1
|
Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Mokrab Y, Newman AM, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CS, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich I. The Immune Landscape of Cancer. Immunity 2018; 48:812-830.e14. [PMID: 29628290 PMCID: PMC5982584 DOI: 10.1016/j.immuni.2018.03.023] [Citation(s) in RCA: 3649] [Impact Index Per Article: 521.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/23/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
3649 |
2
|
|
Journal Article |
15 |
1456 |
3
|
Allen M, Carrasquillo MM, Funk C, Heavner BD, Zou F, Younkin CS, Burgess JD, Chai HS, Crook J, Eddy JA, Li H, Logsdon B, Peters MA, Dang KK, Wang X, Serie D, Wang C, Nguyen T, Lincoln S, Malphrus K, Bisceglio G, Li M, Golde TE, Mangravite LM, Asmann Y, Price ND, Petersen RC, Graff-Radford NR, Dickson DW, Younkin SG, Ertekin-Taner N. Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative diseases. Sci Data 2016; 3:160089. [PMID: 27727239 PMCID: PMC5058336 DOI: 10.1038/sdata.2016.89] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/31/2016] [Indexed: 11/23/2022] Open
Abstract
Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
278 |
4
|
Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, DiNunno N, Rosario AM, Cruz PE, Verbeeck C, Sacino A, Nix S, Janus C, Price ND, Das P, Golde TE. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 2015; 85:519-33. [PMID: 25619653 DOI: 10.1016/j.neuron.2014.11.020] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 01/27/2023]
Abstract
Anti-inflammatory strategies are proposed to have beneficial effects in Alzheimer's disease. To explore how anti-inflammatory cytokine signaling affects Aβ pathology, we investigated the effects of adeno-associated virus (AAV2/1)-mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aβ accumulation and impaired memory in APP mice. A focused transcriptome analysis revealed changes consistent with enhanced IL-10 signaling and increased ApoE expression in IL-10-expressing APP mice. ApoE protein was selectively increased in the plaque-associated insoluble cellular fraction, likely because of direct interaction with aggregated Aβ in the IL-10-expressing APP mice. Ex vivo studies also show that IL-10 and ApoE can individually impair glial Aβ phagocytosis. Our observations that IL-10 has an unexpected negative effect on Aβ proteostasis and cognition in APP mouse models demonstrate the complex interplay between innate immunity and proteostasis in neurodegenerative diseases, an interaction we call immunoproteostasis.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
277 |
5
|
Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Mokrab Y, Newman AM, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CS, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich I. The Immune Landscape of Cancer. Immunity 2019; 51:411-412. [PMID: 31433971 DOI: 10.1016/j.immuni.2019.08.004] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
Published Erratum |
6 |
273 |
6
|
Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC SYSTEMS BIOLOGY 2012; 6:153. [PMID: 23234303 PMCID: PMC3576361 DOI: 10.1186/1752-0509-6-153] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/28/2012] [Indexed: 12/28/2022]
Abstract
Background Human tissues perform diverse metabolic functions. Mapping out these tissue-specific functions in genome-scale models will advance our understanding of the metabolic basis of various physiological and pathological processes. The global knowledgebase of metabolic functions categorized for the human genome (Human Recon 1) coupled with abundant high-throughput data now makes possible the reconstruction of tissue-specific metabolic models. However, the number of available tissue-specific models remains incomplete compared with the large diversity of human tissues. Results We developed a method called metabolic Context-specificity Assessed by Deterministic Reaction Evaluation (mCADRE). mCADRE is able to infer a tissue-specific network based on gene expression data and metabolic network topology, along with evaluation of functional capabilities during model building. mCADRE produces models with similar or better functionality and achieves dramatic computational speed up over existing methods. Using our method, we reconstructed draft genome-scale metabolic models for 126 human tissue and cell types. Among these, there are models for 26 tumor tissues along with their normal