1
|
Wang W, Tiwari JK, Bradley SR, Zaykin RV, Richerson GB. Acidosis-Stimulated Neurons of the Medullary Raphe Are Serotonergic. J Neurophysiol 2001; 85:2224-35. [PMID: 11353037 DOI: 10.1152/jn.2001.85.5.2224] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the medullary raphe project widely to respiratory and autonomic nuclei and contain co-localized serotonin, thyrotropin-releasing hormone (TRH), and substance P, three neurotransmitters known to stimulate ventilation. Some medullary raphe neurons are highly sensitive to pH and CO2 and have been proposed to be central chemoreceptors. Here it was determined whether these chemosensitive neurons are serotonergic. Cells were microdissected from the rat medullary raphe and maintained in primary cell culture for 13–70 days. Immunoreactivity for serotonin, substance P, and TRH was present in these cultures. All acidosis-stimulated neurons ( n = 22) were immunoreactive for tryptophan hydroxylase (TpOH-IR), the rate-limiting enzyme for serotonin biosynthesis, whereas all acidosis-inhibited neurons ( n= 16) were TpOH-immunonegative. The majority of TpOH-IR medullary raphe neurons (73%) were stimulated by acidosis. The electrophysiological properties of TpOH-IR neurons in culture were similar to those previously reported for serotonergic neurons in vivo and in brain slices. These properties included wide action potentials (4.55 ± 0.5 ms) with a low variability of the interspike interval, a postspike afterhyperpolarization (AHP) that reversed 25 mV more positive than the Nernst potential for K+, prominent A current, spike frequency adaptation and a prolonged AHP after a depolarizing pulse. Thus the intrinsic cellular properties of serotonergic neurons were preserved in cell culture, indicating that the results obtained using this in vitro approach are relevant to serotonergic neurons in vivo. These results demonstrate that acidosis-stimulated neurons of the medullary raphe contain serotonin. We propose that serotonergic neurons initiate a homeostatic response to changes in blood CO2 that includes increased ventilation and modulation of autonomic function.
Collapse
|
|
24 |
144 |
2
|
Richerson GB, Wang W, Tiwari J, Bradley SR. Chemosensitivity of serotonergic neurons in the rostral ventral medulla. RESPIRATION PHYSIOLOGY 2001; 129:175-89. [PMID: 11738653 DOI: 10.1016/s0034-5687(01)00289-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The medullary raphé contains two subtypes of chemosensitive neuron: one that is stimulated by acidosis and another that is inhibited. Both types of neuron are putative chemoreceptors, proposed to act in opposite ways to modulate respiratory output and other pH sensitive brain functions. In this review, we will discuss the cellular properties of these chemosensitive raphé neurons when studied in vitro using brain slices and primary dissociated cell culture. Quantification of chemosensitivity of raphé neurons indicates that they are highly sensitive to small changes in extracellular pH (pH(o)) between 7.2 and 7.6. Stimulation by acidosis occurs only in the specific phenotypic subset of neurons within the raphé that are serotonergic. These serotonergic neurons also have other properties consistent with a specialized role in chemoreception. Homologous serotonergic neurons are present within the ventrolateral medulla (VLM), and may have contributed to localization of respiratory chemoreception to that region. Chemosensitivity of raphé neurons increases in the postnatal period in rats, in parallel with development of respiratory chemoreception in vivo. An abnormality of serotonergic neurons of the ventral medulla has been identified in victims of sudden infant death syndrome (SIDS). The cellular properties of serotonergic raphé neurons suggest that they play a role in the CNS response to hypercapnia, and that they may contribute to interactions between the sleep/wake cycle and respiratory control.
