1
|
Caruso-Neves C, Pinheiro AAS, Cai H, Souza-Menezes J, Guggino WB. PKB and megalin determine the survival or death of renal proximal tubule cells. Proc Natl Acad Sci U S A 2006; 103:18810-5. [PMID: 17121993 PMCID: PMC1693744 DOI: 10.1073/pnas.0605029103] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Renal proximal tubule cells have a remarkable ability to reabsorb large quantities of albumin through megalin-mediated endocytosis. This is an essential process for overall body homeostasis. Overstressing this endocytic system with a prolonged excess of albumin is injurious to proximal tubule cells. How these cells function and protect themselves from injury is unknown. Here, we show that megalin is the sensor that determines whether cells will be protected or injured by albumin. Megalin, through a novel mechanism, binds PKB in a D-3-phosphorylated phospholipid-insensitive manner, anchoring PKB in the luminal plasma membrane. Whereas low doses of albumin are protective, an overload of albumin decreases megalin expression followed by a reduction of plasma membrane PKB, PKB activity, and Bad phosphorylation induced by PKB. The result is albumin-induced apoptosis. These results reveal a model for PKB distribution in the plasma membrane and elucidate mechanisms involved in both the protective and toxic effects of albumin on proximal tubule cells. In addition, our findings suggest a mechanism for the progression of chronic kidney disease to end-stage renal disease.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
98 |
2
|
Prota LFM, Lassance RM, Maron-Gutierrez T, Castiglione RC, Garcia CSB, Santana MCE, Souza-Menezes J, Abreu SC, Samoto V, Santiago MF, Capelozzi VL, Takiya CM, Rocco PRM, Morales MM. Bone marrow mononuclear cell therapy led to alveolar-capillary membrane repair, improving lung mechanics in endotoxin-induced acute lung injury. Cell Transplant 2010; 19:965-71. [PMID: 20447341 DOI: 10.3727/096368910x506845] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to test the hypothesis that bone marrow mononuclear cell (BMDMC) therapy led an improvement in lung mechanics and histology in endotoxin-induced lung injury. Twenty-four C57BL/6 mice were randomly divided into four groups (n = 6 each). In the acute lung injury (ALI) group, Escherichia coli lipopolysaccharide (LPS) was instilled intratracheally (40 μg, IT), and control (C) mice received saline (0.05 ml, IT). One hour after the administration of saline or LPS, BMDMC (2 × 10(7) cells) was intravenously injected. At day 28, animals were anesthetized and lung mechanics [static elastance (E(st)), resistive (ΔP(1)), and viscoelastic (ΔP(2)) pressures] and histology (light and electron microscopy) were analyzed. Immunogold electron microscopy was used to evaluate if multinucleate cells were type II epithelial cells. BMDMC therapy prevented endotoxin-induced lung inflammation, alveolar collapse, and interstitial edema. In addition, BMDMC administration led to epithelial and endothelial repair with multinucleated type II pneumocytes. These histological changes yielded a reduction in lung E(st), ΔP(1), and ΔP(2) compared to ALI. In the present experimental ALI model, the administration of BMDMC yielded a reduction in the inflammatory process and a repair of epithelium and endothelium, reducing the amount of alveolar collapse, thus leading to an improvement in lung mechanics.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
30 |
3
|
Figueira MF, Monnerat-Cahli G, Medei E, Carvalho AB, Morales MM, Lamas ME, da Fonseca RN, Souza-Menezes J. MicroRNAs: potential therapeutic targets in diabetic complications of the cardiovascular and renal systems. Acta Physiol (Oxf) 2014; 211:491-500. [PMID: 24837225 DOI: 10.1111/apha.12316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/27/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is a serious health problem that can lead to several pathological complications in numerous organs and tissues. The most important and most prevalent organs affected by this disease are the heart and the kidneys, and these complications are the major causes of death in patients with diabetes. MicroRNAs (miRNAs), short non-coding RNAs, have been found to be functionally important in the regulation of several pathological processes, and they are emerging as an important therapeutic tool to avoid the complications of diabetes mellitus. This review summarizes the knowledge on the effects of miRNAs in diabetes. The use of miRNAs in diabetes from a clinical perspective is also discussed, focusing on their potential role to repair cardiovascular and renal complications.
