1
|
Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, Khodadoust MS, Esfahani MS, Liu CL, Zhou L, Scherer F, Kurtz DM, Say C, Carter JN, Merriott DJ, Dudley JC, Binkley MS, Modlin L, Padda SK, Gensheimer MF, West RB, Shrager JB, Neal JW, Wakelee HA, Loo BW, Alizadeh AA, Diehn M. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov 2017; 7:1394-1403. [PMID: 28899864 DOI: 10.1158/2159-8290.cd-17-0716] [Citation(s) in RCA: 696] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/07/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022]
Abstract
Identifying molecular residual disease (MRD) after treatment of localized lung cancer could facilitate early intervention and personalization of adjuvant therapies. Here, we apply cancer personalized profiling by deep sequencing (CAPP-seq) circulating tumor DNA (ctDNA) analysis to 255 samples from 40 patients treated with curative intent for stage I-III lung cancer and 54 healthy adults. In 94% of evaluable patients experiencing recurrence, ctDNA was detectable in the first posttreatment blood sample, indicating reliable identification of MRD. Posttreatment ctDNA detection preceded radiographic progression in 72% of patients by a median of 5.2 months, and 53% of patients harbored ctDNA mutation profiles associated with favorable responses to tyrosine kinase inhibitors or immune checkpoint blockade. Collectively, these results indicate that ctDNA MRD in patients with lung cancer can be accurately detected using CAPP-seq and may allow personalized adjuvant treatment while disease burden is lowest.Significance: This study shows that ctDNA analysis can robustly identify posttreatment MRD in patients with localized lung cancer, identifying residual/recurrent disease earlier than standard-of-care radiologic imaging, and thus could facilitate personalized adjuvant treatment at early time points when disease burden is lowest. Cancer Discov; 7(12); 1394-403. ©2017 AACR.See related commentary by Comino-Mendez and Turner, p. 1368This article is highlighted in the In This Issue feature, p. 1355.
Collapse
|
Journal Article |
8 |
696 |
2
|
Chabon JJ, Simmons AD, Lovejoy AF, Esfahani MS, Newman AM, Haringsma HJ, Kurtz DM, Stehr H, Scherer F, Karlovich CA, Harding TC, Durkin KA, Otterson GA, Purcell WT, Camidge DR, Goldman JW, Sequist LV, Piotrowska Z, Wakelee HA, Neal JW, Alizadeh AA, Diehn M. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 2016; 7:11815. [PMID: 27283993 PMCID: PMC4906406 DOI: 10.1038/ncomms11815] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
488 |
3
|
Blakely CM, Watkins TB, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR, Rotow J, Maynard A, Wang V, Gubens MA, Banks KC, Lanman RB, Caulin AF, John JS, Cordero AR, Giannikopoulos P, Simmons AD, Mack PC, Gandara DR, Husain H, Doebele RC, Riess JW, Diehn M, Swanton C, Bivona TG. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet 2017; 49:1693-1704. [PMID: 29106415 PMCID: PMC5709185 DOI: 10.1038/ng.3990] [Citation(s) in RCA: 408] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers. We defined new pathways limiting EGFR-inhibitor response, including WNT/β-catenin alterations and cell-cycle-gene (CDK4 and CDK6) mutations. Tumor genomic complexity increases with EGFR-inhibitor treatment, and co-occurring alterations in CTNNB1 and PIK3CA exhibit nonredundant functions that cooperatively promote tumor metastasis or limit EGFR-inhibitor response. This study calls for revisiting the prevailing single-gene driver-oncogene view and links clinical outcomes to co-occurring genetic alterations in patients with advanced-stage EGFR-mutant lung cancer.
Collapse
|
research-article |
8 |
408 |
4
|
Chabon JJ, Hamilton EG, Kurtz DM, Esfahani MS, Moding EJ, Stehr H, Schroers-Martin J, Nabet BY, Chen B, Chaudhuri AA, Liu CL, Hui AB, Jin MC, Azad TD, Almanza D, Jeon YJ, Nesselbush MC, Co Ting Keh L, Bonilla RF, Yoo CH, Ko RB, Chen EL, Merriott DJ, Massion PP, Mansfield AS, Jen J, Ren HZ, Lin SH, Costantino CL, Burr R, Tibshirani R, Gambhir SS, Berry GJ, Jensen KC, West RB, Neal JW, Wakelee HA, Loo BW, Kunder CA, Leung AN, Lui NS, Berry MF, Shrager JB, Nair VS, Haber DA, Sequist LV, Alizadeh AA, Diehn M. Integrating genomic features for non-invasive early lung cancer detection. Nature 2020; 580:245-251. [PMID: 32269342 PMCID: PMC8230734 DOI: 10.1038/s41586-020-2140-0] [Citation(s) in RCA: 404] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/13/2020] [Indexed: 11/08/2022]
Abstract
Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed 'lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
404 |
5
|
Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AFM, Esfahani MS, Lovejoy AF, Chabon JJ, Klass DM, Liu CL, Zhou L, Glover C, Visser BC, Poultsides GA, Advani RH, Maeda LS, Gupta NK, Levy R, Ohgami RS, Kunder CA, Diehn M, Alizadeh AA. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med 2016; 8:364ra155. [PMID: 27831904 PMCID: PMC5490494 DOI: 10.1126/scitranslmed.aai8545] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022]
Abstract
Patients with diffuse large B cell lymphoma (DLBCL) exhibit marked diversity in tumor behavior and outcomes, yet the identification of poor-risk groups remains challenging. In addition, the biology underlying these differences is incompletely understood. We hypothesized that characterization of mutational heterogeneity and genomic evolution using circulating tumor DNA (ctDNA) profiling could reveal molecular determinants of adverse outcomes. To address this hypothesis, we applied cancer personalized profiling by deep sequencing (CAPP-Seq) analysis to tumor biopsies and cell-free DNA samples from 92 lymphoma patients and 24 healthy subjects. At diagnosis, the amount of ctDNA was found to strongly correlate with clinical indices and was independently predictive of patient outcomes. We demonstrate that ctDNA genotyping can classify transcriptionally defined tumor subtypes, including DLBCL cell of origin, directly from plasma. By simultaneously tracking multiple somatic mutations in ctDNA, our approach outperformed immunoglobulin sequencing and radiographic imaging for the detection of minimal residual disease and facilitated noninvasive identification of emergent resistance mutations to targeted therapies. In addition, we identified distinct patterns of clonal evolution distinguishing indolent follicular lymphomas from those that transformed into DLBCL, allowing for potential noninvasive prediction of histological transformation. Collectively, our results demonstrate that ctDNA analysis reveals biological factors that underlie lymphoma clinical outcomes and could facilitate individualized therapy.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