counterparts, and 30 different brain tissues. We performed pathway-level analyses of this large collection of tissue-specific models and identified the eicosanoid metabolic pathway, especially reactions catalyzing the production of leukotrienes from arachidnoic acid, as potential drug targets that selectively affect tumor tissues. Conclusions This large collection of 126 genome-scale draft metabolic models provides a useful resource for studying the metabolic basis for a variety of human diseases across many tissues. The functionality of the resulting models and the fast computational speed of the mCADRE algorithm make it a useful tool to build and update tissue-specific metabolic models.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
191 |
7
|
Wan YW, Al-Ouran R, Mangleburg CG, Perumal TM, Lee TV, Allison K, Swarup V, Funk CC, Gaiteri C, Allen M, Wang M, Neuner SM, Kaczorowski CC, Philip VM, Howell GR, Martini-Stoica H, Zheng H, Mei H, Zhong X, Kim JW, Dawson VL, Dawson TM, Pao PC, Tsai LH, Haure-Mirande JV, Ehrlich ME, Chakrabarty P, Levites Y, Wang X, Dammer EB, Srivastava G, Mukherjee S, Sieberts SK, Omberg L, Dang KD, Eddy JA, Snyder P, Chae Y, Amberkar S, Wei W, Hide W, Preuss C, Ergun A, Ebert PJ, Airey DC, Mostafavi S, Yu L, Klein HU, Carter GW, Collier DA, Golde TE, Levey AI, Bennett DA, Estrada K, Townsend TM, Zhang B, Schadt E, De Jager PL, Price ND, Ertekin-Taner N, Liu Z, Shulman JM, Mangravite LM, Logsdon BA. Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. Cell Rep 2020; 32:107908. [PMID: 32668255 PMCID: PMC7428328 DOI: 10.1016/j.celrep.2020.107908] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
We present a consensus atlas of the human brain transcriptome in Alzheimer's disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington's disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies.
Collapse
|
Meta-Analysis |
5 |
187 |
8
|
Min Lee J, Gianchandani EP, Eddy JA, Papin JA. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 2008; 4:e1000086. [PMID: 18483615 PMCID: PMC2377155 DOI: 10.1371/journal.pcbi.1000086] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 04/15/2008] [Indexed: 01/30/2023] Open
Abstract
Extracellular cues affect signaling, metabolic, and regulatory processes to elicit cellular responses. Although intracellular signaling, metabolic, and regulatory networks are highly integrated, previous analyses have largely focused on independent processes (e.g., metabolism) without considering the interplay that exists among them. However, there is evidence that many diseases arise from multifunctional components with roles throughout signaling, metabolic, and regulatory networks. Therefore, in this study, we propose a flux balance analysis (FBA)–based strategy, referred to as integrated dynamic FBA (idFBA), that dynamically simulates cellular phenotypes arising from integrated networks. The idFBA framework requires an integrated stoichiometric reconstruction of signaling, metabolic, and regulatory processes. It assumes quasi-steady-state conditions for “fast” reactions and incorporates “slow” reactions into the stoichiometric formalism in a time-delayed manner. To assess the efficacy of idFBA, we developed a prototypic integrated system comprising signaling, metabolic, and regulatory processes with network features characteristic of actual systems and incorporating kinetic parameters based on typical time scales observed in literature. idFBA was applied to the prototypic system, which was evaluated for different environments and gene regulatory rules. In addition, we applied the idFBA framework in a similar manner to a representative module of the single-cell eukaryotic organism Saccharomyces cerevisiae. Ultimately, idFBA facilitated quantitative, dynamic analysis of systemic effects of extracellular cues on cellular phenotypes and generated comparable time-course predictions when contrasted with an equivalent kinetic model. Since idFBA solves a linear programming problem and does not require an exhaustive list of detailed kinetic parameters, it may be efficiently scaled to integrated intracellular systems that incorporate signaling, metabolic, and regulatory processes at the genome scale, such as the S. cerevisiae system presented here. Cellular systems comprise many diverse components and component interactions spanning signal transduction, transcriptional regulation, and metabolism. Although signaling, metabolic, and regulatory