1
|
Hicks JK, Bishop JR, Sangkuhl K, Müller DJ, Ji Y, Leckband SG, Leeder JS, Graham RL, Chiulli DL, LLerena A, Skaar TC, Scott SA, Stingl JC, Klein TE, Caudle KE, Gaedigk A. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin Pharmacol Ther 2015; 98:127-34. [PMID: 25974703 PMCID: PMC4512908 DOI: 10.1002/cpt.147] [Citation(s) in RCA: 673] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 11/11/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are primary treatment options for major depressive and anxiety disorders. CYP2D6 and CYP2C19 polymorphisms can influence the metabolism of SSRIs, thereby affecting drug efficacy and safety. We summarize evidence from the published literature supporting these associations and provide dosing recommendations for fluvoxamine, paroxetine, citalopram, escitalopram, and sertraline based on CYP2D6 and/or CYP2C19 genotype (updates at www.pharmgkb.org).
Collapse
|
Practice Guideline |
10 |
673 |
2
|
Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, Eckermann G, Egberts K, Gerlach M, Greiner C, Gründer G, Haen E, Havemann-Reinecke U, Hefner G, Helmer R, Janssen G, Jaquenoud E, Laux G, Messer T, Mössner R, Müller MJ, Paulzen M, Pfuhlmann B, Riederer P, Saria A, Schoppek B, Schoretsanitis G, Schwarz M, Gracia MS, Stegmann B, Steimer W, Stingl JC, Uhr M, Ulrich S, Unterecker S, Waschgler R, Zernig G, Zurek G, Baumann P. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. PHARMACOPSYCHIATRY 2017; 51:9-62. [PMID: 28910830 DOI: 10.1055/s-0043-116492] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Therapeutic drug monitoring (TDM) is the quantification and interpretation of drug concentrations in blood to optimize pharmacotherapy. It considers the interindividual variability of pharmacokinetics and thus enables personalized pharmacotherapy. In psychiatry and neurology, patient populations that may particularly benefit from TDM are children and adolescents, pregnant women, elderly patients, individuals with intellectual disabilities, patients with substance abuse disorders, forensic psychiatric patients or patients with known or suspected pharmacokinetic abnormalities. Non-response at therapeutic doses, uncertain drug adherence, suboptimal tolerability, or pharmacokinetic drug-drug interactions are typical indications for TDM. However, the potential benefits of TDM to optimize pharmacotherapy can only be obtained if the method is adequately integrated in the clinical treatment process. To supply treating physicians and laboratories with valid information on TDM, the TDM task force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) issued their first guidelines for TDM in psychiatry in 2004. After an update in 2011, it was time for the next update. Following the new guidelines holds the potential to improve neuropsychopharmacotherapy, accelerate the recovery of many patients, and reduce health care costs.
Collapse
|
Review |
8 |
610 |
3
|
Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Müller DJ, Shimoda K, Bishop JR, Kharasch ED, Skaar TC, Gaedigk A, Dunnenberger HM, Klein TE, Caudle KE, Stingl JC. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 2017; 102:37-44. [PMID: 27997040 DOI: 10.1002/cpt.597] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/21/2016] [Accepted: 12/07/2016] [Indexed: 11/06/2022]
|
Research Support, U.S. Gov't, P.H.S. |
8 |
433 |
4
|
Hicks JK, Swen JJ, Thorn CF, Sangkuhl K, Kharasch ED, Ellingrod VL, Skaar TC, Müller DJ, Gaedigk A, Stingl JC. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther 2013; 93:402-8. [PMID: 23486447 PMCID: PMC3689226 DOI: 10.1038/clpt.2013.2] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/27/2012] [Indexed: 11/08/2022]
Abstract
Polymorphisms in CYP2D6 and CYP2C19 affect the efficacy and safety of tricyclics, with some drugs being affected by CYP2D6 only, and others by both polymorphic enzymes. Amitriptyline, clomipramine, doxepin, imipramine, and trimipramine are demethylated by CYP2C19 to pharmacologically active metabolites. These drugs and their metabolites, along with desipramine and nortriptyline, undergo hydroxylation by CYP2D6 to less active metabolites. Evidence from published literature is presented for CYP2D6 and CYP2C19 genotype-directed dosing of tricyclic antidepressants.
