1
|
de Oliveira SA, da Silva BC, Riegel-Vidotti IC, Urbano A, de Sousa Faria-Tischer PC, Tischer CA. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. Int J Biol Macromol 2017; 97:642-653. [PMID: 28109811 DOI: 10.1016/j.ijbiomac.2017.01.077] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering.
Collapse
|
Journal Article |
8 |
73 |
2
|
Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, Faria-Tischer PCDS. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. Int J Biol Macromol 2014; 67:401-8. [PMID: 24704166 DOI: 10.1016/j.ijbiomac.2014.03.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
In this study, the effect of the addition of hyaluronic acid (HA) on bacterial cellulose (BC) production, under static conditions was evaluated in terms of the properties of the resulting BC hybrid membranes. HA was added to the fermentation process in three distinct time points: first day (BC-T0), third day (BC-T3) and sixth day (BC-T6). Analyses of FT-IR and CP/MAS (13)C NMR confirmed the presence of HA in bacterial cellulose membranes. The crystal structure, crystallinity index (Ic) surface roughness, thermal stability and hybrophobic/hydrophilic character changed. Membranes with higher roughness were produced with HA added on the first and third day of fermentation process. The surface energy of BC/HA membranes was calculated and more hydrophilic membranes were produced by the addition of HA on the third and sixth day, also resulting in more thermally stable materials. The results demonstrate that bacterial cellulose/hyaluronic acid hybrid membranes can be produced in situ and suggest that HA interacts with the sub-elementary bacterial cellulose fibrils, changing the properties of the membranes. The study and understanding of the factors that affect those properties are of utmost importance for the safe and efficient use of BC as biomaterials in numerous applications, specifically in the biological field.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
54 |
3
|
Sakakibara CN, Sierakowski MR, Ramírez RR, Chassenieux C, Riegel-Vidotti I, de Freitas RA. Salt-induced thermal gelation of xyloglucan in aqueous media. Carbohydr Polym 2019; 223:115083. [DOI: 10.1016/j.carbpol.2019.115083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
|
|
6 |
7 |
4
|
Gonçalves JP, de Oliveira CC, da Silva Trindade E, Riegel-Vidotti IC, Vidotti M, Simas FF. In vitro biocompatibility screening of a colloidal gum Arabic-polyaniline conducting nanocomposite. Int J Biol Macromol 2021; 173:109-117. [PMID: 33476624 DOI: 10.1016/j.ijbiomac.2021.01.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
Although polyaniline (PANI) is a widely investigated conductive polymer for biological applications, studies addressing the biocompatibility of colloidal PANI dispersions are scarcely found in the literature of the area. Therefore, PANI nanoparticles stabilized by the natural polysaccharide gum Arabic (GA) were screened for their biocompatibility. The GA successfully stabilized the colloidal PANI-GA dispersions when exposed to a protein-rich medium, showing compatibility with the biological environment. The results obtained from a series of in vitro assays showed that, after up to 48 h of exposure to a range of PANI-GA concentrations (1-50 μg/mL), both mouse BALB/3T3 fibroblasts and RAW 264.7 macrophages showed no evidence of change in cellular proliferation, viability and metabolic activity. An increase in macrophage granularity poses as evidence of phagocytic uptake of PANI-GA, without resulting activation of this cell type. Additionally, the PANI-GA nanoparticles modulated the cell morphology changes induced on fibroblasts by GA in a concentration-dependent manner. Thus, this unprecedented biocompatibility study of PANI nanoparticles stabilized by a plant gum exudate polysaccharide showed promising results. This simple biomaterial might be further developed into colloidal formulations for biological and biomedical applications, taking advantage of its versatility, biocompatibility, and conductive properties.