activities are often investigated independently of one another, there is growing evidence that considerable interplay occurs among them, and that the malfunctioning of this interplay is associated with disease. The computational analysis of integrated networks has been challenging because of the varying time scales involved as well as the sheer magnitude of such systems (e.g., the numbers of rate constants involved). To this end, we developed a novel computational framework called integrated dynamic flux balance analysis (idFBA) that generates quantitative, dynamic predictions of species concentrations spanning signaling, regulatory, and metabolic processes. idFBA extends an existing approach called flux balance analysis (FBA) in that it couples “fast” and “slow” reactions, thereby facilitating the study of whole-cell phenotypes and not just sub-cellular network properties. We applied this framework to a prototypic integrated system derived from literature as well as a representative integrated yeast module (the high-osmolarity glycerol [HOG] pathway) and generated time-course predictions that matched with available experimental data. By extending this framework to larger-scale systems, phenotypic profiles of whole-cell systems could be attained expeditiously.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
156 |
9
|
Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 2008; 4:177. [PMID: 18364711 PMCID: PMC2290936 DOI: 10.1038/msb.2008.15] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/06/2008] [Indexed: 12/18/2022] Open
Abstract
Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systems-based approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof-of-concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage-specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets.
Collapse
|
research-article |
17 |
105 |
10
|
Milne CB, Eddy JA, Raju R, Ardekani S, Kim PJ, Senger RS, Jin YS, Blaschek HP, Price ND. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC SYSTEMS BIOLOGY 2011; 5:130. [PMID: 21846360 PMCID: PMC3212993 DOI: 10.1186/1752-0509-5-130] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/16/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUND Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i) naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis). Interrogating C. beijerinckii metabolism from a systems viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications. RESULTS We present the first genome-scale metabolic model (iCM925) for C. beijerinckii, containing 925 genes, 938 reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected from the three databases--highlighting the importance of evaluating the predictive accuracy of the resulting genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain, and evaluated the ability of the model to simulate measured substrate uptake and product production rates. Experimentally observed fermentation profiles were found to lie within the solution space of the model; however, under an optimal growth objective, additional constraints were needed to reproduce the observed profiles--suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction of actively utilized reactions in simulations--constrained to reflect experimental rates--originated from the set of reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher's exact test). Inhibition of the hydrogenase reaction was found to have a strong effect on butanol formation--as experimentally observed. CONCLUSIONS Microbial production of butanol by C. beijerinckii offers a promising, sustainable, method for generation of this important chemical and potential biofuel. iCM925 is a predictive model that can accurately reproduce physiological behavior and provide insight into the underlying mechanisms of microbial butanol production. As such, the model will be instrumental in efforts to better understand, and metabolically engineer, this microorganism for improved butanol production.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
88 |
11
|
