesilla-Diaz A, Pacheco-Leyva I, Catarina Matias A, Luisa Escapa A, Subramani C, Wheadon H, Trindade M, Nichols J, Kaji K, Enver T, Bragança J. Acute loss of Cited2 impairs Nanog expression and decreases self-renewal of mouse embryonic stem cells. Stem Cells 2015; 33:699-712. [PMID: 25377420 PMCID: PMC4583779 DOI: 10.1002/stem.1889] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/16/2014] [Accepted: 10/11/2014] [Indexed: 12/23/2022]
Abstract
Identifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.
Collapse
|
research-article |
10 |
18 |
5
|
Díaz-Barrera A, Maturana N, Pacheco-Leyva I, Martínez I, Altamirano C. Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions. J Ind Microbiol Biotechnol 2017; 44:1041-1051. [PMID: 28246966 DOI: 10.1007/s10295-017-1929-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Alginate production and gene expression of genes involved in alginate biosynthesis were evaluated in continuous cultures under dissolved oxygen tension (DOT) controlled conditions. Chemostat at 8% DOT showed an increase in the specific oxygen uptake rate [Formula: see text] from 10.9 to 45.3 mmol g-1 h-1 by changes in the dilution rate (D) from 0.06 to 0.10 h-1, whereas under 1% DOT the [Formula: see text] was not affected. Alginate molecular weight was not affected by DOT. However, chemostat at 1% DOT showed a downregulation up to 20-fold in genes encoding both the alginate polymerase (alg8, alg44), alginate acetylases (algV, algI) and alginate lyase AlgL. alyA1 and algE7 lyases gene expressions presented an opposite behavior by changing the DOT, suggesting that A. vinelandii can use specific depolymerases depending on the oxygen level. Overall, the DOT level have a differential effect on genes involved in alginate synthesis, thus a gene expression equilibrium determines the production of alginates of similar molecular weight under DOT controlled.
Collapse
|
Journal Article |
8 |
12 |
6
|
Ghezzo MN, Fernandes MT, Pacheco-Leyva I, Rodrigues PM, Machado RS, Araújo MAS, Kalathur RK, Futschik ME, Alves NL, dos Santos NR. FoxN1-dependent thymic epithelial cells promote T-cell leukemia development. Carcinogenesis 2018; 39:1463-1476. [DOI: 10.1093/carcin/bgy127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
|
|
7 |
7 |
7
|
Pereira JL, Cavaco P, da Silva RC, Pacheco-Leyva I, Mereiter S, Pinto R, Reis CA, Dos Santos NR. P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Transl Oncol 2021; 14:101125. [PMID: 34090013 PMCID: PMC8188565 DOI: 10.1016/j.tranon.2021.101125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
PSGL-1 protein is frequently expressed at the surface of malignant T cells. Enforced expression of PSGL-1 promotes T cell tumorigenesis in mice. PSGL-1 expression accelerates malignant T cell dissemination from tumors to several organs. PSGL-1 expression promotes malignant T cell expansion in kidneys and lungs. P-selectin glycoprotein ligand-1 (PSGL-1) is a membrane-bound glycoprotein expressed in lymphoid and myeloid cells. It is a ligand of P-, E- and L-selectin and is involved in T cell trafficking and homing to lymphoid tissues, among other functions. PSGL-1 expression has been implicated in different lymphoid malignancies, so here we aimed to evaluate the involvement of PSGL-1 in T cell lymphomagenesis and dissemination. PSGL-1 was highly expressed at the surface of human and mouse T cell leukemia and lymphoma cell lines. To assess its impact on T cell malignancies, we stably expressed human PSGL-1 (hPSGL-1) in a mouse thymic lymphoma cell line, which expresses low levels of endogenous PSGL-1 at the cell surface. hPSGL-1-expressing lymphoma cells developed subcutaneous tumors in athymic nude mice recipients faster than control empty vector or parental cells. Moreover, the kidneys, lungs and liver of tumor-bearing mice were infiltrated by hPSGL-1-expressing malignant T cells. To evaluate the role of PSGL-1 in lymphoma cell dissemination, we injected intravenously control and hPSGL-1-expressing lymphoma cells in athymic mice. Strikingly, PSGL-1 expression facilitated disease infiltration of the kidneys, as determined by histological analysis and anti-CD3 immunohistochemistry. Together, these results indicate that PSGL-1 expression promotes T cell lymphoma development and dissemination to different organs.