Collapse
|
Practice Guideline |
12 |
306 |
5
|
Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, Eckermann G, Egberts K, Gerlach M, Greiner C, Gründer G, Haen E, Havemann-Reinecke U, Hefner G, Helmer R, Janssen G, Jaquenoud E, Laux G, Messer T, Mössner R, Müller MJ, Paulzen M, Pfuhlmann B, Riederer P, Saria A, Schoppek B, Schoretsanitis G, Schwarz M, Gracia MS, Stegmann B, Steimer W, Stingl JC, Uhr M, Ulrich S, Unterecker S, Waschgler R, Zernig G, Zurek G, Baumann P. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. PHARMACOPSYCHIATRY 2018; 51:e1. [PMID: 29390205 DOI: 10.1055/s-0037-1600991] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
Published Erratum |
7 |
132 |
6
|
Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmöller J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther 2013; 141:92-116. [PMID: 24076267 DOI: 10.1016/j.pharmthera.2013.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
UDP-glucuronosyltransferases (UGT) catalyze the biotransformation of many endobiotics and xenobiotics, and are coded by polymorphic genes. However, knowledge about the effects of these polymorphisms is rarely used for the individualization of drug therapy. Here, we present a quantitative systematic review of clinical studies on the impact of UGT variants on drug metabolism to clarify the potential for genotype-adjusted therapy recommendations. Data on UGT polymorphisms and dose-related pharmacokinetic parameters in man were retrieved by a systematic search in public databases. Mean estimates of pharmacokinetic parameters were extracted for each group of carriers of UGT variants to assess their effect size. Pooled estimates and relative confidence bounds were computed with a random-effects meta-analytic approach whenever multiple studies on the same variant, ethnic group, and substrate were available. Information was retrieved on 30 polymorphic metabolic pathways involving 10 UGT enzymes. For irinotecan and mycophenolic acid a wealth of data was available for assessing the impact of genetic polymorphisms on pharmacokinetics under different dosages, between ethnicities, under comedication, and under toxicity. Evidence for effects of potential clinical relevance exists for 19 drugs, but the data are not sufficient to assess effect size with the precision required to issue dose recommendations. In conclusion, compared to other drug metabolizing enzymes much less systematic research has been conducted on the polymorphisms of UGT enzymes. However, there is evidence of the existence of large monogenetic functional polymorphisms affecting pharmacokinetics and suggesting a potential use of UGT polymorphisms for the individualization of drug therapy.
Collapse
|
Systematic Review |
12 |
125 |
7
|
Biernacka JM, Sangkuhl K, Jenkins G, Whaley RM, Barman P, Batzler A, Altman RB, Arolt V, Brockmöller J, Chen CH, Domschke K, Hall-Flavin DK, Hong CJ, Illi A, Ji Y, Kampman O, Kinoshita T, Leinonen E, Liou YJ, Mushiroda T, Nonen S, Skime MK, Wang L, Baune BT, Kato M, Liu YL, Praphanphoj V, Stingl JC, Tsai SJ, Kubo M, Klein TE, Weinshilboum R. The International SSRI Pharmacogenomics Consortium (ISPC): a genome-wide association study of antidepressant treatment response. Transl Psychiatry 2015; 5:e553. [PMID: 25897834 PMCID: PMC4462610 DOI: 10.1038/tp.2015.47] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/01/2015] [Indexed: 12/21/2022] Open
Abstract
Response to treatment with selective serotonin reuptake inhibitors (SSRIs) varies considerably between patients. The International SSRI Pharmacogenomics Consortium (ISPC) was formed with the primary goal of identifying genetic variation that may contribute to response to SSRI treatment of major depressive disorder. A genome-wide association study of 4-week treatment outcomes, measured using the 17-item Hamilton Rating Scale for Depression (HRSD-17), was performed using data from 865 subjects from seven sites. The primary outcomes were percent change in HRSD-17 score and response, defined as at least 50% reduction in HRSD-17. Data from two prior studies, the Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomics Study (PGRN-AMPS) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, were used for replication, and a meta-analysis of the three studies was performed (N=2394). Although many top association signals in the ISPC analysis map to interesting candidate genes, none were significant at the genome-wide level and the associations were not replicated using PGRN-AMPS and STAR*D data. The top association result in the meta-analysis of response represents SNPs 5′ upstream of the neuregulin-1 gene, NRG1 (P = 1.20E - 06). NRG1 is involved in many aspects of brain development, including neuronal maturation and variations in this gene have been shown to be associated with increased risk for mental disorders, particularly schizophrenia. Replication and functional studies of these findings are warranted.
Collapse
|
research-article |
10 |
84 |
8
|
Breitfeld J, Scholl C, Steffens M, Laje G, Stingl JC. Gene expression and proliferation biomarkers for antidepressant treatment resistance. Transl Psychiatry 2017; 7:e1061. [PMID: 28291260 PMCID: PMC5416664 DOI: 10.1038/tp.2017.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/09/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
The neurotrophic hypothesis of depression suggests an association between effects on neuroplasticity and clinical response to antidepressant drug therapy. We studied individual variability in antidepressant drug effects on cell proliferation in lymphoblastoid cell lines (LCLs) from n=25 therapy-resistant patients versus n=25 first-line therapy responders from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. Furthermore, the variability in gene expression of genes associated with cell proliferation was analyzed for tentative candidate genes for prediction of individual LCL donor's treatment response. Cell proliferation was quantified by EdU (5-ethynyl-2'-deoxyuridine) assays after 21-day incubation of LCLs with fluoxetine (0.5 ng μl-1) and citalopram (0.3 ng μl-1) as developed and described earlier. Gene expression of a panel of candidate genes derived from genome-wide expression analyses of antidepressant effects on cell proliferation of LCLs from the Munich Antidepressant Response Signature (MARS) study was analyzed by real-time PCR. Significant differences in in vitro cell proliferation effects were detected between the group of LCLs from first-line therapy responders and LCLs from treatment-resistant patients. Gene expression analysis of the candidate gene panel revealed and confirmed influence of the candidate genes ABCB1, FZD7 and WNT2B on antidepressant drug resistance. The potential of these genes as tentative biomarkers for antidepressant drug resistance was confirmed. In vitro cell proliferation testing may serve as functional biomarker for individual neuroplasticity effects of antidepressants.