Collapse
|
Review |
24 |
128 |
3
|
Tiwari JK, Buckseth T, Zinta R, Saraswati A, Singh RK, Rawat S, Dua VK, Chakrabarti SK. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Sci Rep 2020; 10:1152. [PMID: 31980689 PMCID: PMC6981199 DOI: 10.1038/s41598-020-58167-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Potato crop requires high dose of nitrogen (N) to produce high tuber yield. Excessive application of N causes environmental pollution and increases cost of production. Hence, knowledge about genes and regulatory elements is essential to strengthen research on N metabolism in this crop. In this study, we analysed transcriptomes (RNA-seq) in potato tissues (shoot, root and stolon) collected from plants grown in aeroponic culture under controlled conditions with varied N supplies i.e. low N (0.2 milli molar N) and high N (4 milli molar N). High quality data ranging between 3.25 to 4.93 Gb per sample were generated using Illumina NextSeq500 that resulted in 83.60-86.50% mapping of the reads to the reference potato genome. Differentially expressed genes (DEGs) were observed in the tissues based on statistically significance (p ≤ 0.05) and up-regulation with ≥ 2 log2 fold change (FC) and down-regulation with ≤ -2 log2 FC values. In shoots, of total 19730 DEGs, 761 up-regulated and 280 down-regulated significant DEGs were identified. Of total 20736 DEGs in roots, 572 (up-regulated) and 292 (down-regulated) were significant DEGs. In stolons, of total 21494 DEG, 688 and 230 DEGs were significantly up-regulated and down-regulated, respectively. Venn diagram analysis showed tissue specific and common genes. The DEGs were functionally assigned with the GO terms, in which molecular function domain was predominant in all the tissues. Further, DEGs were classified into 24 KEGG pathways, in which 5385, 5572 and 5594 DEGs were annotated in shoots, roots and stolons, respectively. The RT-qPCR analysis validated gene expression of RNA-seq data for selected genes. We identified a few potential DEGs responsive to N deficiency in potato such as glutaredoxin, Myb-like DNA-binding protein, WRKY transcription factor 16 and FLOWERING LOCUS T in shoots; high-affinity nitrate transporter, protein phosphatase-2c, glutaredoxin family protein, malate synthase, CLE7, 2-oxoglutarate-dependent dioxygenase and transcription factor in roots; and glucose-6-phosphate/phosphate translocator 2, BTB/POZ domain-containing protein, F-box family protein and aquaporin TIP1;3 in stolons, and many genes of unknown function. Our study highlights that these potential genes play very crucial roles in N stress tolerance, which could be useful in augmenting research on N metabolism in potato.
Collapse
|
Comparative Study |
5 |
44 |
4
|
Tiwari J, Kumar S, Kolte AP, Swarnkar CP, Singh D, Pathak KML. Detection of benzimidazole resistance in Haemonchus contortus using RFLP-PCR technique. Vet Parasitol 2006; 138:301-7. [PMID: 16567043 DOI: 10.1016/j.vetpar.2006.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 01/24/2006] [Accepted: 02/01/2006] [Indexed: 11/22/2022]
Abstract
Benzimidazole (BZ) resistance in Haemonchus contortus is linked primarily with the mutation in the beta-tubulin isotype 1 gene that substitute phenylalanine (Phe) to tyrosine (Tyr) at 200 codon of the gene. In the present study, a new restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) technique has been developed for detection of BZ resistance in the beta-tubulin isotype 1 gene of H. contortus. The technique utilizes two primers viz. AvikaF and AvikaR to amplify the region containing mutation in the beta-tubulin gene followed by restriction digestion. After digestion, the 'rr' individuals (homozygous resistant) revealed 257 and 48 bp bands, the 'rS' individuals (heterozygous) showed 305, 257 and 48 bp bands, while 'SS' individuals (homozygous susceptible) revealed uncut 305 bp band. A total of 162 adult male H. contortus collected from Avikanagar, Jaipur and Bikaner regions (54 from each region) were genotyped for analyzing BZ resistance in the beta-tubulin gene. Out of which, 130 adults were 'rr' types, 20 'rS' types and 12 'SS' types. The results showed that genotypic frequencies of different genotypes (rr, rS and SS) were highly significant difference among the three regions (P<0.001). The 'rr' individuals were higher (98%) in Jaipur followed by Avikanagar (93%) and Bikaner (50%) regions. Overall, the prevalence of BZ resistant allele (r) was higher (86%) as compared to BZ susceptible allele (S) (14%). The technique was also found suitable for genotyping of larvae of H. contortus and yielded reproducible results. The study indicated that RFLP-PCR is an easy, reproducible and less expensive than allele specific PCR. This technique will be helpful in establishing the prevalence rate of BZ resistance in H. contortus and can also be utilized for existing worm control programme.