Collapse
|
Review |
11 |
27 |
4
|
Lowe J, Souza-Menezes J, Freire D, Mattos L, Castiglione R, Barbosa C, Santiago L, Ferrão F, Cardoso L, da Silva R, Vieira-Beiral H, Vieyra A, Morales M, Azevedo S, Soares R. Single sublethal dose of microcystin-LR is responsible for different alterations in biochemical, histological and physiological renal parameters. Toxicon 2012; 59:601-9. [DOI: 10.1016/j.toxicon.2012.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022]
|
|
13 |
25 |
5
|
Carraro-Lacroix LR, Lessa LM, Bezerra CN, Pessoa TD, Souza-Menezes J, Morales MM, Girardi AC, Malnic G. Role of CFTR and ClC-5 in Modulating Vacuolar H +-ATPase Activity in Kidney Proximal Tubule. Cell Physiol Biochem 2010; 26:563-76. [DOI: 10.1159/000322324] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
|
|
15 |
22 |
6
|
Souza-Menezes J, Morales MM, Tukaye DN, Guggino SE, Guggino WB. Absence of ClC5 in knockout mice leads to glycosuria, impaired renal glucose handling and low proximal tubule GLUT2 protein expression. Cell Physiol Biochem 2007; 20:455-64. [PMID: 17762172 DOI: 10.1159/000107529] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2007] [Indexed: 01/27/2023] Open
Abstract
Glycosuria is one of the well-documented characteristics in ClC-5 knockout (KO) mice and patients with Dent's disease. However, the underlying pathophysiology of its occurrence is unknown. In this study, we have compared ClC-5 KO mice with age and gender matched wild-type (WT) control mice to investigate if the underlying cause of manifested glycosuria is an impairment of glucose homeostasis and/or an alteration in expression levels of proximal tubule (PT) glucose transporters. We observed that, the blood glucose concentration (n=12, p<0.01) and the fractional excretion of glucose and insulin (n=6, p<0.05) were higher in KO mice. In contrast, the fasting blood glucose levels (n=7) were not significantly different in the two groups. Plasma glucose increased to a greater extent in KO mice (n=7, p<0.05) when challenged by an intraperitoneal injection of glucose. However, no peripheral tissue insulin resistance was observed following an intraperitoneal injection of insulin (n=9) in the KO mice. ELISA analysis demonstrated low plasma insulin concentrations after a 12 hour fasting period and also following glucose injection in KO mice. The total insulin released during a 2 hour period following glucose challenge was significantly lower in KO mice (n=6, p<0.05). By western blot, we observed a significant decrease in GLUT2 protein expression levels in isolated PT ((n=10, p<0.01)) of KO mice. This decrease in protein levels was corroborated by a significant decrease in GLUT2 mRNA levels estimated semi quantitatively by RT-PCR in isolated PT (n=10, p<0.01). No significant changes in mRNA expression levels of SGLT2, SGLT1 and GLUT1, as analyzed by RT-PCR, could be detected in the isolated PT (n=10). Also, we have shown by western blot analysis that expression of megalin is lower in the renal cortex of KO mice when compared to WT mice (n=3, p<0.05). Our results suggest that low plasma insulin concentration together with renal function changes observed in KO mice significantly contribute towards the glucose intolerance and documented glycosuria observed in this animal.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
16 |
7
|
Souza-Menezes J, Morales MM. CFTR structure and function: is there a role in the kidney? Biophys Rev 2009; 1:3-12. [PMID: 28510151 PMCID: PMC5387792 DOI: 10.1007/s12551-008-0002-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/19/2008] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective protein processing that leads to changes in function and regulation of this chloride channel. Despite of the expression of CFTR in the kidney, patients with CF do not present major renal dysfunction, but it is known that both the urinary excretion of proteins and renal capacity to concentrate and dilute urine are altered in these patients. CFTR mRNA is expressed in all nephron segments of rat and human, and this abundance is more prominent in renal cortex and outer medulla renal areas. CFTR protein was detected in apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. Studies have demonstrated that CFTR does not only transport Cl- but also ATP. ATP transport by CFTR could be involved in the control of other ion transporters such as Na+ (ENaC) and K+ (renal outer medullary potassium) channels, especially in TAL and CCD. In the kidney, CFTR also might be involved in the endocytosis of low-molecular-weight proteins by proximal tubules. This review is focused on the CFTR function and structure, its role in the renal physiology, and its modulation by hormones involved in the control of extracellular fluid volume.