358 |
6
|
Kurtz DM, Scherer F, Jin MC, Soo J, Craig AFM, Esfahani MS, Chabon JJ, Stehr H, Liu CL, Tibshirani R, Maeda LS, Gupta NK, Khodadoust MS, Advani RH, Levy R, Newman AM, Dührsen U, Hüttmann A, Meignan M, Casasnovas RO, Westin JR, Roschewski M, Wilson WH, Gaidano G, Rossi D, Diehn M, Alizadeh AA. Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J Clin Oncol 2018; 36:2845-2853. [PMID: 30125215 DOI: 10.1200/jco.2018.78.5246] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Outcomes for patients with diffuse large B-cell lymphoma remain heterogeneous, with existing methods failing to consistently predict treatment failure. We examined the additional prognostic value of circulating tumor DNA (ctDNA) before and during therapy for predicting patient outcomes. PATIENTS AND METHODS We studied the dynamics of ctDNA from 217 patients treated at six centers, using a training and validation framework. We densely characterized early ctDNA dynamics during therapy using cancer personalized profiling by deep sequencing to define response-associated thresholds within a discovery set. These thresholds were assessed in two independent validation sets. Finally, we assessed the prognostic value of ctDNA in the context of established risk factors, including the International Prognostic Index and interim positron emission tomography/computed tomography scans. RESULTS Before therapy, ctDNA was detectable in 98% of patients; pretreatment levels were prognostic in both front-line and salvage settings. In the discovery set, ctDNA levels changed rapidly, with a 2-log decrease after one cycle (early molecular response [EMR]) and a 2.5-log decrease after two cycles (major molecular response [MMR]) stratifying outcomes. In the first validation set, patients receiving front-line therapy achieving EMR or MMR had superior outcomes at 24 months (EMR: EFS, 83% v 50%; P = .0015; MMR: EFS, 82% v 46%; P < .001). EMR also predicted superior 24-month outcomes in patients receiving salvage therapy in the first validation set (EFS, 100% v 13%; P = .011). The prognostic value of EMR and MMR was further confirmed in the second validation set. In multivariable analyses including International Prognostic Index and interim positron emission tomography/computed tomography scans across both cohorts, molecular response was independently prognostic of outcomes, including event-free and overall survival. CONCLUSION Pretreatment ctDNA levels and molecular responses are independently prognostic of outcomes in aggressive lymphomas. These risk factors could potentially guide future personalized risk-directed approaches.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
316 |
7
|
Nabet BY, Esfahani MS, Moding EJ, Hamilton EG, Chabon JJ, Rizvi H, Steen CB, Chaudhuri AA, Liu CL, Hui AB, Almanza D, Stehr H, Gojenola L, Bonilla RF, Jin MC, Jeon YJ, Tseng D, Liu C, Merghoub T, Neal JW, Wakelee HA, Padda SK, Ramchandran KJ, Das M, Plodkowski AJ, Yoo C, Chen EL, Ko RB, Newman AM, Hellmann MD, Alizadeh AA, Diehn M. Noninvasive Early Identification of Therapeutic Benefit from Immune Checkpoint Inhibition. Cell 2020; 183:363-376.e13. [PMID: 33007267 PMCID: PMC7572899 DOI: 10.1016/j.cell.2020.09.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs) can produce remarkably durable responses, most patients develop early disease progression. Furthermore, initial response assessment by conventional imaging is often unable to identify which patients will achieve durable clinical benefit (DCB). Here, we demonstrate that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently associated with DCB. We further show that ctDNA dynamics after a single infusion can aid in identification of patients who will achieve DCB. Integrating these determinants, we developed and validated an entirely noninvasive multiparameter assay (DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and ctDNA-On-treatment) that robustly predicts which patients will achieve DCB with higher accuracy than any individual feature. Taken together, these results demonstrate that integrated ctDNA and circulating immune cell profiling can provide accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving ICIs.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
238 |
8
|