Collapse
|
Journal Article |
19 |
38 |
5
|
Sarkar S, Mehta SA, Tiwari J, Mehta AR, Mehta MS. Complications following surgery for cancer of the larynx and pyriform fossa. J Surg Oncol 1990; 43:245-9. [PMID: 2325423 DOI: 10.1002/jso.2930430411] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hospital records of patients undergoing major surgery for cancer of the larynx and hypopharynx at the Tata Memorial Hospital, Bombay, from 1981 to 1985 were reviewed. Different variables were correlated with the incidence of major complications and were analysed to find out significant factors contributing to increased complication rates. Complications included wound infection, pharyngocutaneous fistulae, flap necrosis, carotid blowout, and neo-esophageal stenosis. Postoperative deaths and delayed fatalities were also recorded. The overall fistulae rate was 34.7%, and wound infection occurred in 28% of patients. Prior radiotherapy and the need for pharyngeal reconstruction were found to be significant in determining postsurgical complications. Age, sex, site, stage, cartilage and soft tissue infiltration, preoperative tracheostomy, involvement of resection margins by tumor, and the dose of radiotherapy were not found to influence the complication rates.
Collapse
|
|
35 |
38 |
6
|
Layrisse Z, Rodríguez-Iturbe B, García-Ramírez R, Rodríguez A, Tiwari J. Family studies of the HLA system in acute post-streptococcal glomerulonephritis. Hum Immunol 1983; 7:177-85. [PMID: 6409851 DOI: 10.1016/s0198-8859(83)80005-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Eighteen families (67 siblings) of index cases with acute post-streptococcal glomerulonephritis (APSGN) were typed for HLA-A,B,C,DR antigens. Twenty cases of clinical nephritis and 10 cases of asymptomatic disease with detected among the sibships. In eight families with more than one affected individual comprising 18 sib pairs random segregation of paternal and maternal HLA haplotypes was found (0.5 less than p less than 0.06), but some antigens (CW1, DR3) showed deviation from the expected 1:1 ratio in affected and nonaffected siblings in backcross families. We had previously noticed the existence of Mendelian recessive ratios in APSGN but in the absence of clear evidence for a dominant or recessive mode of inheritance for a putative APSGN susceptibility gene(s), pedigree data were analyzed twice for linkage with HLA using the two genetic models. The data obtained, although not sufficient to reject the hypothesis of linkage, provide no support for it. Comparison of the frequency of 61 HLA antigens among 42 unrelated APSGN patients and 109 controls, showed that HLA-DRW4 is more frequent among the former (pc = 0.0500).
Collapse
|
|
42 |
32 |
7
|
Tiwari JK, Sikdar SK. Temperature-dependent conformational changes in a voltage-gated potassium channel. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1999; 28:338-45. [PMID: 10394625 DOI: 10.1007/s002490050216] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Temperature was used as a biophysical tool to investigate the energy changes associated with conformational change during the gating of a non-inactivating voltage-gated K+ channel present in the membrane of alpha T3-1 cells, a gonadotroph cell line. The time course of the current activation was described by a single exponential function at three temperatures: 15, 25 and 35 degrees C. The Q10 values were between 1.5 to 1.9 and in agreement with the activation energy determined from Arrhenius plots of the forward and backward rate constants associated with channel opening. The Gibb's free energy change associated with channel opening and closing at various membrane potentials estimated by two approaches yield similar values. The changes in Gibb's free energy (delta G degree) with depolarization potential is a quadratic and more prominent at 15 than at 25 or 35 degrees C. The results suggest that increase in temperature favours movement of voltage sensing segments, and reduces the restraint on them brought about by other parts of the channel molecule.