Collapse
|
Review |
16 |
15 |
8
|
Gracelli JB, Souza-Menezes J, Barbosa CM, Ornellas FS, Takiya CM, Alves LM, Wengert M, da Silva Feltran G, Caruso-Neves C, Moyses MR, Prota LF, Morales MM. Role of Estrogen and Progesterone in the Modulation of CNG-A1 and Na+/K+-ATPase Expression in the Renal Cortex. Cell Physiol Biochem 2012; 30:160-72. [DOI: 10.1159/000339055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2012] [Indexed: 11/19/2022] Open
|
|
13 |
13 |
9
|
Souza-Menezes J, da Silva Feltran G, Morales MM. CFTR and TNR-CFTR expression and function in the kidney. Biophys Rev 2014; 6:227-236. [PMID: 28510183 PMCID: PMC5425698 DOI: 10.1007/s12551-014-0140-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in the kidney. CFTR mRNA is detected in all nephron segments of rats and humans and its expression is higher in the renal cortex and outer medulla than in the inner medulla. CFTR protein is detected at the apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. The localization of CFTR in the proximal tubules is compatible with that of endosomes, suggesting that CFTR might regulate pH in endocytic vesicles by equilibrating H+ accumulation due to H+-ATPase activity. Many studies have also demonstrated that CFTR also regulates channel pore opening and the transport of sodium, chloride and potassium. The kidneys also express a CFTR splicing variant, called TNR-CFTR, in a tissue-specific manner, primarily in the renal medulla. This splicing variant conserves the functional characteristics of wild-type CFTR. The functional significance of TNR-CFTR remains to be elucidated, but our group proposes that TNR-CFTR may have a basic function in intracellular organelles, rather than in the plasma membrane. Also, this splicing variant is able to partially substitute CFTR functions in the renal medulla of Cftr-/- mice and CF patients. In this review we discuss the major functions that have been proposed for CFTR and TNR-CFTR in the kidney.
Collapse
|
Review |
11 |
10 |
10
|
Salvador-Neto O, Gomes SA, Soares AR, Machado FLDS, Samuels RI, Nunes da Fonseca R, Souza-Menezes J, Moraes JLDC, Campos E, Mury FB, Silva JR. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae). Mar Drugs 2016; 14:md14020020. [PMID: 26821032 PMCID: PMC4771978 DOI: 10.3390/md14020020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/08/2022] Open
Abstract
Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (−)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (−)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (−)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H2DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
10 |
11
|
Novaira HJ, Ornellas DS, Ortiga-Carvalho TM, Zhang XM, Souza-Menezes J, Guggino SE, Guggino WB, Morales MM. Atrial natriuretic peptide modulates cystic fibrosis transmembrane conductance regulator chloride channel expression in rat proximal colon and human intestinal epithelial cells. J Endocrinol 2006; 189:155-65. [PMID: 16614390 DOI: 10.1677/joe.1.06460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is one of the most intensively investigated Cl- channels. Different mutations in the CFTR gene cause the disease cystic fibrosis (CF). CFTR is expressed in the apical membrane of various epithelial cells including the intestine. The major organ affected in CF patients is the lung, but it also causes an important dysfunction of intestinal ion transport. The modulation of CFTR mRNA expression by atrial natriuretic peptide (ANP) was investigated in rat proximal colon and in human intestinal CaCo-2 cells by RNase protection assay and semi-quantitative reverse transcriptase PCR techniques. Groups of rats subjected to volume expansion or intravenous infusion of synthetic ANP showed respective increases of 60 and 50% of CFTR mRNA expression in proximal colon. CFTR mRNA was also increased in cells treated with ANP, reaching a maximum effect at 10(-9) M ANP, probably via cGMP. ANP at 10(-9) M was also able to stimulate both the CFTR promoter region (by luciferase assay) and protein expression in CaCo-2 cells (by Western blot and immunoprecipitation/phosphorylation). These results suggested the involvement of ANP, a hormone involved with extracellular volume, in the expression of CFTR in rat proximal colon and CaCo-2 intestinal cells.
