1
|
Ogura AP, Lima JZ, Marques JP, Massaro Sousa L, Rodrigues VGS, Espíndola ELG. A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113753. [PMID: 34537561 DOI: 10.1016/j.jenvman.2021.113753] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The use of pesticides has been increasing in recent years for maintaining traditional agricultural practices. However, these chemicals are associated with several environmental impacts, demanding urgent remediation techniques. Biochar is a carbonaceous material produced by pyrolysis that has the potential for pesticide sorption and remediation. In this context, this interdisciplinary review systematically assessed the state of the knowledge of crop residues to produce biochar for pesticide sorption. We focused on maize, rice, and wheat residues since these are the three most-produced grains worldwide. Besides, we evaluated different biochar handling, storage, and soil dispersion techniques to ease its implementation in agriculture. In general, pyrolysis temperature influences biochar characteristics and its potential for pesticide sorption. Furthermore, biochar amended soils had greater pesticide sorption capacity, limiting potential leaching and runoff. Most studies showed that the feedstock and specific surface area influence the biochar sorption properties, among other factors. Also, biochar reduces pesticides' bioavailability, decreasing their toxicity to soil organisms and improving soil fertility and crop yields. Nonetheless, the retrieved papers assessed only 21 pesticides, mainly consisting of lab-scale batch experiments. Therefore, there is still a gap in studies evaluating biochar aging, its potential desorption, pesticide co-contaminations, the associated microbiological processes, and field applications. Determining flow properties for biochars of different sizes and pellets is vital for reliable handling equipment design, and performing techno-economic assessment under different farm contexts is encouraged. Ultimately, coupling biochar production with residue management could address this challenge on sustainable agricultural systems.
Collapse
|
Review |
4 |
22 |
2
|
Lima JZ, Ferreira da Silva E, Patinha C, Rodrigues VGS. Sorption and post-sorption performances of Cd, Pb and Zn onto peat, compost and biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115968. [PMID: 35988405 DOI: 10.1016/j.jenvman.2022.115968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The development of waste-derived sorbents to immobilize potentially toxic elements (PTEs) is a promising strategy, contributing to the achievement of sustainable development goals (SDGs). Therefore, this study aimed to assess the sorption performance of cadmium (Cd), lead (Pb) and zinc (Zn), comparing sorbents derived from organic fraction of municipal solid waste (composts and biochars) with peat. The physicochemical characterization, equilibrium of sorption, post-sorption analyzes and bioaccessibility were investigated. Results showed that the sorbents have distinct characteristics; however, each material have their particularities favorable to sorption. For instance, peat and composts have the highest cation exchange capacity (800-1100 mmolc kg-1), while biochar produced at 700 °C has the highest specific surface area (91.21 m2 g-1). The sorption equilibrium data revealed the actual sorption capacity and was well explained by the Freundlich and Langmuir isotherms and, in some cases, by the Dubinin-Radushkevich model. Post-sorption analyzes indicated the occurrence of several sorption mechanisms, driven by the physicochemical properties. Electrostatic interaction stood out for peat and compost. The FTIR spectrum for peat proved the complexation with oxygenated functional groups. The composts showed variations in the released cations (e.g. Ca2+ and K+), indicating cation exchange. Differently, for biochars, the XRD patterns showed that precipitation or coprecipitation seems to be one of the main mechanisms, especially for Cd and Pb. Regarding human bioaccessibility, the results of the gastric phase simulation (pH∼1.20) revealed lower percentages of Pb (33-81%) than Cd (91-99%) or Zn (82-99%), especially for the highest concentrations. Nevertheless, in numerical terms, all bioaccessible concentrations inspire care. In conclusion, among the sorbents, composts and biochars presented the best sorption performances and, therefore, have great potential for environmental applications. Furthermore, the bioaccessibility findings indicate that these assays, still little used in experiments with sorbents, are an important tool that should be better explored in the assessment of the environmental risk associated with contamination.