Moding EJ, Liu Y, Nabet BY, Chabon JJ, Chaudhuri AA, Hui AB, Bonilla RF, Ko RB, Yoo CH, Gojenola L, Jones CD, He J, Qiao Y, Xu T, Heymach JV, Tsao A, Liao Z, Gomez DR, Das M, Padda SK, Ramchandran KJ, Neal JW, Wakelee HA, Loo BW, Lin SH, Alizadeh AA, Diehn M. Circulating Tumor DNA Dynamics Predict Benefit from Consolidation Immunotherapy in Locally Advanced Non-Small Cell Lung Cancer. NATURE CANCER 2020; 1:176-183. [PMID: 34505064 PMCID: PMC8425388 DOI: 10.1038/s43018-019-0011-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Circulating tumor DNA (ctDNA) molecular residual disease (MRD) following curative-intent treatment strongly predicts recurrence in multiple tumor types, but whether further treatment can improve outcomes in patients with MRD remains unclear. We applied CAPP-Seq ctDNA analysis to 218 samples from 65 patients receiving chemoradiation therapy (CRT) for locally advanced NSCLC, including 28 patients receiving consolidation immune checkpoint inhibition (CICI). Patients with undetectable ctDNA after CRT had excellent outcomes whether or not they received CICI. Among such patients, one died from CICI-related pneumonitis, highlighting the potential utility of only treating patients with MRD. In contrast, patients with MRD after CRT who received CICI had significantly better outcomes than patients who did not receive CICI. Furthermore, the ctDNA response pattern early during CICI identified patients responding to consolidation therapy. Our results suggest that CICI improves outcomes for NSCLC patients with MRD and that ctDNA analysis may facilitate personalization of consolidation therapy.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
218 |
9
|
Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, Sworder BJ, Schultz A, Jin MC, Scherer F, Garofalo A, Macaulay CW, Hamilton EG, Chen B, Olsen M, Schroers-Martin JG, Craig AFM, Moding EJ, Esfahani MS, Liu CL, Dührsen U, Hüttmann A, Casasnovas RO, Westin JR, Roschewski M, Wilson WH, Gaidano G, Rossi D, Diehn M, Alizadeh AA. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol 2021; 39:1537-1547. [PMID: 34294911 PMCID: PMC8678141 DOI: 10.1038/s41587-021-00981-w] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Circulating tumor-derived DNA (ctDNA) is an emerging biomarker for many cancers, but the limited sensitivity of current detection methods reduces its utility for diagnosing minimal residual disease. Here we describe phased variant enrichment and detection sequencing (PhasED-seq), a method that uses multiple somatic mutations in individual DNA fragments to improve the sensitivity of ctDNA detection. Leveraging whole-genome sequences from 2,538 tumors, we identify phased variants and their associations with mutational signatures. We show that even without molecular barcodes, the limits of detection of PhasED-seq outperform prior methods, including duplex barcoding, allowing ctDNA detection in the ppm range in participant samples. We profiled 678 specimens from 213 participants with B cell lymphomas, including serial cell-free DNA samples before and during therapy for diffuse large B cell lymphoma. In participants with undetectable ctDNA after two cycles of therapy using a next-generation sequencing-based approach termed cancer personalized profiling by deep sequencing, an additional 25% have ctDNA detectable by PhasED-seq and have worse outcomes. Finally, we demonstrate the application of PhasED-seq to solid tumors.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
186 |
10
|
Azad TD, Chaudhuri AA, Fang P, Qiao Y, Esfahani MS, Chabon JJ, Hamilton EG, Yang YD, Lovejoy A, Newman AM, Kurtz DM, Jin M, Schroers-Martin J, Stehr H, Liu CL, Hui ABY, Patel V, Maru D, Lin SH, Alizadeh AA, Diehn M. Circulating Tumor DNA Analysis for Detection of Minimal Residual Disease After Chemoradiotherapy for Localized Esophageal Cancer. Gastroenterology 2020; 158:494-505.e6. [PMID: 31711920 PMCID: PMC7010551 DOI: 10.1053/j.gastro.2019.10.039] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Biomarkers are needed to risk stratify after chemoradiotherapy for localized esophageal cancer. These could improve identification of patients at risk for cancer progression and selection of additional therapy. METHODS We performed deep sequencing (CAncer Personalized Profiling by deep Sequencing, [CAPP-Seq]) analyses of plasma cell-free DNA collected from 45 patients before and after chemoradiotherapy for esophageal cancer, as well as DNA from leukocytes and fixed esophageal tumor biopsy samples collected during esophagogastroduodenoscopy. Patients were treated from May 2010 through October 2015; 23 patients subsequently underwent esophagectomy, and 22 did not undergo surgery. We also sequenced DNA from blood samples from 40 healthy control individuals. We analyzed 802 regions of 607 genes for single-nucleotide variants previously associated with esophageal adenocarcinoma or squamous cell carcinoma. Patients underwent imaging analyses 6-8 weeks after chemoradiotherapy and were followed for 5 years. Our primary aim was to determine whether detection of circulating tumor DNA (ctDNA) after chemoradiotherapy is associated with risk of tumor progression (growth of local, regional, or distant tumors, detected by imaging or biopsy). RESULTS The median proportion of tumor-derived DNA in total cell-free DNA before treatment was 0.07%, indicating that ultrasensitive assays are needed for quantification and analysis of ctDNA from localized esophageal tumors. Detection of ctDNA after chemoradiotherapy was associated with tumor progression (hazard ratio, 18.7; P < .0001), formation of distant metastases (hazard ratio, 32.1; P < .0001), and shorter disease-specific survival times (hazard ratio, 23.1; P < .0001). A higher proportion of patients with tumor progression had new mutations detected in plasma samples collected after chemoradiotherapy than patients without progression (P = .03). Detection of ctDNA after chemoradiotherapy preceded radiographic evidence of tumor progression by an average of 2.8 months. Among patients who received chemoradiotherapy without surgery, combined ctDNA and metabolic imaging analysis predicted progression in 100% of patients with tumor progression, compared with 71% for only ctDNA detection and 57% for only metabolic imaging analysis (P < .001 for comparison of either technique to combined analysis). CONCLUSIONS In an analysis of cell-free DNA in blood samples from patients who underwent chemoradiotherapy for esophageal cancer, detection of ctDNA was associated with tumor progression, metastasis, and disease-specific survival. Analysis of ctDNA might be used to identify patients at highest risk for tumor progression.