Collapse
|
|
19 |
9 |
12
|
Castiglione RC, Maron-Gutierrez T, Barbosa CML, Ornellas FM, Barreira AL, Dibarros CBA, Vasconcelos-dos-Santos A, Paredes BD, Pascarelli BM, Diaz BL, Rossi-Bergmann B, Takiya CM, Rocco PRM, Souza-Menezes J, Morales MM. Bone marrow-derived mononuclear cells promote improvement in glomerular function in rats with early diabetic nephropathy. Cell Physiol Biochem 2013; 32:699-718. [PMID: 24080824 DOI: 10.1159/000354473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Diabetic nephropathy is one of the main causes of end-stage renal disease. The present study investigated the effect of mononuclear cell (MC) therapy in rats subjected to diabetic nephropathy. METHODS Male Wistar rats were divided into control (CTRL), diabetic (DM), CTRL+MC and DM+MC groups. Diabetes was induced by a single injection of streptozotocin (45 mg/kg, i.p.) and, 4 weeks later, 2×10(7) MCs were injected via the jugular vein. RESULTS The rats in the DM and DM+MC groups showed increased glycemia, glomerular filtration rate and glomerular tuff area versus control groups. The glomerular filtration rate and glomerular tuff area were normalized in the DM+MC group. No alterations were observed in the fractional excretion of electrolytes and proteinuria between the DM and DM+MC groups. TGF-β1 protein levels in the DM group were significantly increased versus control animals and normalized in the DM+MC group. An increase in ED1(+)/arginase I(+) macrophages and IL-10 renal expression was observed in the DM+MC group versus DM group. CONCLUSIONS Bone marrow-derived MC therapy was able to prevent glomerular alterations and TGF-β1 protein overexpression and modulated glomerular arginase I(+) macrophage infiltration in rats subjected to early diabetic nephropathy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
9 |
13
|
Sellers ZM, Illek B, Figueira MF, Hari G, Joo NS, Sibley E, Souza-Menezes J, Morales MM, Fischer H, Wine JJ. Impaired PGE2-stimulated Cl- and HCO3- secretion contributes to cystic fibrosis airway disease. PLoS One 2017; 12:e0189894. [PMID: 29281691 PMCID: PMC5744969 DOI: 10.1371/journal.pone.0189894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Airway mucociliary clearance (MCC) is an important defense mechanism against pulmonary infections and is compromised in cystic fibrosis (CF). Cl- and HCO3- epithelial transport are integral to MCC. During pulmonary infections prostaglandin E2 (PGE2) production is abundant. Aim To determine the effect of PGE2 on airway Cl- and HCO3- secretion and MCC in normal and CF airways. Methods We examined PGE2 stimulated MCC, Cl- and HCO3- secretion using ferret trachea, human bronchial epithelial cell cultures (CFBE41o- with wildtype CFTR (CFBE41 WT) or homozygous F508del CFTR (CFBE41 CF) and human normal bronchial submucosal gland cell line (Calu-3) in Ussing chambers with or without pH-stat. Results PGE2 stimulated MCC in a dose-dependent manner and was partially impaired by CFTRinh-172. PGE2-stimulated Cl- current in ferret trachea was partially inhibited by CFTRinh-172, with niflumic acid eliminating the residual current. CFBE41 WT cell monolayers produced a robust Cl- and HCO3- secretory response to PGE2, both of which were completely inhibited by CFTRinh-172. CFBE41 CF cells exhibited no response to PGE2. In Calu-3 cells, PGE2 stimulated Cl- and HCO3- secretion. Cl- secretion was partially inhibited by CFTRinh-172, with additional inhibition by niflumic acid. HCO3- secretion was completely inhibited by CFTRinh-172. Conclusions PGE2 stimulates bronchotracheal MCC and this response is decreased in CF. In CF airway, PGE2-stimulated Cl- and HCO3- conductance is impaired and may contribute to decreased MCC. There remains a CFTR-independent Cl- current in submucosal glands, which if exploited, could represent a means of improving airway Cl- secretion and MCC in CF.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
9 |
14
|
