1
|
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11:597-610. [PMID: 20661255 DOI: 10.1038/nrg2843] [Citation(s) in RCA: 3604] [Impact Index Per Article: 240.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.
Collapse
|
Review |
15 |
3604 |
2
|
Krebs H, Palazzolo J, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe B, Hogan N. Auton Robots 2003; 15:7-20. [DOI: 10.1023/a:1024494031121] [Citation(s) in RCA: 486] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
22 |
486 |
3
|
Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schübeler D, Oertner TG, Schratt G, Bibel M, Roska B, Filipowicz W. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 2010; 141:618-31. [PMID: 20478254 DOI: 10.1016/j.cell.2010.03.039] [Citation(s) in RCA: 380] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 01/22/2010] [Accepted: 03/05/2010] [Indexed: 11/15/2022]
Abstract
Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
380 |
4
|
Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, Munz M, Rodrigues TM, Krol J, Szikra T, Cuttat R, Waldt A, Papasaikas P, Diggelmann R, Patino-Alvarez CP, Galliker P, Spirig SE, Pavlinic D, Gerber-Hollbach N, Schuierer S, Srdanovic A, Balogh M, Panero R, Kusnyerik A, Szabo A, Stadler MB, Orgül S, Picelli S, Hasler PW, Hierlemann A, Scholl HPN, Roma G, Nigsch F, Roska B. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 2021; 182:1623-1640.e34. [PMID: 32946783 PMCID: PMC7505495 DOI: 10.1016/j.cell.2020.08.013] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
374 |
5
|
Sobczak K, de Mezer M, Michlewski G, Krol J, Krzyzosiak WJ. RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 2003; 31:5469-82. [PMID: 14500809 PMCID: PMC206466 DOI: 10.1093/nar/gkg766] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tandem repeats of trinucleotide sequences are present in many human genes and their expansion in specific genes causes a number of hereditary neurological disorders. The normal function of triplet repeats in transcripts is barely known and the role of expanded RNA repeats in the pathogenesis of Triplet Repeat Expansion Diseases needs to be more fully elucidated. Here we have described the structures formed by transcripts composed of AAG, CAG, CCG, CGG and CUG repeats, which were determined by chemical and enzymatic structure probing. With the exception of the repeated AAG motif, all studied repeats form hairpin structures and these hairpins show several alternative alignments. We have determined the molecular architectures of these co-existing hairpin structures by using transcripts with GC-clamps which imposed single alignments of hairpins. We have provided experimental evidence that CCUG repeats implicated in myotonic dystrophy type 2 also form hairpin structures with properties similar to that composed of the CUG repeats.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
170 |
6
|
Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT. Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 2004; 61:1604-7. [PMID: 14663051 DOI: 10.1212/01.wnl.0000095963.00970.68] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Thirty patients with chronic stroke received 6 weeks of sensorimotor robotic training in a pilot study that targeted motor function of the affected shoulder and elbow. The impairment and disability scores were stable during a 2-month observation/measurement period, improved significantly by program completion, and remained robust in the 3-month follow-up. Task-specific motor training attenuated a chronic neurologic deficit well beyond the expected period for improvement after stroke.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
164 |
7
|
Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, Krzyzosiak WJ. Structural basis of microRNA length variety. Nucleic Acids Res 2010; 39:257-68. [PMID: 20739353 PMCID: PMC3017592 DOI: 10.1093/nar/gkq727] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The biogenesis of human microRNAs (miRNAs) includes two RNA cleavage steps in which the activities of the RNases Drosha and Dicer are involved. miRNAs of diverse lengths are generated from different genes, and miRNAs that are heterogeneous in length are produced from a single miRNA gene. We determined the solution structures of many miRNA precursors and analysed the structural basis of miRNA length diversity using a new measure: the weighted average length of diced RNA (WALDI). We found that asymmetrical structural motifs present in precursor hairpins are primarily responsible for the length diversity of miRNAs generated by Dicer. High-resolution northern blots of miRNAs and their precursors revealed that both Dicer and Drosha cleavages of imperfect specificity contributed to the miRNA length heterogeneity. The relevance of these findings to the dynamics of the dicing complex, mRNA regulation by miRNA, RNA interference and miRNA technologies are discussed.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
138 |
8
|
Krol J, Fiszer A, Mykowska A, Sobczak K, de Mezer M, Krzyzosiak WJ. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 2007; 25:575-86. [PMID: 17317629 DOI: 10.1016/j.molcel.2007.01.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 11/09/2006] [Accepted: 01/29/2007] [Indexed: 01/08/2023]
Abstract
Ribonuclease Dicer functions in cells to excise microRNAs from their precursors and process long double-stranded RNAs into short interfering RNAs. We show that transcripts containing long hairpin structures composed of CNG repeats are another class of Dicer targets. The cellular levels of transcripts from mutant genes involved in triplet repeat expansion diseases such as myotonic dystrophy type 1, Huntington's disease, and spinocerebellar ataxia type 1 are under Dicer control. The Dicer-induced downregulation of the mutant transcript in myotonic dystrophy cells is accompanied by the downregulation of transcripts containing long complementary repeats. Short CUG repeats generated from long repeat hairpins act as siRNAs and use the RNA interference pathway to trigger the downstream silencing effects. We demonstrate that synthetic oligonucleotides composed of repeats are highly specific in the silencing of mutant transcripts containing complementary repeats and may be considered as potential therapeutic agents.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
136 |
9
|
Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, Krzyzosiak WJ. Structural Features of MicroRNA (miRNA) Precursors and Their Relevance to miRNA Biogenesis and Small Interfering RNA/Short Hairpin RNA Design. J Biol Chem 2004; 279:42230-9. [PMID: 15292246 DOI: 10.1074/jbc.m404931200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC).
Collapse
|
|
21 |
135 |
10
|
Jüttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB, Hantz P, Szikra T, Esposti F, Cowan CS, Bharioke A, Patino-Alvarez CP, Keles Ö, Kusnyerik A, Azoulay T, Hartl D, Krebs AR, Schübeler D, Hajdu RI, Lukats A, Nemeth J, Nagy ZZ, Wu KC, Wu RH, Xiang L, Fang XL, Jin ZB, Goldblum D, Hasler PW, Scholl HPN, Krol J, Roska B. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 2019; 22:1345-1356. [PMID: 31285614 DOI: 10.1038/s41593-019-0431-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
Abstract
Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.
Collapse
|
|
6 |
122 |
11
|
Busskamp V, Krol J, Nelidova D, Daum J, Szikra T, Tsuda B, Jüttner J, Farrow K, Scherf BG, Alvarez CPP, Genoud C, Sothilingam V, Tanimoto N, Stadler M, Seeliger M, Stoffel M, Filipowicz W, Roska B. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron 2014; 83:586-600. [PMID: 25002228 DOI: 10.1016/j.neuron.2014.06.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged. The loss of the outer segments occurred gradually over 1 month, and during this time the genetic signature of cones decreased. Reexpression of the sensory-cell-specific miR-182 and miR-183 prevented outer segment loss. These miRNAs were also necessary and sufficient for the formation of inner segments, connecting cilia and short outer segments, as well as light responses in stem-cell-derived retinal cultures. Our results show that miR-182- and miR-183-regulated pathways are necessary for cone outer segment maintenance in vivo and functional outer segment formation in vitro.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
110 |
12
|
Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Müller J, Szabo A, Jüttner J, Cordoba F, Reddy AP, Németh J, Nagy ZZ, Munier F, Hierlemann A, Roska B. Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity. Neuron 2015; 89:177-93. [PMID: 26711119 PMCID: PMC4712192 DOI: 10.1016/j.neuron.2015.11.032] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