Collapse
|
|
3 |
14 |
3
|
Lima JZ, Ferreira da Silva E, Patinha C, Durães N, Vieira EM, Rodrigues VGS. Sorption of arsenic by composts and biochars derived from the organic fraction of municipal solid wastes: Kinetic, isotherm and oral bioaccessibility study. ENVIRONMENTAL RESEARCH 2022; 204:111988. [PMID: 34480948 DOI: 10.1016/j.envres.2021.111988] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The historic contamination of water and soils by arsenic (As) is an extremely alarming environmental and public health issue worldwide. This study investigated the relationship between As sorption and physicochemical properties of composts and biochars derived from the organic fraction of municipal solid wastes (OFMSW) towards the development of promising sorbents with value-added solid wastes management solutions. The sorbents were characterized and their effectiveness on the As sorption was tested. Several isothermal and kinetic sorption models were used for the prediction of sorption. Composts did not show promising sorption capacities, and in some cases, the As immobilization was practically null. In contrast, biochars achieved higher sorption performance, and the experimental data fitted well on Dubinin-Rabushkevich and Langmuir models, with higher R2 values. The maximum sorption capacities of BC700 estimated by such models were 6.495 and 170.252 mg g-1, respectively, whereas those of BC500 estimated by D-R and Langmuir models were only 0.066 and 0.070 mg g-1, respectively. In sorption kinetics, As was retained onto biochars at a faster first stage, reaching equilibrium after approximately 1 h and 2 h for initial concentrations of 10 and 100 mg L-1. The pseudo-second-order, Ritchie's second-order, Ritchie's, and Elovich models more adequately described the sorption kinetics of As onto biochars with high R2 values. Overall, the complexation and precipitation were predominant mechanisms for As sorption by OFMSW-derived biochars. Furthermore, the mathematical models indicated contributions arise from physisorption and external and internal diffusion mechanisms. Although BC700 can immobilize large As amounts, the gastric phase of the oral bioaccessibility test revealed more than 80% of the sorbed As could be released under conditions similar to a human stomach (pH~1.2). Such conclusions have given important insights about the refining of effective and eco-friendly remediation technologies for the management and rehabilitation of As-contaminated soil and water, particularly in developing countries.
Collapse
|
|
3 |
14 |
4
|
Kasemodel MC, Lima JZ, Sakamoto IK, Varesche MBA, Trofino JC, Rodrigues VGS. Soil contamination assessment for Pb, Zn and Cd in a slag disposal area using the integration of geochemical and microbiological data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:698. [PMID: 27896584 DOI: 10.1007/s10661-016-5708-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Improper disposal of mining waste is still considered a global problem, and further details on the contamination by potentially toxic metals are required for a proper assessment. In this context, it is important to have a combined view of the chemical and biological changes in the mining dump area. Thus, the objective of this study was to evaluate the Pb, Zn and Cd contamination in a slag disposal area using the integration of geochemical and microbiological data. Analyses of soil organic matter (SOM), pH, Eh, pseudo-total concentration of metals, sequential extraction and microbial community by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were conducted. Metal availability was evaluated based on the geoaccumulation index (I geo), ecological risk ([Formula: see text]), Risk Assessment Code (RAC) and experimental data, and different reference values were tested to assist in the interpretation of the indices. The soil pH was slightly acidic to neutral, the Eh values indicated oxidized conditions and the average SOM content varied from 12.10 to 53.60 g kg-1. The average pseudo-total concentrations of metals were in the order of Zn > Pb > Cd. Pb and Zn were mainly bound to the residual fraction and Fe-Mn oxides, and a significant proportion of Cd was bound to the exchangeable and carbonate fractions. The topsoil (0-20 cm) is highly contaminated (I geo) with Cd and has a very high potential ecological risk ([Formula: see text]). Higher bacterial diversity was mainly associated with higher metal concentrations. It is concluded that the integration of geochemical and microbiological data can provide an appropriate evaluation of mining waste-contaminated areas.
