1
|
Adderley J, Williamson T, Doerig C. Parasite and Host Erythrocyte Kinomics of Plasmodium Infection. Trends Parasitol 2021; 37:508-524. [PMID: 33593681 DOI: 10.1016/j.pt.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Malaria remains a heavy public health and socioeconomic burden in tropical and subtropical regions. Increasing resistance against front-line treatments implies that novel targets for antimalarial intervention are urgently required. Protein kinases of both the parasites and their host cells possess strong potential in this respect. We present an overview of the updated kinome of Plasmodium falciparum, the species that is the largest contributor to malaria mortality, and of current knowledge pertaining to the function of parasite-encoded protein kinases during the parasite's life cycle. Furthermore, we detail recent advances in drug initiatives targeting Plasmodium kinases and outline the potential of protein kinases in the context of the growing field of host-directed therapies, which is currently being explored as a novel way to combat parasite drug resistance.
Collapse
|
Review |
4 |
11 |
2
|
Bichet MC, Adderley J, Avellaneda-Franco L, Magnin-Bougma I, Torriero-Smith N, Gearing LJ, Deffrasnes C, David C, Pepin G, Gantier MP, Lin RCY, Patwa R, Moseley GW, Doerig C, Barr JJ. Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival. PLoS Biol 2023; 21:e3002341. [PMID: 37883333 PMCID: PMC10602308 DOI: 10.1371/journal.pbio.3002341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism.
Collapse
|
research-article |
2 |
9 |
3
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
|
|
2 |
8 |
4
|
Adderley J, Grau GE. Host-directed therapies for malaria: possible applications and lessons from other indications. Curr Opin Microbiol 2023; 71:102228. [PMID: 36395572 DOI: 10.1016/j.mib.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022]
Abstract
Host-directed therapies (HDT) are rapidly advancing as a new and clinically relevant strategy to treat infectious disease. The application of HDT can be broadly used to (i) inhibit host factors essential for pathogen development, including host protein kinases, (ii) control detrimental immune signalling, resulting from excessive release of cytokines, chemokines and extracellular vesicles and (iii) strengthen host defence mechanisms, such as tight junctions in the endothelium. For malaria and other eukaryotic parasite-causing diseases, HDTs could provide a novel avenue to combat the growing resistance seen across all antimicrobials and provide protection against the severe forms of disease through modulation of the host immune response.
Collapse
|
Review |
2 |
2 |
5
|
Adderley J, Doerig C. Comparative analysis of the kinomes of Plasmodium falciparum, Plasmodium vivax and their host Homo sapiens. BMC Genomics 2022; 23:237. [PMID: 35346035 PMCID: PMC8960227 DOI: 10.1186/s12864-022-08457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background Novel antimalarials should be effective across all species of malaria parasites that infect humans, especially the two species that bear the most impact, Plasmodium falciparum and Plasmodium vivax. Protein kinases encoded by pathogens, as well as host kinases required for survival of intracellular pathogens, carry considerable potential as targets for antimalarial intervention (Adderley et al. Trends Parasitol 37:508–524, 2021; Wei et al. Cell Rep Med 2:100423, 2021). To date, no comprehensive P. vivax kinome assembly has been conducted; and the P. falciparum kinome, first assembled in 2004, requires an update. The present study, aimed to fill these gaps, utilises a recently published structurally-validated multiple sequence alignment (MSA) of the human kinome (Modi et al. Sci Rep 9:19790, 2019). This MSA is used as a scaffold to assist the alignment of all protein kinase sequences from P. falciparum and P. vivax, and (where possible) their assignment to specific kinase groups/families. Results We were able to assign six P. falciparum previously classified as OPK or ‘orphans’ (i.e. with no clear phylogenetic relation to any of the established ePK groups) to one of the aforementioned ePK groups. Direct phylogenetic comparison established that despite an overall high level of similarity between the P. falciparum and P. vivax kinomes, which will help in selecting targets for intervention, there are differences that may underlie the biological specificities of these species. Furthermore, we highlight a number of Plasmodium kinases that have a surprisingly high level of similarity with their human counterparts and therefore not well suited as targets for drug discovery. Conclusions Direct comparison of the kinomes of Homo sapiens, P. falciparum and P. vivax sheds additional light on the previously documented divergence of many P. falciparum and P. vivax kinases from those of their human host. We provide the first direct kinome comparison between the phylogenetically distinct species of P. falciparum and P. vivax, illustrating the key similarities and differences which must be considered in the context of kinase-directed antimalarial drug discovery, and discuss the divergences and similarities between the human and Plasmodium kinomes to inform future searches for selective antimalarial intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08457-0.