Collapse
|
|
26 |
24 |
8
|
|
|
51 |
21 |
9
|
Tiwari JK, Buckseth T, Zinta R, Saraswati A, Singh RK, Rawat S, Chakrabarti SK. Genome-wide identification and characterization of microRNAs by small RNA sequencing for low nitrogen stress in potato. PLoS One 2020; 15:e0233076. [PMID: 32428011 PMCID: PMC7237020 DOI: 10.1371/journal.pone.0233076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is an important nutrient for plant growth and tuber quality of potato. Since potato crop requires high dose of N, improving nitrogen use efficiency (NUE) of plant is an inevitable approach to minimize N fertilization. The aim of this study was to identify and characterize microRNAs (miRNAs) by small RNA sequencing in potato plants grown in aeroponic under two contrasting N (high and low) regimes. A total of 119 conserved miRNAs belonging to 41 miRNAs families, and 1002 putative novel miRNAs were identified. From total, 52 and 54 conserved miRNAs, and 404 and 628 putative novel miRNAs were differentially expressed in roots and shoots, respectively under low N stress. Of total 34,135 predicted targets, the gene ontology (GO) analysis indicated that maximum targets belong to biological process followed by molecular function and cellular component. Eexpression levels of the selected miRNAs and targets were validated by real time-quantitative polymerase chain reaction (RT-qPCR) analysis. Two predicted targets of potential miRNAs (miR397 and miR398) were validated by 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends). In general, predicted targets are associated with stress-related, kinase, transporters and transcription factors such as universal stress protein, heat shock protein, salt-tolerance protein, calmodulin binding protein, serine-threonine protein kinsae, Cdk10/11- cyclin dependent kinase, amino acid transporter, nitrate transporter, sugar transporter, transcription factor, F-box family protein, and zinc finger protein etc. Our study highlights that miR397 and miR398 play crucial role in potato during low N stress management. Moreover, study provides insights to modulate miRNAs and their predicted targets to develop N-use efficient potato using transgenic/genome-editing tools in future.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
21 |
10
|
Tiwari JK, Buckseth T, Zinta R, Bhatia N, Dalamu D, Naik S, Poonia AK, Kardile HB, Challam C, Singh RK, Luthra SK, Kumar V, Kumar M. Germplasm, Breeding, and Genomics in Potato Improvement of Biotic and Abiotic Stresses Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:805671. [PMID: 35197996 PMCID: PMC8859313 DOI: 10.3389/fpls.2022.805671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 05/23/2023]
Abstract
Potato is one of the most important food crops in the world. Late blight, viruses, soil and tuber-borne diseases, insect-pests mainly aphids, whiteflies, and potato tuber moths are the major biotic stresses affecting potato production. Potato is an irrigated and highly fertilizer-responsive crop, and therefore, heat, drought, and nutrient stresses are the key abiotic stresses. The genus Solanum is a reservoir of genetic diversity, however, a little fraction of total diversity has been utilized in potato breeding. The conventional breeding has contributed significantly to the development of potato varieties. In recent years, a tremendous progress has been achieved in the sequencing technologies from short-reads to long-reads sequence data, genomes of Solanum species (i.e., pan-genomics), bioinformatics and multi-omics platforms such as genomics, transcriptomics, proteomics, metabolomics, ionomics, and phenomics. As such, genome editing has been extensively explored as a next-generation breeding tool. With the available high-throughput genotyping facilities and tetraploid allele calling softwares, genomic selection would be a reality in potato in the near future. This mini-review covers an update on germplasm, breeding, and genomics in potato improvement for biotic and abiotic stress tolerance.