Abstract
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract
FRMD7 is required for the horizontal optokinetic reflex in mice as in humans Horizontal direction selectivity is lost in the retina of FRMD7 mutant mice Asymmetry of inhibitory inputs to horizontal DS cells is lost in FRMD7 mutant mice FRMD7 is expressed in ChAT-expressing cells in the retina of mice and primates
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
104 |
13
|
Rodney GG, Moore CP, Williams BY, Zhang JZ, Krol J, Pedersen SE, Hamilton SL. Calcium binding to calmodulin leads to an N-terminal shift in its binding site on the ryanodine Receptor. J Biol Chem 2001; 276:2069-74. [PMID: 11035044 DOI: 10.1074/jbc.m008891200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The skeletal muscle calcium release channel, ryanodine receptor, is activated by calcium-free calmodulin and inhibited by calcium-bound calmodulin. Previous biochemical studies from our laboratory have shown that calcium-free calmodulin and calcium bound calmodulin protect sites at amino acids 3630 and 3637 from trypsin cleavage (Moore, C. P., Rodney, G., Zhang, J. Z., Santacruz-Toloza, L., Strasburg, G., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). We now demonstrate that both calcium-free calmodulin and calcium-bound calmodulin bind with nanomolar affinity to a synthetic peptide matching amino acids 3614-3643 of the ryanodine receptor. Deletion of the last nine amino acids (3635-3643) destroys the ability of the peptide to bind calcium-free calmodulin, but not calcium-bound calmodulin. We propose a novel mechanism for calmodulin's interaction with a target protein. Our data suggest that the binding sites for calcium-free calmodulin and calcium-bound calmodulin are overlapping and, when calcium binds to calmodulin, the calmodulin molecule shifts to a more N-terminal location on the ryanodine receptor converting it from an activator to an inhibitor of the channel. This region of the ryanodine receptor has previously been identified as a site of intersubunit contact, suggesting the possibility that calmodulin regulates ryanodine receptor activity by regulating subunit-subunit interactions.
Collapse
|
|
24 |
100 |
14
|
Sobczak K, Michlewski G, de Mezer M, Kierzek E, Krol J, Olejniczak M, Kierzek R, Krzyzosiak WJ. Structural diversity of triplet repeat RNAs. J Biol Chem 2010; 285:12755-64. [PMID: 20159983 DOI: 10.1074/jbc.m109.078790] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes. The repeated CAA, UUG, AAG, CUU, CCU, CCA, and UAA motifs did not form any higher order structure under any analyzed conditions. The CAU, CUA, UUA, AUG, and UAG repeats are ordered according to their increasing tendency to form semistable hairpins. The repeated CGA, CGU, and all CNG motifs form fairly stable hairpins, whereas AGG and UGG repeats fold into stable G-quadruplexes. The triplet repeats that formed the most stable structures were characterized further by biophysical methods. UV-monitored structure melting revealed that CGG and CCG repeats form, respectively, the most and least stable hairpins of all CNG repeats. Circular dichroism spectra showed that the AGG and UGG repeat quadruplexes are formed by parallel RNA strands. Furthermore, we demonstrated that the different susceptibility of various triplet repeat transcripts to serum nucleases can be explained by the sequence and structural features of the tested RNAs. The results of this study provide a comprehensive structural foundation for the functional analysis of triplet repeats in transcripts.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
97 |
15
|