Collapse
|
|
3 |
2 |
6
|
Nicolau GY, Haus E, Lakatua D, Bogdan C, Petrescu E, Robu E, Sackett-Lundeen L, Swoyer J, Adderley J. Circadian time structure of endocrine and biochemical parameters in adult onset (type II) diabetic patients. ENDOCRINOLOGIE 1984; 22:227-43. [PMID: 6523019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Forty-one endocrine and biochemical serum parameters were studied over a 24-hour span with 6 samples at 4-hour intervals in 20 non-insulin dependent (Type II) diabetics and in 20 non-diabetic subjects matched for sex, age, height and weight. Circadian rhythms were verified by cosinor analysis. Group-synchronized circadian rhythms were detected in diabetic and non-diabetic subjects with no statistically significant difference in any of the rhythm parameters (rhythm adjusted mean, amplitude and acrophase) in: Aldosterone, cortisol, insulin, 17-OH progesterone, prolactin, testosterone, TSH, and in serum albumin, creatine phosphokinase (CPK), serum iron, inorganic phosphate and total protein. Statistically significant (p less than .05) circadian rhythms in both groups with a difference in some parameters between the diabetic and the non-diabetic subjects, which were verified by the Bingham Test (p less than .05) were found with a difference in the mesor in cholesterol, glucose, urea nitrogen (BUN), in the amplitude in C-peptide and in the acrophase in triglycerides, globulin and reverse T3 (rT3). Statistically significant circadian rhythms were detected as a group phenomenon for the diabetics only in progesterone, free and total T4, chloride, calcium, bilirubin and LDH and in the non-diabetic subjects only in ACTH, LH, total T3, alkaline phosphatase, uric acid and potassium. In the remainder of the functions studied, a circadian rhythm was detectable with statistical significance by cosinor analysis as a group phenomenon neither in the diabetics nor in the matched non-diabetic controls (DHEA-S, estradiol, FSH, GH, glucagon, free T3, sodium, GOT and gamma GT). In the absence of a detectable circadian rhythm as group phenomenon, the circadian mean was different between the diabetics and the non-diabetic subjects in sodium, chloride and calcium which were higher in the diabetic patients and serum LDH which was lower. In a comparison of endocrine determinations in the two groups, the circadian mean or mesor in T3 was lower in the diabetics and ACTH higher, without corresponding changes in TSH or in corticosteroids. The circadian time structure of Type II diabetic patients thus seems to be very similar to that seen in non-diabetic subjects of the same sex, age, weight and height. The minor differences found in some rhythm parameters will have to be confirmed or excluded in larger numbers of subjects. The higher circadian mean ACTH concentrations without change in steroid rhythm parameters observed in this group is interesting but will also require confirmation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Comparative Study |
41 |
|
7
|
Nicolau GY, Haus E, Lakatua DJ, Bogdan C, Popescu M, Petrescu E, Sackett-Lundeen L, Swoyer J, Adderley J. Circadian periodicity of the results of frequently used laboratory tests in elderly subjects. ENDOCRINOLOGIE 1983; 21:3-21. [PMID: 6342116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The circadian rhythms of twenty-one chemical serum parameters (albumin, alkaline phosphatase, calcium, carbon dioxide content, chloride, cholesterol, creatine phosphokinase (CPK), creatinine, glucose, glutamic-oxalacetic transaminase (GOT), gamma glutamyl transferase (Gamma--GT), lactate dehydrogenase (LDH), inorganic phosphorus, iron, potassium, total bilirubin, total protein, sodium, triglycerides, urea nitrogen, uric acid) and of urinary volume and oral temperature were studied, in October 1981, in a group of 49 elderly subjects (23 men, 73 +/- 6 years of age, and 26 women, 77 +/- 8 years of age) institutionalized at the Berceni Hospital for the aged. Statistically significant circadian rhythms as a group phenomenon were found in all functions except alkaline phosphatase, GOT, and LDH. The timing and the extent of these rhythms are presented. The circadian time structure of body chemistry appears well maintained in old age. Some circadian rhythms show a large enough amplitude to require the establishment of time qualified reference ("normal") ranges (e.g. serum iron). In most others, the circadian amplitudes are small and at present of little or no diagnostic importance. They are, however, of physiologic and pathophysiologic interest indicating an intricate time sequence of metabolic events in the human body.