Collapse
|
Review |
3 |
18 |
11
|
|
|
51 |
15 |
12
|
Anthony BF, Concepcion IE, Concepcion NF, Vadheim CM, Tiwari J. Relation between maternal age and serum concentration of IgG antibody to type III group B streptococci. J Infect Dis 1994; 170:717-20. [PMID: 8077736 DOI: 10.1093/infdis/170.3.717] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Coded serum samples collected from healthy obstetric patients at delivery were examined by ELISA for IgG antibody to the purified type III polysaccharide of group B streptococci. When 217 patients were divided into 4 groups according to age (group I =16-20 years, n = 56; group II = 21-25, n = 53; group III = 26-30, n = 54; group IV = 31-35, n = 54), antibody concentrations were significantly lower in group I than in older patients. Fewer subjects in group I had measurable antibody levels (> or = 0.05 microgram/mL) than in groups II-IV (41% vs. 76%, P < .001). The geometric mean in group I (0.09 microgram/mL) was significantly lower (P < .001) than in the older groups (0.23, 0.19, and 0.20 microgram/mL, respectively) with little or no overlap of the 95% confidence limits (1.96 SE) about the means. These findings may be relevant to the observation of a significantly greater risk of both early- and late-onset group B streptococcal disease in infants of teenage mothers.
Collapse
|
Comparative Study |
31 |
14 |
13
|
Tiwari JK, Singh AK, Behera TK. CRISPR/Cas genome editing in tomato improvement: Advances and applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1121209. [PMID: 36909403 PMCID: PMC9995852 DOI: 10.3389/fpls.2023.1121209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 06/12/2023]
Abstract
The narrow genetic base of tomato poses serious challenges in breeding. Hence, with the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (CRISPR/Cas9) genome editing, fast and efficient breeding has become possible in tomato breeding. Many traits have been edited and functionally characterized using CRISPR/Cas9 in tomato such as plant architecture and flower characters (e.g. leaf, stem, flower, male sterility, fruit, parthenocarpy), fruit ripening, quality and nutrition (e.g., lycopene, carotenoid, GABA, TSS, anthocyanin, shelf-life), disease resistance (e.g. TYLCV, powdery mildew, late blight), abiotic stress tolerance (e.g. heat, drought, salinity), C-N metabolism, and herbicide resistance. CRISPR/Cas9 has been proven in introgression of de novo domestication of elite traits from wild relatives to the cultivated tomato and vice versa. Innovations in CRISPR/Cas allow the use of online tools for single guide RNA design and multiplexing, cloning (e.g. Golden Gate cloning, GoldenBraid, and BioBrick technology), robust CRISPR/Cas constructs, efficient transformation protocols such as Agrobacterium, and DNA-free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex, Cas9 variants like PAM-free Cas12a, and Cas9-NG/XNG-Cas9, homologous recombination (HR)-based gene knock-in (HKI) by geminivirus replicon, and base/prime editing (Target-AID technology). This mini-review highlights the current research advances in CRISPR/Cas for fast and efficient breeding of tomato.
Collapse
|
Review |
2 |
14 |
14
|
Tiwari JK, Rawat S, Luthra SK, Zinta R, Sahu S, Varshney S, Kumar V, Dalamu D, Mandadi N, Kumar M, Chakrabarti SK, Rao AR, Rai A. Genome sequence analysis provides insights on genomic variation and late blight resistance genes in potato somatic hybrid (parents and progeny). Mol Biol Rep 2021; 48:623-635. [PMID: 33442830 DOI: 10.1007/s11033-020-06106-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
Wild Solanum species are the important resources for potato improvement. With the availability of potato genome and sequencing progress, knowledge about genomic resources is essential for novel genes discovery. Hence, the aim of this study was to decipher draft genome sequences of unique potato genotypes i.e. somatic hybrid P8 (J1), wild species S. pinnatisectum (J2), progeny MSH/14-112 (P8 × cv. Kufri Jyoti) (J3), and S. tuberosum dihaploid C-13 (J4). Draft genome sequencing using Illumina platform and reference-based assemblies with the potato genome yielded genome assembly size of 725.01 Mb (J1), 724.95 Mb (J2), 725.01 Mb (J3), and 809.59 Mb (J4). Further, 39,260 (J1), 25,711 (J2), 39,730 (J3) and 30,241 (J4) genes were identified and 17,411 genes were found common in the genotypes particularly late blight resistance genes (R3a, RGA2, RGA3, R1B-16, Rpi-blb2, Rpi and Rpi-vnt1). Gene ontology (GO) analysis showed that molecular function was predominant and signal transduction was major KEGG pathways. Further, gene enrichment analysis revealed dominance of metabolic process (GO: 0008152) in all the samples. Phylogeny analysis showed relatedness with potato and other plant species. Heterozygous single nucleotide polymorphism (SNP) was more than homozygous, and SNP in genic region was more than inter-genic region. Copy number variation (CNV) analysis indicated greater number of deletions than duplications. Sequence diversity and conserved motifs analysis revealed variation for late blight resistance genes. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed differential expression of late blight resistance genes. Our study provides insights on genome sequence, structural variation and late blight resistance genes in potato somatic hybrid (parents and progeny) for future research.