Collapse
|
research-article |
5 |
156 |
11
|
Dudley JC, Schroers-Martin J, Lazzareschi DV, Shi WY, Chen SB, Esfahani MS, Trivedi D, Chabon JJ, Chaudhuri AA, Stehr H, Liu CL, Lim H, Costa HA, Nabet BY, Sin MLY, Liao JC, Alizadeh AA, Diehn M. Detection and Surveillance of Bladder Cancer Using Urine Tumor DNA. Cancer Discov 2018; 9:500-509. [PMID: 30578357 DOI: 10.1158/2159-8290.cd-18-0825] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/02/2018] [Accepted: 12/18/2018] [Indexed: 01/14/2023]
Abstract
Current regimens for the detection and surveillance of bladder cancer are invasive and have suboptimal sensitivity. Here, we present a novel high-throughput sequencing (HTS) method for detection of urine tumor DNA (utDNA) called utDNA CAPP-Seq (uCAPP-Seq) and apply it to 67 healthy adults and 118 patients with early-stage bladder cancer who had urine collected either prior to treatment or during surveillance. Using this targeted sequencing approach, we detected a median of 6 mutations per patient with bladder cancer and observed surprisingly frequent mutations of the PLEKHS1 promoter (46%), suggesting these mutations represent a useful biomarker for detection of bladder cancer. We detected utDNA pretreatment in 93% of cases using a tumor mutation-informed approach and in 84% when blinded to tumor mutation status, with 96% to 100% specificity. In the surveillance setting, we detected utDNA in 91% of patients who ultimately recurred, with utDNA detection preceding clinical progression in 92% of cases. uCAPP-Seq outperformed a commonly used ancillary test (UroVysion, P = 0.02) and cytology and cystoscopy combined (P ≤ 0.006), detecting 100% of bladder cancer cases detected by cytology and 82% that cytology missed. Our results indicate that uCAPP-Seq is a promising approach for early detection and surveillance of bladder cancer. SIGNIFICANCE: This study shows that utDNA can be detected using HTS with high sensitivity and specificity in patients with early-stage bladder cancer and during post-treatment surveillance, significantly outperforming standard diagnostic modalities and facilitating noninvasive detection, genotyping, and monitoring.This article is highlighted in the In This Issue feature, p. 453.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
134 |
12
|
Qi X, Hong J, Chaves L, Zhuang Y, Chen Y, Wang D, Chabon J, Graham B, Ohmori K, Li Y, Huang H. Antagonistic regulation by the transcription factors C/EBPα and MITF specifies basophil and mast cell fates. Immunity 2013; 39:97-110. [PMID: 23871207 DOI: 10.1016/j.immuni.2013.06.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/28/2013] [Indexed: 02/08/2023]
Abstract
It remains unclear whether basophils and mast cells are derived from a common progenitor. Furthermore, how basophil versus mast cell fate is specified has not been investigated. Here, we have identified a population of granulocyte-macrophage progenitors (GMPs) that were highly enriched in the capacity to differentiate into basophils and mast cells while retaining a limited capacity to differentiate into myeloid cells. We have designated these progenitor cells "pre-basophil and mast cell progenitors" (pre-BMPs). STAT5 signaling was required for the differentiation of pre-BMPs into both basophils and mast cells and was critical for inducing two downstream molecules: C/EBPα and MITF. We have identified C/EBPα as the critical basophil transcription factor for specifying basophil cell fate and MITF as the crucial transcription factor for specifying mast cell fate. C/EBPα and MITF silenced each other's transcription in a directly antagonistic fashion. Our study reveals how basophil and mast cell fate is specified.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
112 |
13
|
Avanzini S, Kurtz DM, Chabon JJ, Moding EJ, Hori SS, Gambhir SS, Alizadeh AA, Diehn M, Reiter JG. A mathematical model of ctDNA shedding predicts tumor detection size. SCIENCE ADVANCES 2020; 6:eabc4308. [PMID: 33310847 PMCID: PMC7732186 DOI: 10.1126/sciadv.abc4308] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/29/2020] [Indexed: 05/12/2023]
Abstract
Early cancer detection aims to find tumors before they progress to an incurable stage. To determine the potential of circulating tumor DNA (ctDNA) for cancer detection, we developed a mathematical model of tumor evolution and ctDNA shedding to predict the size at which tumors become detectable. From 176 patients with stage I to III lung cancer, we inferred that, on average, 0.014% of a tumor cell's DNA is shed into the bloodstream per cell death. For annual screening, the model predicts median detection sizes of 2.0 to 2.3 cm representing a ~40% decrease from the current median detection size of 3.5 cm. For informed monthly cancer relapse testing, the model predicts a median detection size of 0.83 cm and suggests that treatment failure can be detected 140 days earlier than with imaging-based approaches. This mechanistic framework can help accelerate clinical trials by precomputing the most promising cancer early detection strategies.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
108 |
14
|
Esfahani MS, Hamilton EG, Mehrmohamadi M, Nabet BY, Alig SK, King DA, Steen CB, Macaulay CW, Schultz A, Nesselbush MC, Soo J, Schroers-Martin JG, Chen B, Binkley MS, Stehr H, Chabon JJ, Sworder BJ, Hui ABY, Frank MJ, Moding EJ, Liu CL, Newman AM, Isbell JM, Rudin CM, Li BT, Kurtz DM, Diehn M, Alizadeh AA. Inferring gene expression from cell-free DNA fragmentation profiles. Nat Biotechnol 2022; 40:585-597. [PMID: 35361996 PMCID: PMC9337986 DOI: 10.1038/s41587-022-01222-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Profiling of circulating tumor DNA (ctDNA) in the bloodstream shows promise for noninvasive cancer detection. Chromatin fragmentation features have previously been explored to infer gene expression profiles from cell-free DNA (cfDNA), but current fragmentomic methods require high concentrations of tumor-derived DNA and provide limited resolution. Here we describe promoter fragmentation entropy as an epigenomic cfDNA feature that predicts RNA expression levels at individual genes. We developed 'epigenetic expression inference from cell-free DNA-sequencing' (EPIC-seq), a method that uses targeted sequencing of promoters of genes of interest. Profiling 329 blood samples from 201 patients with cancer and 87 healthy adults, we demonstrate classification of subtypes of lung carcinoma and diffuse large B cell lymphoma. Applying EPIC-seq to serial blood samples from patients treated with PD-(L)1 immune-checkpoint inhibitors, we show that gene expression profiles inferred by EPIC-seq are correlated with clinical response. Our results indicate that EPIC-seq could enable noninvasive, high-throughput tissue-of-origin characterization with diagnostic, prognostic and therapeutic potential.