Collapse
|
Review |
42 |
|
8
|
Jenkins EM, Adderley J, Rayner J, Hurdle C. Use of oral vaccines in attempts to prevent swine dysentery. VETERINARY MEDICINE, SMALL ANIMAL CLINICIAN : VM, SAC 1979; 74:1785-90. [PMID: 260870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
46 |
|
9
|
Adderley J, Boulet C, McCann K, McHugh E, Ioannidis LJ, Yeoh LM. Advances in Plasmodium research, an update: highlights from the Malaria in Melbourne 2021 conference. Mol Biochem Parasitol 2022; 250:111487. [DOI: 10.1016/j.molbiopara.2022.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
|
|
3 |
|
10
|
Adderley J, O'Donoghue F, Doerig C, Davis S. MAPPINGS, a tool for network analysis of large phospho-signalling datasets: application to host erythrocyte response to Plasmodium infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100149. [PMID: 35909628 PMCID: PMC9325900 DOI: 10.1016/j.crmicr.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The complexity of signal transduction networks in eukaryotic cells, superimposed to very large datasets generated by “omics” approaches (notably phosphor-proteomics), calls for tools to identify pathways that are mobilised under specific conditions, including infection by intracellular pathogens. This has become a bottleneck in various biology fields, from cancer through developmental biology to infectious diseases. We developed MAPPINGS, a computational tool to extract meaning from large phosphosignalling datasets, and used it to analyse host erythrocyte response to infection with malaria parasites, leading to the identification of host cell pathways that are activated by Plasmodium. MAPPINGS uses random walks to identify chains of phosphorylation events occurring much more or much less frequently than expected, and highlights pathways of phosphorylation that work synergistically, providing a rapid interpretation of the most critical pathways in any phosphosiganlling dataset. Large datasets of phosphorylation interactions are constantly being generated, but deciphering the complex network structure hidden in these datasets remains challenging. Many phosphorylation interactions occurring in human cells have been identified and constitute the basis for the known phosphorylation interaction network. We overlayed onto this network phosphorylation datasets obtained from an antibody microarray approach aimed at determining changes in phospho-signalling of host erythrocytes, during infection with the malaria parasite Plasmodium falciparum. We designed a pathway analysis tool denoted MAPPINGS that uses random walks to identify chains of phosphorylation events occurring much more or much less frequently than expected. MAPPINGS highlights pathways of phosphorylation that work synergistically, providing a rapid interpretation of the most critical pathways in each dataset. MAPPINGS confirmed several signalling interactions previously shown to be modulated by infection, and revealed additional interactions which could form the basis of numerous future studies. The MAPPINGS analysis strategy described here is widely applicable to comparative phosphorylation datasets in any context, such as response of cells to infection, treatment, or comparison between differentiation stages of any cellular population.
Collapse
|
|
3 |
|
11
|
Singh MK, Bonnell VA, Tojal Da Silva I, Santiago VF, Moraes MS, Adderley J, Doerig C, Palmisano G, Llinas M, Garcia CRS. A Plasmodium falciparum MORC protein complex modulates epigenetic control of gene expression through interaction with heterochromatin. eLife 2024; 12:RP92201. [PMID: 39412522 PMCID: PMC11483127 DOI: 10.7554/elife.92201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.
Collapse
|
research-article |
1 |
|