Rehm HL, Page AJ, Smith L, Adams JB, Alterovitz G, Babb LJ, Barkley MP, Baudis M, Beauvais MJ, Beck T, Beckmann JS, Beltran S, Bernick D, Bernier A, Bonfield JK, Boughtwood TF, Bourque G, Bowers SR, Brookes AJ, Brudno M, Brush MH, Bujold D, Burdett T, Buske OJ, Cabili MN, Cameron DL, Carroll RJ, Casas-Silva E, Chakravarty D, Chaudhari BP, Chen SH, Cherry JM, Chung J, Cline M, Clissold HL, Cook-Deegan RM, Courtot M, Cunningham F, Cupak M, Davies RM, Denisko D, Doerr MJ, Dolman LI, Dove ES, Dursi LJ, Dyke SO, Eddy JA, Eilbeck K, Ellrott KP, Fairley S, Fakhro KA, Firth HV, Fitzsimons MS, Fiume M, Flicek P, Fore IM, Freeberg MA, Freimuth RR, Fromont LA, Fuerth J, Gaff CL, Gan W, Ghanaim EM, Glazer D, Green RC, Griffith M, Griffith OL, Grossman RL, Groza T, Guidry Auvil JM, Guigó R, Gupta D, Haendel MA, Hamosh A, Hansen DP, Hart RK, Hartley DM, Haussler D, Hendricks-Sturrup RM, Ho CW, Hobb AE, Hoffman MM, Hofmann OM, Holub P, Hsu JS, Hubaux JP, Hunt SE, Husami A, Jacobsen JO, Jamuar SS, Janes EL, Jeanson F, Jené A, Johns AL, Joly Y, Jones SJ, Kanitz A, Kato K, Keane TM, Kekesi-Lafrance K, Kelleher J, Kerry G, Khor SS, Knoppers BM, Konopko MA, Kosaki K, Kuba M, Lawson J, Leinonen R, Li S, Lin MF, Linden M, Liu X, Liyanage IU, Lopez J, Lucassen AM, Lukowski M, Mann AL, Marshall J, Mattioni M, Metke-Jimenez A, Middleton A, Milne RJ, Molnár-Gábor F, Mulder N, Munoz-Torres MC, Nag R, Nakagawa H, Nasir J, Navarro A, Nelson TH, Niewielska A, Nisselle A, Niu J, Nyrönen TH, O’Connor BD, Oesterle S, Ogishima S, Ota Wang V, Paglione LA, Palumbo E, Parkinson HE, Philippakis AA, Pizarro AD, Prlic A, Rambla J, Rendon A, Rider RA, Robinson PN, Rodarmer KW, Rodriguez LL, Rubin AF, Rueda M, Rushton GA, Ryan RS, Saunders GI, Schuilenburg H, Schwede T, Scollen S, Senf A, Sheffield NC, Skantharajah N, Smith AV, Sofia HJ, Spalding D, Spurdle AB, Stark Z, Stein LD, Suematsu M, Tan P, Tedds JA, Thomson AA, Thorogood A, Tickle TL, Tokunaga K, Törnroos J, Torrents D, Upchurch S, Valencia A, Guimera RV, Vamathevan J, Varma S, Vears DF, Viner C, Voisin C, Wagner AH, Wallace SE, Walsh BP, Williams MS, Winkler EC, Wold BJ, Wood GM, Woolley JP, Yamasaki C, Yates AD, Yung CK, Zass LJ, Zaytseva K, Zhang J, Goodhand P, North K, Birney E. GA4GH: International policies and standards for data sharing across genomic research and healthcare. CELL GENOMICS 2021; 1:100029. [PMID: 35072136 PMCID: PMC8774288 DOI: 10.1016/j.xgen.2021.100029] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.
Collapse
|
review-article |
4 |
88 |
12
|
Eddy JA, Sung J, Geman D, Price ND. Relative expression analysis for molecular cancer diagnosis and prognosis. Technol Cancer Res Treat 2010; 9:149-59. [PMID: 20218737 DOI: 10.1177/153303461000900204] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The enormous amount of biomolecule measurement data generated from high-throughput technologies has brought an increased need for computational tools in biological analyses. Such tools can enhance our understanding of human health and genetic diseases, such as cancer, by accurately classifying phenotypes, detecting the presence of disease, discriminating among cancer sub-types, predicting clinical outcomes, and characterizing disease progression. In the case of gene expression microarray data, standard statistical learning methods have been used to identify classifiers that can accurately distinguish disease phenotypes. However, these mathematical prediction rules are often highly complex, and they lack the convenience and simplicity desired for extracting underlying biological meaning or transitioning into the clinic. In this review, we survey a powerful collection of computational methods for analyzing transcriptomic microarray data that address these limitations. Relative Expression Analysis (RXA) is based only on the relative orderings among the expressions of a small number of genes. Specifically, we provide a description of the first and simplest example of RXA, the K-TSP classifier, which is based on _ pairs of genes; the case K = 1 is the TSP classifier. Given their simplicity and ease of biological interpretation, as well as their invariance to data normalization and parameter-fitting, these classifiers have been widely applied in aiding molecular diagnostics in a broad range of human cancers. We review several studies which demonstrate accurate classification of disease phenotypes (e.g., cancer vs. normal), cancer subclasses (e.g., AML vs. ALL, GIST vs. LMS), disease outcomes (e.g., metastasis, survival), and diverse human pathologies assayed through blood-borne leukocytes. The studies presented demonstrate that RXA-specifically the TSP and K-TSP classifiers-is a promising new class of computational methods for analyzing high-throughput data, and has the potential to significantly contribute to molecular cancer diagnosis and prognosis.