Collapse
|
research-article |
3 |
106 |
15
|
Binkley MS, Jeon YJ, Nesselbush M, Moding EJ, Nabet BY, Almanza D, Kunder C, Stehr H, Yoo CH, Rhee S, Xiang M, Chabon JJ, Hamilton E, Kurtz DM, Gojenola L, Owen SG, Ko RB, Shin JH, Maxim PG, Lui NS, Backhus LM, Berry MF, Shrager JB, Ramchandran KJ, Padda SK, Das M, Neal JW, Wakelee HA, Alizadeh AA, Loo BW, Diehn M. KEAP1/NFE2L2 Mutations Predict Lung Cancer Radiation Resistance That Can Be Targeted by Glutaminase Inhibition. Cancer Discov 2020; 10:1826-1841. [PMID: 33071215 PMCID: PMC7710558 DOI: 10.1158/2159-8290.cd-20-0282] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Tumor genotyping is not routinely performed in localized non-small cell lung cancer (NSCLC) due to lack of associations of mutations with outcome. Here, we analyze 232 consecutive patients with localized NSCLC and demonstrate that KEAP1 and NFE2L2 mutations are predictive of high rates of local recurrence (LR) after radiotherapy but not surgery. Half of LRs occurred in tumors with KEAP1/NFE2L2 mutations, indicating that they are major molecular drivers of clinical radioresistance. Next, we functionally evaluate KEAP1/NFE2L2 mutations in our radiotherapy cohort and demonstrate that only pathogenic mutations are associated with radioresistance. Furthermore, expression of NFE2L2 target genes does not predict LR, underscoring the utility of tumor genotyping. Finally, we show that glutaminase inhibition preferentially radiosensitizes KEAP1-mutant cells via depletion of glutathione and increased radiation-induced DNA damage. Our findings suggest that genotyping for KEAP1/NFE2L2 mutations could facilitate treatment personalization and provide a potential strategy for overcoming radioresistance conferred by these mutations. SIGNIFICANCE: This study shows that mutations in KEAP1 and NFE2L2 predict for LR after radiotherapy but not surgery in patients with NSCLC. Approximately half of all LRs are associated with these mutations and glutaminase inhibition may allow personalized radiosensitization of KEAP1/NFE2L2-mutant tumors.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
102 |
16
|
Graham BB, Chabon J, Gebreab L, Poole J, Debella E, Davis L, Tanaka T, Sanders L, Dropcho N, Bandeira A, Vandivier RW, Champion HC, Butrous G, Wang XJ, Wynn TA, Tuder RM. Transforming growth factor-β signaling promotes pulmonary hypertension caused by Schistosoma mansoni. Circulation 2013; 128:1354-64. [PMID: 23958565 DOI: 10.1161/circulationaha.113.003072] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathogenic mechanisms underlying pulmonary arterial hypertension resulting from schistosomiasis, one of the most common causes of pulmonary hypertension worldwide, remain unknown. We hypothesized that transforming growth factor-β (TGF-β) signaling as a consequence of Th2 inflammation is critical for the pathogenesis of this disease. METHODS AND RESULTS Mice sensitized and subsequently challenged with Schistosoma mansoni eggs developed pulmonary hypertension associated with an increase in right ventricular systolic pressure, thickening of the pulmonary artery media, and right ventricular hypertrophy. Rho-kinase-dependent vasoconstriction accounted for ≈60% of the increase in right ventricular systolic pressure. The pulmonary vascular remodeling and pulmonary hypertension were dependent on increased TGF-β signaling, as pharmacological blockade of the TGF-β ligand and receptor, and mice lacking Smad3 were significantly protected from Schistosoma-induced pulmonary hypertension. Blockade of TGF-β signaling also led to a decrease in interleukin-4 and interleukin-13 concentrations, which drive the Th2 responses characteristic of schistosomiasis lung pathology. Lungs of patients with schistosomiasis-associated pulmonary arterial hypertension have evidence of TGF-β signaling in their remodeled pulmonary arteries. CONCLUSION Experimental S mansoni-induced pulmonary vascular disease relies on canonical TGF-β signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
73 |
17
|
Hellmann MD, Nabet BY, Rizvi H, Chaudhuri AA, Wells DK, Dunphy MPS, Chabon JJ, Liu CL, Hui AB, Arbour KC, Luo J, Preeshagul IR, Moding EJ, Almanza D, Bonilla RF, Sauter JL, Choi H, Tenet M, Abu-Akeel M, Plodkowski AJ, Perez Johnston R, Yoo CH, Ko RB, Stehr H, Gojenola L, Wakelee HA, Padda SK, Neal JW, Chaft JE, Kris MG, Rudin CM, Merghoub T, Li BT, Alizadeh AA, Diehn M. Circulating Tumor DNA Analysis to Assess Risk of Progression after Long-term Response to PD-(L)1 Blockade in NSCLC. Clin Cancer Res 2020; 26:2849-2858. [PMID: 32046999 DOI: 10.1158/1078-0432.ccr-19-3418] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Treatment with PD-(L)1 blockade can produce remarkably durable responses in patients with non-small cell lung cancer (NSCLC). However, a significant fraction of long-term responders ultimately progress and predictors of late progression are unknown. We hypothesized that circulating tumor DNA (ctDNA) analysis of long-term responders to PD-(L)1 blockade may differentiate those who will achieve ongoing benefit from those at risk of eventual progression. EXPERIMENTAL DESIGN In patients with advanced NSCLC achieving long-term benefit from PD-(L)1 blockade (progression-free survival ≥ 12 months), plasma was collected at a surveillance timepoint late during/after treatment to interrogate ctDNA by Cancer Personalized Profiling by Deep Sequencing. Tumor tissue was available for 24 patients and was profiled by whole-exome sequencing (n = 18) or by targeted sequencing (n = 6). RESULTS Thirty-one patients with NSCLC with long-term benefit to PD-(L)1 blockade were identified, and ctDNA was analyzed in surveillance blood samples collected at a median of 26.7 months after initiation of therapy. Nine patients also had baseline plasma samples available, and all had detectable ctDNA prior to therapy initiation. At the surveillance timepoint, 27 patients had undetectable ctDNA and 25 (93%) have remained progression-free; in contrast, all 4 patients with detectable ctDNA eventually progressed [Fisher P < 0.0001; positive predictive value = 1, 95% confidence interval (CI), 0.51-1; negative predictive value = 0.93 (95% CI, 0.80-0.99)]. CONCLUSIONS ctDNA analysis can noninvasively identify minimal residual disease in patients with long-term responses to PD-(L)1 blockade and predict the risk of eventual progression. If validated, ctDNA surveillance may facilitate personalization of the duration of immune checkpoint blockade and enable early intervention in patients at high risk for progression.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
