Martín-Martínez D, Casaseca-de-la-Higuera P, Alberola-López S, Andrés-de-Llano J, López-Villalobos JA, Ardura-Fernández J, Alberola-López C. Nonlinear analysis of actigraphic signals for the assessment of the attention-deficit/hyperactivity disorder (ADHD).
Med Eng Phys 2012;
34:1317-29. [PMID:
22297088 DOI:
10.1016/j.medengphy.2011.12.023]
[Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral disorder in children and adolescents; however, its etiology is still unknown, which hinders the existence of reliable, fast and inexpensive standard diagnostic methods. In this paper, we propose a novel methodology for automatic diagnosis of the combined type of ADHD based on nonlinear signal processing of 24h-long actigraphic registries. Since it relies on actigraphy measurements, it constitutes an inexpensive and non-invasive objective diagnostic method. Our results on real data reach 96.77% sensitivity and 84.38% specificity by means of multidimensional classifiers driven by combined features from different time intervals. Our analysis also reveals that, if features from a single time interval are used, the whole 24-h interval is the only one that yields classification figures with practical diagnostic capabilities. Overall, our figures overcome those obtained by actigraphy-based methods reported and are comparable with others based on more expensive (and not so convenient) adquisition methods.
Collapse