Collapse
|
Review |
15 |
80 |
13
|
Edelman LB, Eddy JA, Price ND. In silico models of cancer. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2010; 2:438-459. [PMID: 20836040 PMCID: PMC3157287 DOI: 10.1002/wsbm.75] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a complex disease that involves multiple types of biological interactions across diverse physical, temporal, and biological scales. This complexity presents substantial challenges for the characterization of cancer biology, and motivates the study of cancer in the context of molecular, cellular, and physiological systems. Computational models of cancer are being developed to aid both biological discovery and clinical medicine. The development of these in silico models is facilitated by rapidly advancing experimental and analytical tools that generate information-rich, high-throughput biological data. Statistical models of cancer at the genomic, transcriptomic, and pathway levels have proven effective in developing diagnostic and prognostic molecular signatures, as well as in identifying perturbed pathways. Statistically inferred network models can prove useful in settings where data overfitting can be avoided, and provide an important means for biological discovery. Mechanistically based signaling and metabolic models that apply a priori knowledge of biochemical processes derived from experiments can also be reconstructed where data are available, and can provide insight and predictive ability regarding the behavior of these systems. At longer length scales, continuum and agent-based models of the tumor microenvironment and other tissue-level interactions enable modeling of cancer cell populations and tumor progression. Even though cancer has been among the most-studied human diseases using systems approaches, significant challenges remain before the enormous potential of in silico cancer biology can be fully realized.
Collapse
|
Review |
15 |
72 |
14
|
Milne CB, Kim PJ, Eddy JA, Price ND. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J 2010; 4:1653-70. [PMID: 19946878 DOI: 10.1002/biot.200900234] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Driven by advancements in high-throughput biological technologies and the growing number of sequenced genomes, the construction of in silico models at the genome scale has provided powerful tools to investigate a vast array of biological systems and applications. Here, we review comprehensively the uses of such models in industrial and medical biotechnology, including biofuel generation, food production, and drug development. While the use of in silico models is still in its early stages for delivering to industry, significant initial successes have been achieved. For the cases presented here, genome-scale models predict engineering strategies to enhance properties of interest in an organism or to inhibit harmful mechanisms of pathogens. Going forward, genome-scale in silico models promise to extend their application and analysis scope to become a trans-formative tool in biotechnology.