Collapse
|
Journal Article |
4 |
4 |
5
|
Badke LB, Silva BCD, Carvalho-Jorge ARD, Taher DM, Riegel-Vidotti IC, Marino CEB. Synthesis and characterization of microalgae fatty acids or Aloe vera oil microcapsules. POLIMEROS 2019. [DOI: 10.1590/0104-1428.01119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
|
6 |
4 |
6
|
da Silva B, Bastos A, Tedim J, Ferreira M, Marino C, Riegel-Vidotti I. On Demand Release of Cerium from an Alginate/Cerium Complex for Corrosion Protection of AISI1020 and AA2024 Substrates. J BRAZIL CHEM SOC 2022. [DOI: 10.21577/0103-5053.20220065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Alginate (ALG) is a natural polymer used in a wide range of applications. Cerium is a sustainable corrosion inhibitor for many metal substrates. In this study, ALG/Ce3+ hydrogel microparticles are presented as an innovative cerium(III) reservoir system for the smart release of cerium ions. The active corrosion inhibition capacity of the ALG/Ce3+ complex was investigated. Tests using ALG/Ce3+ macrogels (beads) and electrochemical experiments showed that, in saline media, ALG/Ce3+ hydrogel was able to release Ce3+, which was subsequently exchanged with Al3+, Fe2+ and Fe3+ and, thus slowing the corrosion process of AA2024 (aluminum alloy) and AISI1020 (carbon steel) substrates, respectively. It is suggested that the presence of metal ions originated from the corrosion process triggers the cerium release. The corrosion protection of ALG/Ce3+ of the aluminum alloy was confirmed by polarization curves, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET) and the protection of the carbon steel was demonstrated by EIS experiments. To the best of our knowledge, this is the first time that an alginate-based complex has been reported as an ion exchange corrosion-inhibiting system for metal substrates.
Collapse
|
|
3 |
1 |
7
|
Anjo FA, Saraiva BR, Da Silva JB, Ribeiro YC, Bruschi ML, Riegel-Vidotti IC, Simas FF, Matumoto-Pintro PT. Acacia mearnsii gum: A residue as an alternative gum Arabic for food stabilizer. Food Chem 2021; 344:128640. [PMID: 33229157 DOI: 10.1016/j.foodchem.2020.128640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Acacia mearnsii gum is not commercially exploited, being characterized as residue from A. mearnsii cultivation. This work investigated the A. mearnsii gum polysaccharide composition, its cytotoxicity and the technological effect as a stabilizer in ice cream. A. mearnsii gum showed a similar chemical structure to commercial gum Arabic and did not decrease the viability and proliferation of fibroblast cells (Balb/3T3) and hepatocarcinoma (HepG2). Rheological tests showed that the ice cream stabilized by the A. mearnsii gum had a more structured system (more interactions between the mixture components) and the same melting characteristics as the ice cream samples made with commercial gum Arabic. The results showed that A. mearnsii gum, which is actually an agro-industrial residue from tannin production for industry, is a potential stabilizing gum for the food industry, contributing to the economic development of the exploitation chain of A. mearnsii products and by-products.
Collapse
|
|
4 |
1 |
8
|
de Barros H, Santos M, Barbosa L, Piovan L, Riegel-Vidotti I. Physicochemical Study of the Interaction between Gold Nanoparticles and Lipase from Candida sp. (CALB): Insights into the Nano-Bio Interface. J BRAZIL CHEM SOC 2019. [DOI: 10.21577/0103-5053.20190127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
|
6 |
1 |
9
|
Sampaio NMFM, de Oliveira BH, Riegel-Vidotti IC, da Silva BJG. Polyvinyl alcohol-based hydrogel sorbent for extraction of parabens in human milk samples by in-tube SPME–LC–UV. Anal Bioanal Chem 2022:10.1007/s00216-022-04481-x. [PMID: 36525120 DOI: 10.1007/s00216-022-04481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
In this work, we developed an in-tube solid-phase microextraction (SPME) device consisting of a fused silica capillary modified with a polyvinyl alcohol (PVOH) hydrogel. Methylparaben, ethylparaben, propylparaben, and butylparaben were determined in human milk samples by using the in-tube SPME device coupled with liquid chromatography with spectrophotometric detection in the ultraviolet region (LC-UV). The inner surface of the fused silica capillary was silanized to allow covalent modification with the PVOH-hydrogel, using glutaraldehyde as cross-linking agent. The developed device was used up to 250 times with no reduction in the analytes' peak areas or carryover effect, besides having a low production cost. The human milk samples showed a significant matrix effect for parabens with higher logKo/w. Low limits of quantification (LLOQ) between 10.0 and 15.0 ng mL-1 were obtained with RSD values in the range of 1.18 to 18.3%. For the intra- and inter-day assays, RSD values from 5.6 to 16.5% and accuracy from 74.5 to 128.8% were achieved. The PVOH-based hydrogel sorbent allowed the use of water as desorption solvent, eliminating the use of organic solvents, which follows the principles of green chemistry. The results showed a great application potential of the PVOH-based hydrogel sorbent for the extraction of organic compounds from high-complexity samples.