Collapse
|
|
9 |
12 |
5
|
Zanin Lima J, Monici Raimondi Nauerth I, Ferreira da Silva E, José Pejon O, Guimarães Silvestre Rodrigues V. Competitive sorption and desorption of cadmium, lead, and zinc onto peat, compost, and biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118515. [PMID: 37418925 DOI: 10.1016/j.jenvman.2023.118515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Soil and water contamination by potentially toxic metals (PTMs) has exerted adverse environmental impacts, which justifies studies of promising remediation alternatives. This article investigated the competitive sorption of cadmium (Cd), lead (Pb), and zinc (Zn) onto peat, compost, and biochar derived from the organic fraction of municipal solid waste (OFMSW), but its main innovation was the post-sorption assessment. The effects of contact time on competition between contaminants were systematically analyzed by batch experiments and the effectiveness of the sorption process was evaluated in desorption tests (H2O, HCl, NaOH, and NaCl) and sequential extraction. Kinetic data were well-fitted to pseudo-first-order (PFO) and pseudo-second-order (PSO) models and the intra-particle diffusion model revealed the existence of multiple linear regions, indicating the sorption process was controlled by a multi-step mechanism. The sorption capacities followed a biochar > compost > peat order, with biochar retaining more than 99% of Cd, Pb, and Zn in all samples. The general order of desorption percentage was peat > compost > biochar, with a below 0.60% biochar release, suggesting the importance of chemical processes. HCl solution (more acid pH) showed the highest release of previously sorbed contaminants and, therefore, can be employed for the reuse of sorbents (sorption/desorption cycles). The only exception was Pb desorption on biochar, with maximum release in NaOH solution. A negative Pearson correlation with F1 (acid-soluble/exchangeable fraction) for Cd and Zn and a positive one with the other steps were reported. Pb exhibited an opposite behavior, showing the highest sorption performances and the lowest desorption rates for all sorbents, justified by positive correlations with F4 (residual fraction) and negative ones with desorption. The findings suggest the evaluated sorbents, especially compost and biochar, can be effective materials in the simultaneous sorption of Cd, Pb, and Zn in wastewater, as well as an amendment for PTMs immobilization in contaminated soils.
Collapse
|
|
2 |
6 |
6
|
Lima JZ, Ogura AP, Espíndola ELG, Ferreira da Silva E, Rodrigues VGS. Post-sorption of Cd, Pb, and Zn onto peat, compost, and biochar: Short-term effects of ecotoxicity and bioaccessibility. CHEMOSPHERE 2024; 352:141521. [PMID: 38395370 DOI: 10.1016/j.chemosphere.2024.141521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Contamination by potentially toxic metals and metalloids (PTMs) has become a significant health and environmental issue worldwide. Sorption has emerged as one of the most prominent strategies for remediating both soil and water contamination. New sorbents are being developed to provide economically viable and environmentally sound alternatives, in alignment with the principles of the Sustainable Development Goals. This research aimed to assess the potential effects on human health and environmental toxicity following the sorption of cadmium (Cd), lead (Pb), and zinc (Zn) using peat, compost, and biochar as sorbents. The peat was collected in Brazil, a country with a tropical climate, while the compost and biochar were produced from the organic fraction of municipal solid waste (OFMSW). In terms of bioaccessibility, the results showed the following order: compost < biochar < peat for Pb, and compost < peat < biochar for Cd and Zn. There was a significant growth inhibition for Eruca sativa and Zea mays exposed to increasing concentrations of PTMs treated with peat and compost. The presence of contaminants played a decisive role on immobilization of neonates of Ceriodaphnia silvestrii after treatments with compost and, especially, peat. However, the biochar addition rate caused a significant influence on the outcomes of ecotoxicity across all tested species. Although the samples treated with biochar exhibited lower residual concentrations of PTMs than those treated with compost and peat, the inherent toxicity of biochar might be attributed to the material itself. The exposure to residual PTM concentrations post-desorption caused ecotoxic effects on tested species, emphasizing the need to assess PTM desorption potential. Peat, compost, and biochar are promising alternatives for the sorption of PTMs, but the addition rates must be properly adjusted to avoid the occurrence of undesirable ecotoxicological effects. This research offers valuable insights for sustainable environmental management and protection by thoroughly investigating the impacts of different sorbents and contaminants on aquatic and terrestrial ecosystems.
Collapse
|
|
1 |
|
7
|
Lima JZ, Rodrigues VGS. Effects of Biochar on Arsenic-Contaminated Soil: Chemical Fractionation, Vegetation Growth, and Oral Bioaccessibility. ENVIRONMENTAL MANAGEMENT 2025; 75:392-401. [PMID: 39443393 DOI: 10.1007/s00267-024-02067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Contamination by arsenic (As) is a pressing environmental and public health issue requiring urgent remediation strategies. One cost-effective and eco-friendly method involves adding stabilizing agents to soils to reduce As mobility. However, remediation projects must also address potential ecotoxicological effects. These effects may include harmful impacts on both aquatic and terrestrial organisms, including plants, disruption of ecosystem balance, and the potential bioaccumulation of toxic substances in the food chain. Biochar from organic fraction of municipal solid waste (OFMSW) shows promise for As-contaminated soil remediation. Pot experiments were conducted with soil contaminated with As (100 mg kg-1) and amended with biochar produced at three different temperatures (300, 500, and 700 °C) and addition rates (1 and 5%, w/w). Chemical fractionation showed higher As concentration in a less accessible fraction (F4). Biochar amendments did not significantly differ from the control in As immobilization, but enhanced maize (Zea mays) growth and reduced As uptake, with the most promising results seen with 1% of biochar produced at 700 °C. The bioaccumulation factor (BCF) and translocation factor (TF) were both lower than 1, indicating a low absorption of As and minimal translocation from the root to the shoot. The bioaccessible percentage was higher in the samples treated with biochar compared to the control. According to the results, biochar showed no satisfactory potential for As immobilization and its approach of pretreatment/modification should be tested regarding possible improvements in the immobilization performance of As. Since most contaminations involve multiple contaminants simultaneously, it is essential to test the interactions between arsenic and other pollutants to understand the effects of biochar in such complex scenarios, which will be explored in future studies. Graphical abstract.