Collapse
|
Journal Article |
4 |
11 |
15
|
Tiwari JK, Buckseth T, Challam C, Zinta R, Bhatia N, Dalamu D, Naik S, Poonia AK, Singh RK, Luthra SK, Kumar V, Kumar M. CRISPR/Cas Genome Editing in Potato: Current Status and Future Perspectives. Front Genet 2022; 13:827808. [PMID: 35186041 PMCID: PMC8849127 DOI: 10.3389/fgene.2022.827808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
|
|
3 |
10 |
16
|
Tiwari JK, Buckseth T, Devi S, Varshney S, Sahu S, Patil VU, Zinta R, Ali N, Moudgil V, Singh RK, Rawat S, Dua VK, Kumar D, Kumar M, Chakrabarti SK, Rao AR, Rai A. Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a nitrogen-use efficient potato cv. Kufri Gaurav. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:171-183. [PMID: 32563041 DOI: 10.1016/j.plaphy.2020.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N) is an important nutrient for plant growth. However, its excess application leads to environmental damage. Hence, improving nitrogen use efficiency (NUE) of plant is one of the plausible options to solve the problems. Aim of this study was to identify candidate genes involved in enhancing NUE in potato cv. Kufri Gaurav (N efficient). Plants were grown in aeroponic with two contrasting N regimes (low N: 0.75 mM, and high N: 7.5 mM). Higher NUE in Kufri Gaurav was observed in low N based on the parameters like NUE, NUpE (N uptake efficiency), NUtE (N utilization efficiency) and AgNUE (agronomic NUE). Further, global gene expression profiles in root, leaf and stolon tissues were analyzed by RNA-sequencing using Ion Proton™ System. Quality data (≥Q20) of 2.04-2.73 Gb per sample were mapped with the potato genome. Statistically significant (P ≤ 0.05) differentially expressed genes (DEGs) were identified such as 176 (up-regulated) and 30 (down-regulated) in leaves, 39 (up-regulated) and 105 (down-regulated) in roots, and 81 (up-regulated) and 694 (down-regulated) in stolons. The gene ontology (GO) terms like metabolic process, cellular process and catalytic activity were predominant. Our RT-qPCR analysis confirmed the gene expression profiles of RNA-seq. Overall, we identified candidate genes associated with improving NUE such as superoxide dismutase, GDSL esterase lipase, probable phosphatase 2C, high affinity nitrate transporters, sugar transporter, proline rich proteins, transcription factors (VQ motif, SPX domain, bHLH) etc. Our findings suggest that these candidate genes probably play crucial roles in enhancing NUE in potato.