Collapse
|
|
3 |
|
10
|
Anjo FA, Saraiva BR, da Silva JB, Ogawa CYL, Sato F, Bruschi ML, Riegel-Vidotti IC, Simas FF, Matumoto-Pintro PT. A new food stabilizer in technological properties of low-fat processed cheese. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
3 |
|
11
|
Hochheim S, Sampaio NMFM, da Cruz AF, Del Mercato LL, D'Amone E, da Silva BJG, Saul CK, de Oliveira CC, Riegel-Vidotti I. Preparation and Investigation of Thermally Annealed Zein-Propolis Electrospun Nanofibers for Biomedical Applications. Macromol Biosci 2023; 23:e2200524. [PMID: 36852933 DOI: 10.1002/mabi.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Zein, a corn-derived protein, has a variety of applications ranging from drug delivery to tissue engineering and wound healing. This work aims to develop a biocompatible scaffold for dermal applications based on thermally annealed electrospun propolis-loaded zein nanofibers. Pristine fibers' biocompatibility is determined in vitro. Next, propolis from Melipona quadrifasciata is added to the fibers at different concentrations (5% to 25%), and the scaffolds are studied. The physicochemical properties of zein/propolis precursor dispersions are evaluated and the results are correlated to the fibers' properties. Due to zein's and propolis' very favorable interactions, which are responsible for the increase in the dispersions surface tension, nanometric size ribbon-like fibers ranging from 420 to 575 nm are obtained. The fiber's hydrophobicity is not dependent on propolis concentration and increases with the annealing procedure. Propolis inhibitory concentration (IC50 ) is determined as 61.78 µg mL-1 . When loaded into fibers, propolis is gradually delivered to cells as Balb/3T3 fibroblasts and are able to adhere, grow, and interact with pristine and propolis-loaded fibers, and cytotoxicity is not observed. Therefore, the zein-propolis nanofibers are considered biocompatible and safe. The results are promising and provide prospects for the development of wound-healing nanofiber patches-one of propolis' main applications.
Collapse
|
|
2 |
|
12
|
Pires E, Kutz MCS, Mendes AB, Riegel-Vidotti IC, Mafra LL. Toxic plastisphere: How the characteristics of plastic particles can affect colonization of harmful microalgae and adsorption of phycotoxins. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137019. [PMID: 39756326 DOI: 10.1016/j.jhazmat.2024.137019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Microplastics (MP) are suitable substrates for the colonization of harmful microalgal cells and the adsorption of their lipophilic compounds including phycotoxins. Moreover, such interactions likely change as physical-chemical characteristics of the MP surface are gradually modified during plastic degradation in aquatic environments. Using a combination of innovative laboratory experiments, this study systematically investigated, for the first time, the influence of various MP characteristics (polymeric composition, shape, size, and/or surface roughness) on its capacity to carry both living harmful algal cells and dissolved phycotoxins. Cell colonization by the dinoflagellate Prorocentrum lima started early (within 24 h) on particles of all shapes tested. However, cell colonization was much more intense on polystyrene ∼800 µm microspheres (0.63-46.4 cells mm-²; mean=11.7) and 500 × 1000 μm cuboid fragments (0.64-28.3 cells mm-²; mean=7.0), compared to polypropylene 11,000 × 50 µm microfibers of equivalent surface area (0.01-0.64 cells mm-²; mean=0.28), which were probably too narrow and light to interact with these benthic cells. Similar to lipophilic pollutants, adsorption of the diarrhetic toxin okadaic acid (OA) was greater on smaller MP particles (50 µm), attaining up to 8.0 pg mm² after 168 h of exposure. Moreover, in the short term (24 h), OA adsorption was significantly higher on aged MP, whose surface was modified following common degradation processes (abrasion, UV-photodegradation or microbial biodegradation), relative to virgin particles. During benthic P. lima blooms, the presence of aged MP covered by toxic cells and/or their dissolved compounds are expected to make diarrhetic toxins available to a greater diversity of organisms.
Collapse
|
|
1 |
|