67 |
18
|
Kumar R, Mickael C, Chabon J, Gebreab L, Rutebemberwa A, Garcia AR, Koyanagi DE, Sanders L, Gandjeva A, Kearns MT, Barthel L, Janssen WJ, Mauad T, Bandeira A, Schmidt E, Tuder RM, Graham BB. The Causal Role of IL-4 and IL-13 in Schistosoma mansoni Pulmonary Hypertension. Am J Respir Crit Care Med 2016; 192:998-1008. [PMID: 26192556 DOI: 10.1164/rccm.201410-1820oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RATIONALE The etiology of schistosomiasis-associated pulmonary arterial hypertension (PAH), a major cause of PAH worldwide, is poorly understood. Schistosoma mansoni exposure results in prototypical type-2 inflammation. Furthermore, transforming growth factor (TGF)-β signaling is required for experimental pulmonary hypertension (PH) caused by Schistosoma exposure. OBJECTIVES We hypothesized type-2 inflammation driven by IL-4 and IL-13 is necessary for Schistosoma-induced TGF-β-dependent vascular remodeling. METHODS Wild-type, IL-4(-/-), IL-13(-/-), and IL-4(-/-)IL-13(-/-) mice (C57BL6/J background) were intraperitoneally sensitized and intravenously challenged with S. mansoni eggs to induce experimental PH. Right ventricular catheterization was then performed, followed by quantitative analysis of the lung tissue. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH was also systematically analyzed. MEASUREMENTS AND MAIN RESULTS Mice with experimental Schistosoma-induced PH had evidence of increased IL-4 and IL-13 signaling. IL-4(-/-)IL-13(-/-) mice, but not single knockout IL-4(-/-) or IL-13(-/-) mice, were protected from Schistosoma-induced PH, with decreased right ventricular pressures, pulmonary vascular remodeling, and right ventricular hypertrophy. IL-4(-/-)IL-13(-/-) mice had less pulmonary vascular phospho-signal transducer and activator of transcription 6 (STAT6) and phospho-Smad2/3 activity, potentially caused by decreased TGF-β activation by macrophages. In vivo treatment with a STAT6 inhibitor and IL-4(-/-)IL-13(-/-) bone marrow transplantation also protected against Schistosoma-PH. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH had evidence of type-2 inflammation. CONCLUSIONS Combined IL-4 and IL-13 deficiency is required for protection against TGF-β-induced pulmonary vascular disease after Schistosoma exposure, and targeted inhibition of this pathway is a potential novel therapeutic approach for patients with schistosomiasis-associated PAH.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
63 |
19
|
Przybyl J, Chabon JJ, Spans L, Ganjoo KN, Vennam S, Newman AM, Forgó E, Varma S, Zhu S, Debiec-Rychter M, Alizadeh AA, Diehn M, van de Rijn M. Combination Approach for Detecting Different Types of Alterations in Circulating Tumor DNA in Leiomyosarcoma. Clin Cancer Res 2018; 24:2688-2699. [PMID: 29463554 DOI: 10.1158/1078-0432.ccr-17-3704] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 12/31/2022]
Abstract
Purpose: The clinical utility of circulating tumor DNA (ctDNA) monitoring has been shown in tumors that harbor highly recurrent mutations. Leiomyosarcoma represents a type of tumor with a wide spectrum of heterogeneous genomic abnormalities; thus, targeting hotspot mutations or a narrow genomic region for ctDNA detection may not be practical. Here, we demonstrate a combinatorial approach that integrates different sequencing protocols for the orthogonal detection of single-nucleotide variants (SNV), small indels, and copy-number alterations (CNA) in ctDNA.Experimental Design: We employed Cancer Personalized Profiling by deep Sequencing (CAPP-Seq) for the analysis of SNVs and indels, together with a genome-wide interrogation of CNAs by Genome Representation Profiling (GRP). We profiled 28 longitudinal plasma samples and 25 tumor specimens from 7 patients with leiomyosarcoma.Results: We detected ctDNA in 6 of 7 of these patients with >98% specificity for mutant allele fractions down to a level of 0.01%. We show that results from CAPP-Seq and GRP are highly concordant, and the combination of these methods allows for more comprehensive monitoring of ctDNA by profiling a wide spectrum of tumor-specific markers. By analyzing multiple tumor specimens in individual patients obtained from different sites and at different times during treatment, we observed clonal evolution of these tumors that was reflected by ctDNA profiles.Conclusions: Our strategy allows for the comprehensive monitoring of a broad spectrum of tumor-specific markers in plasma. Our approach may be clinically useful not only in leiomyosarcoma but also in other tumor types that lack recurrent genomic alterations. Clin Cancer Res; 24(11); 2688-99. ©2018 AACR.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
43 |
20
|