Collapse
|
|
5 |
10 |
17
|
Tiwari JK, Saurabh S, Chandel P, Pal Singh B, Bhardwaj V. Analysis of genetic and epigenetic variation in in vitro propagated potato somatic hybrid by AFLP and MSAP marker. ELECTRON J BIOTECHN 2013. [DOI: 10.2225/vol16-issue6-fulltext-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
|
12 |
10 |
18
|
Chandak RJ, Malhotra B, Bhargava S, Goel SK, Verma D, Tiwari J. Evaluation of MTBDR sl for detecting resistance in Mycobacterium tuberculosis to second-line drugs. Int J Tuberc Lung Dis 2020; 23:1257-1262. [PMID: 31931908 DOI: 10.5588/ijtld.18.0562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SETTING: Patients with presumed multidrug-resistant tuberculosis (MDR-TB) and undergoing MDR-TB treatment from Rajasthan, India.OBJECTIVE: To compare the GenoType® MTBDRsl v.1.0 (MTBDRsl) assay capacity to detect resistance to ofloxacin, amikacin, capreomycin, kanamycin and ethambutol in Mycobacterium tuberculosis with phenotypic drug susceptibility testing (DST) using MGIT™960™ in sputum samples and isolates.DESIGN: Fifty-three smear-positive sputum samples were tested directly by MTBDRsl and 205 MDR-TB isolates were processed using MTBDRsl and DST for five drugs on MGIT960. DNA sequencing was performed in isolates with discordance in the results between the two methods for the gyrA, gyrB and rrs genes.RESULT: Sensitivity and specificity of MTBDRsl was found to be respectively 93.1% and 100% for fluoroquinoline, respectively 75-78% and 100% for aminoglycosides/cyclopeptides, respectively 70% and 92% for ethambutol and respectively 92.3% and 100% for extensively drug-resistant (XDR) TB detection. On sequencing eight discordant isolates for quinolones, mutations were seen in 12.5% of the gyrB gene and among 20 discordant isolates for aminoglycosides/cyclopeptides in the rrs gene in 15% isolates. The turnaround time was 2 days for MTBDRsl vs. 10 days for MGIT960.CONCLUSIONS: MTBDRsl can be used as an initial rapid test for detecting XDR-TB, resistance to quinolones and aminogycosides/cyclopeptides in smear-positive sputum samples.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
19
|
|
|
52 |
7 |
20
|
Tiwari JK, A J, Tuteja N, Khurana SMP. Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.). Mol Biol Rep 2022; 49:12109-12119. [PMID: 35764748 DOI: 10.1007/s11033-022-07704-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Plant viruses are the major pathogens that cause heavy yield loss in potato. The important viruses are potato virus X, potato virus Y and potato leaf roll virus around the world. Besides these three viruses, a novel tomato leaf curl New Delhi virus is serious in India. Conventional cum molecular breeding and transgenics approaches have been applied to develop virus resistant potato genotypes. But progress is slow in developing resistant varieties due to lack of host genes and long breeding process, and biosafety concern with transgenics. Hence, CRISPR-Cas mediated genome editing has emerged as a powerful technology to address these issues. CRISPR-Cas technology has been deployed in potato for several important traits. We highlight here CRISPR-Cas approaches of virus resistance through targeting viral genome (DNA or RNA), host factor gene and multiplexing of target genes simultaneously. Further, advancement in CRISPR-Cas research is presented in the area of DNA-free genome editing, virus-induced genome editing, and base editing. CRISPR-Cas delivery, transformation methods, and challenges in tetraploid potato and possible methods are also discussed.
Collapse
|
Review |
3 |
6 |
21
|
Tiwari JK, Sikdar SK. Voltage gated Na+ channels contribute to membrane voltage fluctuation in alphaT3-1 pituitary gonadotroph cells. Neurosci Lett 1998; 242:167-71. [PMID: 9530932 DOI: 10.1016/s0304-3940(98)00046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AlphaT3-1 cells showed a slope resistance of 1.8 Gomega. The cell membrane surface was not smooth and a scanning electron micrograph showed a complex structure with blebs and microvilli like projections. The cells showed spontaneous fluctuations at zero current resting membrane potential and hyperpolarization increased the amplitude of membrane potential fluctuations. The amplitude of membrane potential fluctuations at hyperpolarized membrane potential was attenuated on application of TTX to the bath solution. The potential at which half steady state inactivation of isolated sodium current occurred, was at a very hyperpolarized potential (-95.4 mV). The study presented in this paper shows that the voltage gated sodium channels contribute to the increase in the amplitude of electrical noise with hyperpolarization in alphaT3-1 cells.