Krol J, Krol I, Alvarez CPP, Fiscella M, Hierlemann A, Roska B, Filipowicz W. A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nat Commun 2015; 6:7305. [PMID: 26041499 PMCID: PMC4468907 DOI: 10.1038/ncomms8305] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Brain regions, such as the cortex and retina, are composed of layers of uniform thickness. The molecular mechanism that controls this uniformity is not well understood. Here we show that during mouse postnatal development the timed expression of Rncr4, a retina-specific long noncoding RNA, regulates the similarly timed processing of pri-miR-183/96/182, which is repressed at an earlier developmental stage by RNA helicase Ddx3x. Shifting the timing of mature miR-183/96/182 accumulation or interfering with Ddx3x expression leads to the disorganization of retinal architecture, with the photoreceptor layer being most affected. We identify Crb1, a component of the adhesion belt between glial and photoreceptor cells, as a link between Rncr4-regulated miRNA metabolism and uniform retina layering. Our results suggest that the precise timing of glia–neuron interaction controlled by noncoding RNAs and Ddx3x is important for the even distribution of cells across layers. The mammalian retina is a modular brain region, in which cell layers are of uniform thickness but the molecular mechanism controlling this process is not well understood. Here the authors identify a regulatory network consisting of the long noncoding RNA Rncr4, RNA helicase Ddx3x and miR-183/96/182 that controls the even distribution of cells across layers.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
68 |
16
|
Sencer S, Papineni RV, Halling DB, Pate P, Krol J, Zhang JZ, Hamilton SL. Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. J Biol Chem 2001; 276:38237-41. [PMID: 11500484 DOI: 10.1074/jbc.c100416200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle the L-type Ca2+ channel directly controls the opening of the sarcoplasmic reticulum Ca2+ release channel (RYR1), and RYR1, in turn, prevents L-type Ca2+ channel inactivation. We demonstrate that the two proteins interact using calmodulin binding regions of both proteins. A recombinant protein representing amino acids 1393-1527 (D1393-1527) of the carboxyl-terminal tail of the skeletal muscle L-type voltage-dependent calcium channel binds Ca2+, Ca2+ calmodulin, and apocalmodulin. In the absence of calmodulin, D1393-1527 binds to both RYR1 and a peptide representing the calmodulin binding site of RYR1 (amino acids 3609-3643). In addition, biotinylated R3609-3643 peptide can be used with streptavidin beads to pull down [3H]PN200-110-labeled L-type channels from detergent-solubilized transverse tubule membranes. The binding of the L-type channel carboxyl-terminal tail to the calmodulin binding site on RYR1 may stabilize the contact between the two proteins, provide a mechanism for Ca2+ and/or calmodulin regulation of their interaction, or participate directly in functional signaling between these two proteins. A unique aspect of this study is the finding that calmodulin binding sequences can serve as specific binding motifs for proteins other than calmodulin.
Collapse
|
|
24 |
61 |
17
|
Wiatrowska BA, Krol J, Zakowski MF. Large-cell neuroendocrine carcinoma of the lung: proposed criteria for cytologic diagnosis. Diagn Cytopathol 2001; 24:58-64. [PMID: 11135471 DOI: 10.1002/1097-0339(200101)24:1<58::aid-dc1010>3.0.co;2-o] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The category of large-cell neuroendocrine carcinoma (LCNEC) of the lung, proposed to expand the traditional scheme of typical carcinoid, atypical carcinoid (AC), and small-cell carcinoma (SCC), based on histologic features, has not been defined in cytology. We attempt to describe LCNEC cytologically. Cytologic features in 16 histologically confirmed LCNECs in fine-needle aspiration biopsies, cell blocks, bronchial brushes, washes, and sputum specimens stained with Diff-Quik, Papanicolaou, hematoxylin-eosin, chromogranin, and synaptophysin were analyzed. Three poorly differentiated nonsmall-cell carcinomas, 4 SCCs, and 2 atypical carcinoids were studied similarly. Twenty specimens from 16 histologically confirmed cases of LCNEC with original cytologic diagnoses including high-grade neuroendocrine carcinoma, large-cell carcinoma, nonsmall-cell carcinoma, poorly differentiated carcinoma, adenocarcinoma, and SCC, were examined. Features included flattened three-dimensional clusters with peripheral palisading, moderate to large single cells with scant (alcohol-fixed) or moderate (air-dried) cytoplasm; and large, oval, or polygonal nuclei with irregular contours, thickened nuclear membranes, and finely or coarsely granular chromatin, showing some molding and crush artifact. Nucleoli were generally present, and occasionally prominent. Mitosis and necrosis were apparent. Neuroendocrine stains were applied to all specimens, with at least one marker, commonly synaptophysin, positive in 18/20 specimens. LCNEC can be diagnosed in cytologic material, using morphology confirmed by immunocytochemistry. Treatment can be offered on the basis of cytologic examination.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/analysis