Graham BB, Chabon J, Kumar R, Kolosionek E, Gebreab L, Debella E, Edwards M, Diener K, Shade T, Bifeng G, Bandeira A, Butrous G, Jones K, Geraci M, Tuder RM. Protective role of IL-6 in vascular remodeling in Schistosoma pulmonary hypertension. Am J Respir Cell Mol Biol 2014; 49:951-9. [PMID: 23815102 DOI: 10.1165/rcmb.2012-0532oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis is one of the most common causes of pulmonary arterial hypertension worldwide, but the pathogenic mechanism by which the host inflammatory response contributes to vascular remodeling is unknown. We sought to identify signaling pathways that play protective or pathogenic roles in experimental Schistosoma-induced pulmonary vascular disease via whole-lung transcriptome analysis. Wild-type mice were experimentally exposed to Schistosoma mansoni ova by intraperitoneal sensitization followed by tail-vein augmentation, and the phenotype was assessed by right ventricular catheterization and tissue histology, as well as RNA and protein analysis. Whole-lung transcriptome analysis by microarray and RNA sequencing was performed, and RNA sequencing was analyzed according to two bioinformatics methods. Functional testing of the candidate IL-6 pathway was determined using IL-6 knockout mice and the signal transducers and activators of transcription protein-3 (STAT3) inhibitor S3I-201. Wild-type mice exposed to S. mansoni demonstrated increased right ventricular systolic pressure and thickness of the pulmonary vascular media. Whole-lung transcriptome analysis determined that the IL-6-STAT3-nuclear factor of activated T cells c2(NFATc2) pathway was up-regulated, as confirmed by PCR and the immunostaining of lung tissue from S. mansoni-exposed mice and patients who died of the disease. Mice lacking IL-6 or treated with S3I-201 developed pulmonary hypertension, associated with significant intima remodeling after exposure to S. mansoni. Whole-lung transcriptome analysis identified the up-regulation of the IL-6-STAT3-NFATc2 pathway, and IL-6 signaling was found to be protective against Schistosoma-induced intimal remodeling.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
38 |
21
|
Shah AT, Azad TD, Breese MR, Chabon JJ, Hamilton EG, Straessler K, Kurtz DM, Leung SG, Spillinger A, Liu HY, Behroozfard IH, Wittber FM, Hazard FK, Cho SJ, Daldrup-Link HE, Vo KT, Rangaswami A, Pribnow A, Spunt SL, Lacayo NJ, Diehn M, Alizadeh AA, Sweet-Cordero EA. A Comprehensive Circulating Tumor DNA Assay for Detection of Translocation and Copy-Number Changes in Pediatric Sarcomas. Mol Cancer Ther 2021; 20:2016-2025. [PMID: 34353895 PMCID: PMC9307079 DOI: 10.1158/1535-7163.mct-20-0987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Most circulating tumor DNA (ctDNA) assays are designed to detect recurrent mutations. Pediatric sarcomas share few recurrent mutations but rather are characterized by translocations and copy-number changes. We applied Cancer Personalized Profiling by deep Sequencing (CAPP-Seq) for detection of translocations found in the most common pediatric sarcomas. We also applied ichorCNA to the combined off-target reads from our hybrid capture to simultaneously detect copy-number alterations (CNA). We analyzed 64 prospectively collected plasma samples from 17 patients with pediatric sarcoma. Translocations were detected in the pretreatment plasma of 13 patients and were confirmed by tumor sequencing in 12 patients. Two of these patients had evidence of complex chromosomal rearrangements in their ctDNA. We also detected copy-number changes in the pretreatment plasma of 7 patients. We found that ctDNA levels correlated with metastatic status and clinical response. Furthermore, we detected rising ctDNA levels before relapse was clinically apparent, demonstrating the high sensitivity of our assay. This assay can be utilized for simultaneous detection of translocations and CNAs in the plasma of patients with pediatric sarcoma. While we describe our experience in pediatric sarcomas, this approach can be applied to other tumors that are driven by structural variants.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
26 |
22
|
Graham BB, Chabon J, Bandeira A, Espinheira L, Butrous G, Tuder RM. Significant intrapulmonary Schistosoma egg antigens are not present in schistosomiasis-associated pulmonary hypertension. Pulm Circ 2012; 1:456-61. [PMID: 22530100 PMCID: PMC3329075 DOI: 10.4103/2045-8932.93544] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Schistosomiasis-associated pulmonary arterial hypertension (PAH) is one of the most common causes of pulmonary hypertension worldwide. A potential contributing mechanism to the pathogenesis of this disease is a localized immune reaction to retained and persistent parasite-derived antigens. We sought to identify Schistosoma-derived egg antigens present in the lungs of individuals who died of the disease. We obtained 18 lung samples collected at autopsy from individuals who died of schistosomiasis-associated PAH in Brazil. A rabbit polyclonal antibody was created to known Schistosoma mansoni-soluble egg antigen (SEA). Histologic assessment and immunostaining of the human tissue was performed, along with immunostaining and immunoblotting of lung tissue from mice experimentally infected with S. mansoni. All 18 lung samples had evidence of pulmonary vascular remodeling with plexiform lesions and arterial medial thickening, but no visible eggs were seen. The anti-SEA antibody detected S. mansoni egg antigens in visible eggs in mouse lung and human intestine specimens, but did not identify a significant amount of egg antigen in the human lung specimens. In mouse granulomas containing degraded eggs, we observed colocalization of egg antigens and macrophage lysosomes. In conclusion, there is unlikely to be a significant amount of persistent parasite-derived antigens within the lungs of individuals who die of schistosomiasis-associated PAH. This suggests that retained and persistent parasite proteins are not contributing to a localized immune response in the pathogenesis of this disease.