Collapse
|
|
27 |
6 |
22
|
Tiwari JK, Buckseth T, Singh RK, Kumar M, Kant S. Prospects of Improving Nitrogen Use Efficiency in Potato: Lessons From Transgenics to Genome Editing Strategies in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:597481. [PMID: 33424892 PMCID: PMC7785987 DOI: 10.3389/fpls.2020.597481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/10/2020] [Indexed: 05/27/2023]
|
discussion |
5 |
6 |
23
|
Chanda B, Tiwari JK, Varshney A, Mathew MK. Transplanting the N-terminus from Kv1.4 to Kv1.1 generates an inwardly rectifying K+ channel. Neuroreport 1999; 10:237-41. [PMID: 10203315 DOI: 10.1097/00001756-199902050-00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A chimeric channel, 4N/1, was generated from two outwardly rectifying K+ channels by linking the N-terminal cytoplasmic domain of hKv1.4 (N terminus ball and chain of hKv1.4) with the transmembrane body of hKv1.1 (delta78N1 construct of hKv1.1). The recombinant channel has properties similar to the six transmembrane inward rectifiers and opens on hyperpolarization with a threshold of activation at -90 mV. Outward currents are seen on depolarization provided the channel is first exposed to a hyperpolarizing pulse of -100 mV or more. Hyperpolarization at and beyond -130 mV provides evidence of channel deactivation. Delta78N1 does not show inward currents on hyperpolarization but does open on depolarizing from -80 mV with characteristics similar to native hKv1.1. The outward currents seen in both delta78N1 and 4N/1 inactivate slowly at rates consistent with C-type inactivation. The inward rectification of the 4N/1 chimera is consistent with the inactivation gating mechanism. This implies that the addition of the N-terminus from hKv1.4 to hKv1.1 shifts channel activation to hyperpolarizing potentials. These results suggest a mechanism involving the N-terminal cytoplasmic domain for conversion of outward rectifiers to inward rectifiers.
Collapse
|
|
26 |
6 |
24
|
Vyas JJ, Desai PB, Sampat MB, Shinde SR, Rao DN, Sarkar S, Badwe R, Tiwari J, Koppikar A. Observations on Indian node-negative breast cancer patients: a multivariate analysis. J Surg Oncol 1989; 42:256-63. [PMID: 2593668 DOI: 10.1002/jso.2930420411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The modern treatment of breast cancer has evolved over the past 100 years based on clinical observations. Therapeutic principles, from the choice of surgical procedure to the management of disseminated disease, have also changed. The axillary tumour burden, that is, the number of histologically positive nodes (N+) plays an important role as a prognostic factor. However, in histologically Negative nodes (N-), it is necessary to discriminate individuals at high risk despite negative nodes. This presentation analyses retrospectively the prognostic factors for long-term failures in N- patients. These prognostic factors need to be studied in detail, and controlled clinical trials should be carried out to detect high risk N- patients and consider them for adjuvant chemotherapy.
Collapse
|
|
36 |
5 |
25
|
Chanda B, Tiwari JK, Varshney A, Mathew MK. Exploring the architecture of potassium channels using chimaeras to reveal signal transduction. Biosci Rep 1999; 19:301-6. [PMID: 10589995 DOI: 10.1023/a:1020550408733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The chimeric channel, 4N/1, generated from two outwardly rectifying K+ channels by linking the N-terminal cytoplasmic domain of hKv1.4 with the transmembrane body of hKv1.1, functions as an inward rectifier. The operating range of the channel is shifted to hyperpolarizing potentials and it is inactivated at resting membrane potentials. Co-expression of a truncated form of hKv1.1 with the N-terminal domain of hKv1.4 results in the same physiology as the chimaera implying specific interactions between the two segments.
Collapse
|
|
26 |
5 |