de Lemos Barbosa CM, Souza-Menezes J, Amaral AG, Onuchic LF, Cebotaru L, Guggino WB, Morales MM. Regulation of CFTR Expression and Arginine Vasopressin Activity Are Dependent on Polycystin-1 in Kidney-Derived Cells. Cell Physiol Biochem 2016; 38:28-39. [PMID: 26741910 DOI: 10.1159/000438606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of multiple, progressive, fluid-filled renal cysts that distort the renal parenchyma, leading to end-stage renal failure, mainly after the fifth decade of life. ADPKD is caused by a mutation in the PKD1 or PKD2 genes that encode polycystin-1 (PC-1) and polycystin-2 (PC-2), respectively. PC-1 is an important regulator of several signaling pathways and PC-2 is a nonselective calcium channel. The CFTR chloride channel is responsible for driving net fluid secretion into the cysts, promoting cyst growth. Arginine vasopressin hormone (AVP), in turn, is capable of increasing cystic intracellular cAMP, contributing to cell proliferation, transepithelial fluid secretion, and therefore to disease progression. The aim of this study was to assess if AVP can modulate CFTR and whether PC-1 plays a role in this potential modulation. METHODS M1 cells, derived from mouse cortical collecting duct, were used in the current work. The cells were treated with 10-7 M AVP hormone and divided into two main groups: transfected cells superexpressing PC-1 (Transf) and cells not transfected (Ctrl). CFTR expression was assessed by immunodetection, CFTR mRNA levels were quantified by quantitative reverse transcription-polymerase chain reaction, and CFTR net ion transport was measured using the Ussing chamber technique. RESULTS AVP treatment increased the levels of CFTR protein and mRNA. CFTR short-circuit currents were also increased. However, when PC-1 was overexpressed in M1 cells, no increase in any of these parameters was detected. CONCLUSIONS CFTR chloride channel expression is increased by AVP in M1 cells and PC-1 is capable of regulating this modulation.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
5 |
15
|
Souza-Menezes J, Tukaye DN, Novaira HJ, Guggino WB, Morales MM. Small nuclear RNAs U11 and U12 modulate expression of TNR-CFTR mRNA in mammalian kidneys. Cell Physiol Biochem 2008; 22:93-100. [PMID: 18769035 DOI: 10.1159/000149786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2008] [Indexed: 11/19/2022] Open
Abstract
TNR-CFTR, discovered as a splice variant of CFTR (Cystic Fibrosis Transmembrane conductance Regulator), is distributed in different tissues such as human and rat kidney, trachea, lungs etc and is a functional chloride channel. In Kidneys, our findings show TNR-CFTR to have an unique distribution pattern with low levels of expression in renal cortex and high levels of expression in renal medulla. As shown by us previously, TNR-CFTR mRNA lacks 145 bp corresponding to segments of exons 13 and 14. This deletion causes a frame shift mutation leading to reading of a premature termination codon in exon 14. Premature termination of translation produces a functional half molecule of CFTR; TNR-CFTR. Our analysis of TNR mRNA has shown that the putative alternatively spliced intron has in its 5' and 3' conserved element CT and AC, respectively, that can be recognized by snRNAs U11 and U12. With these findings, we hypothesize that TNR-CFTR mRNA alternative splicing is probably mediate by splicing pathways utilizing U11 and U12 snRNAs. In this study, we have determined sequences of snRNAs U11 and U12 derived from rat kidney, which show significant homology to human U11 and U12 snRNAs. We show that there is significantly lower expression of U11 and U12 snRNAs in renal cortex compared to renal medulla in both humans and rats. This renal pattern of distribution of U11 and U12 snRNAs in both humans and rats closely follows distribution pattern of renal TNR-CFTR. Further, we have shown that blocking U11 and/or U12 mRNAs, by using antisense probes transfected in Immortalized Rat Proximal Tubule Cell line (IRPTC), decreases TNR-CFTR mRNA expression but not wild-type CFTR mRNA expression. Our results suggest that expression of U11 and/or U12 snRNAs is important for non-conventional alternative splicing process that gives rise to mRNA transcript coding for TNR-CFTR.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
5 |
16
|
Lassance-Soares RM, Cheng J, Krasnov K, Cebotaru L, Cutting GR, Souza-Menezes J, Morales MM, Guggino WB. The hypertonic environment differentially regulates wild-type CFTR and TNR-CFTR chloride channels. Cell Physiol Biochem 2010; 26:577-86. [PMID: 21063095 PMCID: PMC3048939 DOI: 10.1159/000322325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