Collapse
|
Journal Article |
13 |
25 |
23
|
Nair VS, Hui ABY, Chabon JJ, Esfahani MS, Stehr H, Nabet BY, Zhou L, Chaudhuri AA, Benson J, Ayers K, Bedi H, Ramsey M, Van Wert R, Antic S, Lui N, Backhus L, Berry M, Sung AW, Massion PP, Shrager JB, Alizadeh AA, Diehn M. Genomic Profiling of Bronchoalveolar Lavage Fluid in Lung Cancer. Cancer Res 2022; 82:2838-2847. [PMID: 35748739 PMCID: PMC9379362 DOI: 10.1158/0008-5472.can-22-0554] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Genomic profiling of bronchoalveolar lavage (BAL) samples may be useful for tumor profiling and diagnosis in the clinic. Here, we compared tumor-derived mutations detected in BAL samples from subjects with non-small cell lung cancer (NSCLC) to those detected in matched plasma samples. Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) was used to genotype DNA purified from BAL, plasma, and tumor samples from patients with NSCLC. The characteristics of cell-free DNA (cfDNA) isolated from BAL fluid were first characterized to optimize the technical approach. Somatic mutations identified in tumor were then compared with those identified in BAL and plasma, and the potential of BAL cfDNA analysis to distinguish lung cancer patients from risk-matched controls was explored. In total, 200 biofluid and tumor samples from 38 cases and 21 controls undergoing BAL for lung cancer evaluation were profiled. More tumor variants were identified in BAL cfDNA than plasma cfDNA in all stages (P < 0.001) and in stage I to II disease only. Four of 21 controls harbored low levels of cancer-associated driver mutations in BAL cfDNA [mean variant allele frequency (VAF) = 0.5%], suggesting the presence of somatic mutations in nonmalignant airway cells. Finally, using a Random Forest model with leave-one-out cross-validation, an exploratory BAL genomic classifier identified lung cancer with 69% sensitivity and 100% specificity in this cohort and detected more cancers than BAL cytology. Detecting tumor-derived mutations by targeted sequencing of BAL cfDNA is technically feasible and appears to be more sensitive than plasma profiling. Further studies are required to define optimal diagnostic applications and clinical utility. SIGNIFICANCE Hybrid-capture, targeted deep sequencing of lung cancer mutational burden in cell-free BAL fluid identifies more tumor-derived mutations with increased allele frequencies compared with plasma cell-free DNA. See related commentary by Rolfo et al., p. 2826.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
22 |
24
|
Aalipour A, Dudley JC, Park SM, Murty S, Chabon JJ, Boyle EA, Diehn M, Gambhir SS. Deactivated CRISPR Associated Protein 9 for Minor-Allele Enrichment in Cell-Free DNA. Clin Chem 2017; 64:307-316. [PMID: 29038154 DOI: 10.1373/clinchem.2017.278911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cell-free DNA (cfDNA) diagnostics are emerging as a new paradigm of disease monitoring and therapy management. The clinical utility of these diagnostics is relatively limited by a low signal-to-noise ratio, such as with low allele frequency (AF) mutations in cancer. While enriching for rare alleles to increase their AF before sample analysis is one strategy that can greatly improve detection capability, current methods are limited in their generalizability, ease of use, and applicability to point mutations. METHODS Leveraging the robust single-base-pair specificity and generalizability of the CRISPR associated protein 9 (Cas9) system, we developed a deactivated Cas9 (dCas9)-based method of minor-allele enrichment capable of efficient single-target and multiplexed enrichment. The dCas9 protein was complexed with single guide RNAs targeted to mutations of interest and incubated with cfDNA samples containing mutant strands at low abundance. Mutation-bound dCas9 complexes were isolated, dissociated, and the captured DNA purified for downstream use. RESULTS Targeting the 3 most common epidermal growth factor receptor mutations (exon 19 deletion, T790M, L858R) found in non-small cell lung cancer (NSCLC), we achieved >20-fold increases in AF and detected mutations by use of qPCR at an AF of 0.1%. In a cohort of 18 NSCLC patient-derived cfDNA samples, our method enabled detection of 8 out of 13 mutations that were otherwise undetected by qPCR. CONCLUSIONS The dCas9 method provides an important application of the CRISPR/Cas9 system outside the realm of genome editing and can provide a step forward for the detection capability of cfDNA diagnostics.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
21 |
25
|
Nadon AM, Perez MJ, Hernandez-Saavedra D, Smith LP, Yang Y, Sanders LA, Gandjeva A, Chabon J, Koyanagi DE, Graham BB, Tuder RM, Schmidt EP. Rtp801 suppression of epithelial mTORC1 augments endotoxin-induced lung inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2382-9. [PMID: 25016184 DOI: 10.1016/j.ajpath.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 12/27/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of cellular responses to environmental stress. mTOR (and its primary complex mTORC1) is, therefore, ideally positioned to regulate lung inflammatory responses to an environmental insult, a function directly relevant to disease states such as the acute respiratory distress syndrome. Our previous work in cigarette smoke-induced emphysema identified a novel protective role of pulmonary mTORC1 signaling. However, studies of the impact of mTORC1 on the development of acute lung injury are conflicting. We hypothesized that Rtp801, an endogenous inhibitor of mTORC1, which is predominantly expressed in alveolar type II epithelial cells, is activated during endotoxin-induced lung injury and functions to suppress anti-inflammatory epithelial mTORC1 responses. We administered intratracheal lipopolysaccharide to wild-type mice and observed a significant increase in lung Rtp801 mRNA. In lipopolysaccharide-treated Rtp801(-/-) mice, epithelial mTORC1 activation significantly increased and was associated with an attenuation of lung inflammation. We reversed the anti-inflammatory phenotype of Rtp801(-/-) mice with the mTORC1 inhibitor, rapamycin, reassuring against mTORC1-independent effects of Rtp801. We confirmed the proinflammatory effects of Rtp801 by generating a transgenic Rtp801 overexpressing mouse, which displayed augmented inflammatory responses to intratracheal endotoxin. These data suggest that epithelial mTORC1 activity plays a protective role against lung injury, and its inhibition by Rtp801 exacerbates alveolar injury caused by endotoxin.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
17 |