Collapse
|
Journal Article |
4 |
4 |
8
|
Martínez I, Zelada P, Guevara F, Andler R, Urtuvia V, Pacheco-Leyva I, Díaz-Barrera A. Coenzyme Q production by metabolic engineered Escherichia coli strains in defined medium. Bioprocess Biosyst Eng 2019; 42:1143-1149. [DOI: 10.1007/s00449-019-02111-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/30/2022]
|
|
6 |
2 |
9
|
Fernandes MT, Caroço LS, Pacheco-Leyva I, Dos Santos NR. NF-κB-dependent RANKL expression in a mouse model of immature T-cell leukemia. Biochem Biophys Res Commun 2019; 510:272-277. [PMID: 30711250 DOI: 10.1016/j.bbrc.2019.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
Activation of the receptor activator of nuclear factor-κB (RANK) by its ligand (RANKL) is involved in both solid and hematological malignancies, including multiple myeloma, acute myeloid leukemia and B-cell leukemia. Although RANKL expression has been described in normal T cells, a potential role in T-cell leukemia remains undefined. Here, we used a model of immature T-cell leukemia/lymphoma, the TEL-JAK2 transgenic mice, to assess RANKL expression in leukemic cells and its regulatory mechanisms. We found that Rankl mRNA was significantly overexpressed in leukemic T cells when compared to wild-type thymocytes, their nonmalignant counterparts. Moreover, Rankl mRNA and RANKL surface expression in leukemic cells was induced by T-cell receptor (TCR) signaling activation, dependently on the NF-κB signaling pathway. These results indicate that TCR-activated leukemic T cells express high levels of RANKL and are potential inducers of RANK signaling in microenvironmental cells.
Collapse
|
|
6 |
0 |
10
|
Kranc KR, Oliveira DV, Armesilla-Diaz A, Pacheco-Leyva I, Catarina Matias A, Luisa Escapa A, Subramani C, Wheadon H, Trindade M, Nichols J, Kaji K, Enver T, Bragança J. Acute Loss of Cited2 Impairs Nanog Expression and Decreases Self-Renewal of Mouse Embryonic Stem Cells. Stem Cells 2015; 33:699-712. [DOI: https:/doi.org/10.1002/stem.1889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Identifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Stem Cells 2015;33:699–712
Collapse
|
|
10 |
|
11
|
Catarino TA, Pacheco-Leyva I, Al-Dalali F, Ghezzo MN, Fernandes MT, Costa T, Dos Santos NR. Cdkn2a inactivation promotes malignant transformation of mouse immature thymocytes before the β-selection checkpoint. Exp Hematol 2022; 116:30-36. [PMID: 36240953 DOI: 10.1016/j.exphem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 12/29/2022]
|
|
3 |
|
12
|
Pacheco-Leyva I, Araújo M, Rodrigues Dos Santos N. PO-292 Leukemic T cells stimulate NF-κB signalling in stromal cells through lymphotoxin-β receptor stimulation. ESMO Open 2018. [DOI: 10.1136/esmoopen-2018-eacr25.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
|
7 |
|
13
|
Catarino TA, Pacheco-Leyva I, Baessa M, Pereira JL, R Dos Santos N. Transgenic αβ TCR tonic signaling is leukemogenic while strong stimulation is leukemia suppressive. J Leukoc Biol 2025; 117:qiae249. [PMID: 39574201 DOI: 10.1093/jleuko/qiae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/21/2024] [Indexed: 03/30/2025] Open
Abstract
The pre-T cell receptor (TCR) and TCR complexes are frequently expressed in T cell acute lymphoblastic leukemia (T-ALL), an aggressive T cell precursor malignancy. Although mutations in TCR components are infrequent in T-ALL, earlier research indicated that transgenic αβ TCR expression in mouse T cell precursors promoted T-ALL development. However, we recently found that stimulation of TCR signaling in T-ALL induced leukemic cell apoptosis and suppressed leukemia. Our aim was to elucidate if a given αβ TCR complex has a dual role in leukemogenesis depending on the nature of the stimulus. We demonstrate that transgenic expression of the Marilyn αβ TCR, specific for the H-Y male antigen presented by major histocompatibility complex class II, triggers T-ALL development exclusively in female mice. This T-ALL exhibited Notch1 mutations, Cdkn2a copy number loss, and immature immunophenotype, and infiltrated both lymphoid and nonlymphoid organs. Furthermore, leukemic cells expressed surface CD5, a marker of tonic TCR signaling. T-ALL efficiently developed in Rag2-deficient Marilyn transgenic females, indicating that Rag2-mediated recombination is not implicated in this T-ALL model. T-ALL development was also observed in the OT-I TCR transgenic mouse model, but it did not occur when major histocompatibility complex class I was abrogated through genetic inactivation of β2-microglobulin. Remarkably, exposure of Marilyn female T-ALL cells to endogenous agonist antigens in male recipient mice or exogenous peptides in female recipient mice resulted in T-ALL apoptosis and prolonged mouse survival. These findings underscore the dual role of the same αβ TCR complex in T-ALL, in which tonic stimulation is leukemogenic, while strong stimulation suppresses leukemia.
Collapse
MESH Headings
- Animals
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Female
- Signal Transduction/immunology
- Mice
- Male
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- DNA-Binding Proteins/genetics
- H-Y Antigen/immunology
- Mice, Inbred C57BL
Collapse
|
|
1 |
|