Collapse
|
|
1 |
|
8
|
Ogura AP, Lima JZ, Silva LCMD, Dias MA, Rodrigues VGS, Montagner CC, Espíndola ELG. Phytotoxicity of 2,4-D and fipronil mixtures to three green manure species. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:262-272. [PMID: 36799483 DOI: 10.1080/03601234.2023.2178789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sugarcane expansion has been associated with soil contamination by agrochemicals. Pesticides can affect plant growth, and their mixture might have potentiated effects on exposed species. This research aimed to evaluate the influence of fipronil on the phytotoxicity of 2,4-D on three green manure plant species: Canavalia ensiformis, Dolichos lablab, and Lupinus albus. Plants were exposed (for 21 days, at 25 °C) to a control soil and five concentrations of each pesticide and their combinations (36 treatments, considering a full-factorial approach). Effect concentrations of 50% growth inhibition (EC50) were estimated. No phytotoxicity effects were identified when plants were exposed to different fipronil concentrations (up to 0.12 mg kg-1). All species exposed to 2,4-D showed a decrease in shoot and root length and fresh/dry biomass. L. albus and D. lablab roots showed the highest sensitivity when exposed to 2,4-D among the endpoints (EC50 = 0.02 and 0.05 mg kg-1, respectively), while C. ensiformis roots were the most tolerant (EC50 = 0.98 mg kg-1). However, the interference of fipronil on the toxicity of 2,4-D was not detected in different mixture proportions, indicating no interaction between pesticides. Residues of 2,4-D might also impair other crops' growth, compromise productivity, and limit phytotechnologies for soil recovery.
Collapse
|
|
2 |
|
9
|
Lima JZ, Rodrigues VGS. Effects of biochar on soil contaminated by metals and metalloids from slag disposal of an old environmental liability in Ribeira Valley, Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123782. [PMID: 39705999 DOI: 10.1016/j.jenvman.2024.123782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Contamination with potentially toxic metals and metalloids (PTMs) in mining areas poses significant environment and human health risks. Using biochar as an amendment can be a cost-effective and eco-friendly method to reduce PTM bioavailability in contaminated soils, thus lowering plant uptake. This study investigated biochar derived from the organic fraction of municipal solid waste (OFMSW) at three pyrolysis temperatures (300, 500, and 700 °C) and two application rates (1% and 5%, w/w) for the remediation of slag-contaminated soils from an old environmental liability in the Ribeira Valley (Brazil). The results showed Zn > Pb > Cu > As > Co > Cr > Cd > Ni pseudo-total concentrations in slag with concentrations of As, Cu, Pb, and Cd posing greater environmental risks due to their toxicity. The biochar addition exerted limited effects on chemical fractionation, likely due to soil alkalinity, and BC300 5% increased As availability. A 1% biochar addition improved maize (Zea mays) growth, whereas 5% BC500 and BC700 were phytotoxic. The highest bioconcentration factor (BCF) values were observed for Cr, Cu, Ni, and Zn, which are all essential nutrients for plants; however, translocation factor (TF) from roots to shoots was generally low. A combination of BCF and TF < 1 suggested mechanisms limiting PTM uptake and translocation in plants. Pb showed a high ecological risk potential (Eri), with hazard quotients (HQ) exceeding 1 for the slag. BC700 5% provided the most promising Eri for As, Pb, and Zn; however, it proved toxic to maize, highlighting the need for multidisciplinary research and biochar's potential in site remediation. Further treatments are necessary for enhancing the retention efficiency or exploring combinations with other organic or inorganic amendments.
Collapse
|
|
1 |
|