Collapse
|
research-article |
8 |
20 |
9
|
Breitfeld J, Scholl C, Steffens M, Brandenburg K, Probst-Schendzielorz K, Efimkina O, Gurwitz D, Ising M, Holsboer F, Lucae S, Stingl JC. Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy. Transl Psychiatry 2016; 6:e950. [PMID: 27845776 PMCID: PMC5314111 DOI: 10.1038/tp.2016.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022] Open
Abstract
The current therapy success of depressive disorders remains in need of improvement due to low response rates and a delay in symptomatic improvement. Reliable functional biomarkers would be necessary to predict the individual treatment outcome. On the basis of the neurotrophic hypothesis of antidepressant's action, effects of antidepressant drugs on proliferation may serve as tentative individual markers for treatment efficacy. We studied individual differences in antidepressant drug effects on cell proliferation and gene expression in lymphoblastoid cell lines (LCLs) derived from patients treated for depression with documented clinical treatment outcome. Cell proliferation was characterized by EdU (5-ethynyl-2'-deoxyuridine) incorporation assays following a 3-week incubation with therapeutic concentrations of fluoxetine. Genome-wide expression profiling was conducted by microarrays, and candidate genes such as betacellulin-a gene involved in neuronal stem cell regeneration-were validated by quantitative real-time PCR. Ex vivo assessment of proliferation revealed large differences in fluoxetine-induced proliferation inhibition between donor LCLs, but no association with clinical response was observed. Genome-wide expression analyses followed by pathway and gene ontology analyses identified genes with different expression before vs after 21-day incubation with fluoxetine. Significant correlations between proliferation and gene expression of WNT2B, FZD7, TCF7L2, SULT4A1 and ABCB1 (all involved in neurogenesis or brain protection) were also found. Basal gene expression of SULT4A1 (P=0.029), and gene expression fold changes of WNT2B by ex vivo fluoxetine (P=0.025) correlated with clinical response and clinical remission, respectively. Thus, we identified potential gene expression biomarkers eventually being useful as baseline predictors or as longitudinal targets in antidepressant therapy.
Collapse
|
research-article |
9 |
12 |
10
|
Stingl JC, Just KS, Kaumanns K, Schurig-Urbaniak M, Scholl C, von Mallek D, Brockmöller J. [Personalized drug therapy based on genetics. Possibilities and examples from clinical practice]. Internist (Berl) 2016; 57:289-97. [PMID: 26830424 DOI: 10.1007/s00108-015-0013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pharmacogenetics are an important component in the individualization of treatment; however, pharmacogenetic diagnostics have so far not been used to any great extent in clinical practice. A consistent consideration of individual patient factors, such as pharmacogenetics may help to improve drug therapy and increase individual safety and efficacy aspects. OBJECTIVE A brief summary of structures and effects of genetic variations on drug efficacy is presented. Some frequently prescribed pharmaceuticals are specified. Furthermore, the feasibility of pharmacogenetic diagnostics and dose recommendations in the clinical practice are described. CURRENT DATA The European Medicines Agency (EMA) as the European approval authority has already extended the drug labels of more than 70 pharmaceuticals by information on pharmacogenetic biomarkers and the U.S. Food and Drug Administration (FDA) more than 150. This is a crucial step towards targeted medicine. Guidelines on dose and therapy adjustments are provided by the Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. CONCLUSION It is fundamental to consider individual patient factors for successful drug therapy. Dose and therapy recommendations based on pharmacogenetic diagnostics are highly important for individualization as well as improvement of safety and efficiency of drug therapy.
Collapse
|
Review |
9 |
1 |
11
|
Stingl JC. 25 Pharmacogenetic diagnostics and therapeutic implications for genome medicine. PHARMACOPSYCHIATRY 2020. [DOI: 10.1055/s-0040-1710133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
|
5 |
|
12
|
Paulzen M, Stingl JC, Augustin M, Saßmannshausen H, Franz C, Gründer G, Schoretsanitis G. Comprehensive measurements of intrauterine and postnatal exposure to lamotrigine. PHARMACOPSYCHIATRY 2018. [DOI: 10.1055/s-0038-1649539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
|
7 |
|
13
|
Rüdiger S, Kropf-Sanchen C, Schumann-Stoiber KM, Blanta I, Gagiannis D, Rottbauer W, Stingl JC, Pamar S, Schumann C. Prädiktiver und prognostischer Wert von Hauttoxizität unter Therapie mit EGFR-Inhibitoren beim NSCLC. Pneumologie 2014. [DOI: 10.1055/s-0034-1367985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
11 |
|