This study tested the hypotheses that the hypertonic environment of the renal medulla regulates the expression of cystic fibrosis transmembrane conductance regulator protein (CFTR) and its natural splice variant, TNR-CFTR. To accomplish this, Madin-Darby canine kidney (MDCK) stable cell lines expressing TNR-CFTR or CFTR were used. The cells were treated with hypertonic medium made with either NaCl or urea or sucrose (480 mOsm/kg or 560 mOsm/kg) to mimic the tonicity of the renal medulla environment. Western blot data showed that CFTR and TNR-CFTR total cell protein is increased by hypertonic medium, but using the surface biotinylation technique, only CFTR was found to be increased in cell plasma membrane. Confocal microscopy showed TNR-CFTR localization primarily at the endoplasmic reticulum and plasma membrane. In conclusion, CFTR and TNR-CFTR have different patterns of distribution in MDCK cells and they are modulated by a hypertonic environment, suggesting their physiological importance in renal medulla.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
3 |
17
|
Sousa GF, Carpes RM, Silva CAO, Pereira MEP, Silva ACVF, Coelho VAGS, Costa EP, Mury FB, Gestinari RS, Souza-Menezes J, Leal-da-Silva M, Nepomuceno-Silva JL, Tanuri A, Ferreira-Júnior OC, Monteiro-de-Barros C. Immunoglobulin A as a Key Immunological Molecular Signature of Post-COVID-19 Conditions. Viruses 2023; 15:1545. [PMID: 37515231 PMCID: PMC10385093 DOI: 10.3390/v15071545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
COVID-19 has infected humans worldwide, causing millions of deaths or prolonged symptoms in survivors. The transient or persistent symptoms after SARS-CoV-2 infection have been defined as post-COVID-19 conditions (PCC). We conducted a study of 151 Brazilian PCC patients to analyze symptoms and immunoglobulin profiles, taking into account sex, vaccination, hospitalization, and age. Fatigue and myalgia were the most common symptoms, and lack of vaccination, hospitalization, and neuropsychiatric and metabolic comorbidities were relevant to the development of PCC. Analysis of serological immunoglobulins showed that IgA was higher in PCC patients, especially in the adult and elderly groups. Also, non-hospitalized and hospitalized PCC patients produced high and similar levels of IgA. Our results indicated that the detection of IgA antibodies against SARS-CoV-2 during the course of the disease could be associated with the development of PCC and may be an immunological signature to predict prolonged symptoms in COVID-19 patients.
Collapse
|
research-article |
2 |
|
18
|
Feitosa NM, Calderon EN, da Silva RN, de Melo SLR, Souza-Menezes J, Nunes-da-Fonseca R, Reynier MV. Brazilian silverside, Atherinella brasiliensis (Quoy & Gaimard,1825) embryos as a test-species for marine fish ecotoxicological tests. PeerJ 2021; 9:e11214. [PMID: 33954044 PMCID: PMC8052962 DOI: 10.7717/peerj.11214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/15/2021] [Indexed: 12/03/2022] Open
Abstract
The fish embryo test (FET) is an alternative to the classic freshwater toxicity test used to assess environmental hazards and risks to fish. This test has been standardized and adopted by the Organization for Economic and Cooperation and Development (OECD). As salinity may affect the substances’ toxicity, we describe the development of an alternative euryhaline test species for embryonic ecotoxicological tests: the Brazilian silverside Atherinella brasiliensis (Quoy & Gaimard, 1825). This species is broadly distributed along the coast of South America and is able to inhabit a broad range of environmental and saline conditions. Ours is the first study on the maintenance of a native South American species for natural reproduction and the generation of embryos for tests. The embryos used are transparent and possess fluorescent cells which have only been seen in a few species and which may be used as markers, making it an alternative assessment tool for the lethal and sublethal substances in marine and estuarine environments. We provide a detailed description and analysis of embryonic development under different salinities and temperatures. The embryos and larvae developed in similar ways at different salinities, however as temperatures increased, mortality also increased. We considered the effects of the reference toxicants Zn2+ and SDS using a protocol similar to the FET that was standardized for zebrafish. Brazilian silverside embryos are as sensitive as freshwater, or euryhaline fish, to the surfactant but are more resistant to metals prior to hatching. We were able to show the advantages of the Brazilian silverside as a model for a marine fish embryo test (FETm) with high levels of reproducibility and little contaminated waste.
Collapse
|
Journal Article |
4 |
|