- Carcinoma, Large Cell/chemistry
- Carcinoma, Large Cell/diagnosis
- Carcinoma, Large Cell/secondary
- Carcinoma, Large Cell/surgery
- Carcinoma, Neuroendocrine/chemistry
- Carcinoma, Neuroendocrine/diagnosis
- Carcinoma, Neuroendocrine/secondary
- Carcinoma, Neuroendocrine/surgery
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/secondary
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Small Cell/chemistry
- Carcinoma, Small Cell/diagnosis
- Carcinoma, Small Cell/surgery
- Chromogranin A
- Chromogranins/analysis
- Cytodiagnosis/methods
- Female
- Humans
- Immunohistochemistry
- Lung Neoplasms/chemistry
- Lung Neoplasms/diagnosis
- Lung Neoplasms/surgery
- Lymph Nodes/pathology
- Lymphatic Metastasis/pathology
- Male
- Middle Aged
- Neoplasm Proteins/analysis
- Synaptophysin/analysis
Collapse
|
|
24 |
60 |
18
|
Calviello L, Venkataramanan S, Rogowski KJ, Wyler E, Wilkins K, Tejura M, Thai B, Krol J, Filipowicz W, Landthaler M, Floor SN. DDX3 depletion represses translation of mRNAs with complex 5' UTRs. Nucleic Acids Res 2021; 49:5336-5350. [PMID: 33905506 PMCID: PMC8136831 DOI: 10.1093/nar/gkab287] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
DDX3 is an RNA chaperone of the DEAD-box family that regulates translation. Ded1, the yeast ortholog of DDX3, is a global regulator of translation, whereas DDX3 is thought to preferentially affect a subset of mRNAs. However, the set of mRNAs that are regulated by DDX3 are unknown, along with the relationship between DDX3 binding and activity. Here, we use ribosome profiling, RNA-seq, and PAR-CLIP to define the set of mRNAs that are regulated by DDX3 in human cells. We find that while DDX3 binds highly expressed mRNAs, depletion of DDX3 particularly affects the translation of a small subset of the transcriptome. We further find that DDX3 binds a site on helix 16 of the human ribosomal rRNA, placing it immediately adjacent to the mRNA entry channel. Translation changes caused by depleting DDX3 levels or expressing an inactive point mutation are different, consistent with different association of these genetic variant types with disease. Taken together, this work defines the subset of the transcriptome that is responsive to DDX3 inhibition, with relevance for basic biology and disease states where DDX3 is altered.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
51 |
19
|
Laskey WK, Brady ST, Kussmaul WG, Waxler AR, Krol J, Herrmann HC, Hirshfeld JW, Sehgal C. Intravascular ultrasonographic assessment of the results of coronary artery stenting. Am Heart J 1993; 125:1576-83. [PMID: 8498296 DOI: 10.1016/0002-8703(93)90743-s] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We studied 12 patients undergoing elective coronary stent implantation for either recurrent restenosis or adverse lesion appearance. By use of a 4.8F 20 MHz intravascular ultrasound catheter, the conventional angioplasty site was examined before and after coronary stent implantation. Quantitative angiographic analysis revealed the expected excellent final result with a group mean poststent diameter reduction of 14 +/- 9% and a cross-sectional area reduction of 22 +/- 13%. Angiographic analysis also indicated an increase in minimum stenosis diameter from 1.8 +/- 0.6 mm after conventional balloon angioplasty to 2.8 +/- 0.3 mm after coronary stent implantation. Quantitative analysis of the corresponding intravascular ultrasound images, however, revealed significant residual endoluminal obstruction. Fractional plaque area remained unchanged from 30 +/- 12% after conventional balloon angioplasty to 32 +/- 11% after stent implantation. The circumferential distribution of plaque increased significantly from 0.44 +/- 0.17 to 0.55 +/- 0.15 (p = 0.03) after stent implantation. Despite the lack of significant change in the ultrasound-determined minimum stenosis diameter after stent placement, there was a borderline significant increase in the plaque-free lumen area (before stent, 6.35 +/- 1.55 mm2; after stent, 7.25 +/- 1.6 mm2; p = 0.06). Thus, in contrast to the substantial improvement in the angiographically assessed residual luminal obstruction after stent implantation compared with the prestent condition, considerably less improvement was found by intravascular ultrasound-assessed examination. Morphometric analysis indicated a tendency toward circumferential remodeling of plaque. The inherently different approaches to vascular imaging represented by contrast angiography and intravascular ultrasound techniques appear to provide complementary information.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
32 |
43 |
20
|
Woldemichael BT, Jawaid A, Kremer EA, Gaur N, Krol J, Marchais A, Mansuy IM. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat Commun 2016; 7:12594. [PMID: 27558292 PMCID: PMC5007330 DOI: 10.1038/ncomms12594] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation. Inhibiting nuclear PP1 in the mouse brain, or training on an object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by miR-183/96/182 overexpression enhances object memory, while knocking-down endogenous miR-183/96/182 impairs it. This effect involves the modulation of several plasticity-related genes, with HDAC9 identified as an important functional target. Further, PP1 controls miR-183/96/182 in a transcription-independent manner through the processing of their precursors. These findings provide novel evidence for a role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
40 |
21
|
|
Letter |
29 |
37 |
22
|
Schubert R, Trenholm S, Balint K, Kosche G, Cowan CS, Mohr MA, Munz M, Martinez-Martin D, Fläschner G, Newton R, Krol J, Scherf BG, Yonehara K, Wertz A, Ponti A, Ghanem A, Hillier D, Conzelmann KK, Müller DJ, Roska B. Virus stamping for targeted single-cell infection in vitro and in vivo. Nat Biotechnol 2017; 36:81-88. [DOI: 10.1038/nbt.4034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022]
|
|
8 |
37 |
23
|
Rodney GG, Krol J, Williams B, Beckingham K, Hamilton SL. The carboxy-terminal calcium binding sites of calmodulin control calmodulin's switch from an activator to an inhibitor of RYR1. Biochemistry 2001; 40:12430-5. [PMID: 11591164 DOI: 10.1021/bi011078a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcium and calmodulin both regulate the skeletal muscle calcium release channel, also known as the ryanodine receptor, RYR1. Ca(2+)-free calmodulin (apocalmodulin) activates and Ca(2+)-calmodulin inhibits the ryanodine receptor. The conversion of calmodulin from an activator to an inhibitor is due to Ca(2+) binding to calmodulin. We have previously shown that the binding sites for apocalmodulin and Ca(2+)-calmodulin on RYR1 are overlapping with the Ca(2+)-calmodulin site located slightly N-terminal to the apocalmodulin binding site. We now show that mutations of the calcium binding sites in either the N-terminal or the C-terminal lobes of calmodulin decrease the affinity of calmodulin for the ryanodine receptor, suggesting that both lobes interact with RYR1. Mutation of the two C-terminal Ca(2+) binding sites of calmodulin destroys calmodulin's ability to inhibit ryanodine receptor activity at high calcium concentrations. The mutated calmodulin, however, can still bind to RYR1 at both nanomolar and micromolar Ca(2+) concentrations. Mutating the two N-terminal calcium binding sites of calmodulin does not significantly alter calmodulin's ability to inhibit ryanodine receptor activity. These data suggest that calcium binding to the two C-terminal calcium binding sites within calmodulin is responsible for the switching of calmodulin from an activator to an inhibitor of the ryanodine receptor.
Collapse
|
|
24 |
35 |
24
|
Krol J, Alden P, Morawski J, Jackson P. Ion chromatography of alkylamines and alkanolamines using conductivity detection. J Chromatogr A 1992. [DOI: 10.1016/0021-9673(92)85406-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
33 |
21 |
25
|
Herrmann HC, Hill JA, Krol J, Kleaveland JP, Pepine CJ. Effectiveness of percutaneous balloon valvuloplasty in adults with pulmonic valve stenosis. Am J Cardiol 1991; 68:1111-3. [PMID: 1927933 DOI: 10.1016/0002-9149(91)90510-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
|
34 |
19 |