Collapse
|
Review |
15 |
72 |
15
|
Eddy JA, Hood L, Price ND, Geman D. Identifying tightly regulated and variably expressed networks by Differential Rank Conservation (DIRAC). PLoS Comput Biol 2010; 6:e1000792. [PMID: 20523739 PMCID: PMC2877722 DOI: 10.1371/journal.pcbi.1000792] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/22/2010] [Indexed: 12/18/2022] Open
Abstract
A powerful way to separate signal from noise in biology is to convert the molecular data from individual genes or proteins into an analysis of comparative biological network behaviors. One of the limitations of previous network analyses is that they do not take into account the combinatorial nature of gene interactions within the network. We report here a new technique, Differential Rank Conservation (DIRAC), which permits one to assess these combinatorial interactions to quantify various biological pathways or networks in a comparative sense, and to determine how they change in different individuals experiencing the same disease process. This approach is based on the relative expression values of participating genes—i.e., the ordering of expression within network profiles. DIRAC provides quantitative measures of how network rankings differ either among networks for a selected phenotype or among phenotypes for a selected network. We examined disease phenotypes including cancer subtypes and neurological disorders and identified networks that are tightly regulated, as defined by high conservation of transcript ordering. Interestingly, we observed a strong trend to looser network regulation in more malignant phenotypes and later stages of disease. At a sample level, DIRAC can detect a change in ranking between phenotypes for any selected network. Variably expressed networks represent statistically robust differences between disease states and serve as signatures for accurate molecular classification, validating the information about expression patterns captured by DIRAC. Importantly, DIRAC can be applied not only to transcriptomic data, but to any ordinal data type. The systems approach to medicine derives from the idea that diseased cells arise from one or more perturbed biological networks due to the net effect of interactions among multiple molecular agents; by measuring differences in the abundance of biomolecules (e.g., mRNA, proteins, metabolites) we can identify reporters of network states and uncover molecular signatures of disease. However, a major limitation of previously published network analyses is the focus on small numbers of individual, differentially-expressed genes, hence the failure to take into account combinatorial interactions. We report a new technique, Differential Rank Conservation, for identifying and measuring network-level perturbations. Our rank conservation index is based entirely on the relative levels of expression for participating genes and allows us to detect differences in network orderings between networks for a given phenotype and between phenotypes for a given network. In examining cancer subtypes and neurological disorders, we identified networks that are tightly and loosely regulated, as defined by the level of conservation of transcript ordering, and observed a strong trend to looser network regulation in more malignant phenotypes and later stages of disease. We also demonstrate that variably expressed networks represent robust differences between disease states.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
69 |
16
|
Cerosaletti K, Barahmand-Pour-Whitman F, Yang J, DeBerg HA, Dufort MJ, Murray SA, Israelsson E, Speake C, Gersuk VH, Eddy JA, Reijonen H, Greenbaum CJ, Kwok WW, Wambre E, Prlic M, Gottardo R, Nepom GT, Linsley PS. Single-Cell RNA Sequencing Reveals Expanded Clones of Islet Antigen-Reactive CD4 + T Cells in Peripheral Blood of Subjects with Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2017; 199:323-335. [PMID: 28566371 DOI: 10.4049/jimmunol.1700172] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
Abstract
The significance of islet Ag-reactive T cells found in peripheral blood of type 1 diabetes (T1D) subjects is unclear, partly because similar cells are also found in healthy control (HC) subjects. We hypothesized that key disease-associated cells would show evidence of prior Ag exposure, inferred from expanded TCR clonotypes, and essential phenotypic properties in their transcriptomes. To test this, we developed single-cell RNA sequencing procedures for identifying TCR clonotypes and transcript phenotypes in individual T cells. We applied these procedures to analysis of islet Ag-reactive CD4+ memory T cells from the blood of T1D and HC individuals after activation with pooled immunodominant islet peptides. We found extensive TCR clonotype sharing in Ag-activated cells, especially from individual T1D subjects, consistent with in vivo T cell expansion during disease progression. The expanded clonotype from one T1D subject was detected at repeat visits spanning >15 mo, demonstrating clonotype stability. Notably, we found no clonotype sharing between subjects, indicating a predominance of "private" TCR specificities. Expanded clones from two T1D subjects recognized distinct IGRP peptides, implicating this molecule as a trigger for CD4+ T cell expansion. Although overall transcript profiles of cells from HC and T1D subjects were similar, profiles from the most expanded clones were distinctive. Our findings demonstrate that islet Ag-reactive CD4+ memory T cells with unique Ag specificities and phenotypes are expanded during disease progression and can be detected by single-cell analysis of peripheral blood.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
55 |
17
|
Yang J, Eddy JA, Pan Y, Hategan A, Tabus I, Wang Y, Cogdell D, Price ND, Pollock RE, Lazar AJF, Hunt KK, Trent JC, Zhang W. Integrated proteomics and genomics analysis reveals a novel mesenchymal to epithelial reverting transition in leiomyosarcoma through regulation of slug. Mol Cell Proteomics 2010; 9:2405-13. [PMID: 20651304 DOI: 10.1074/mcp.m110.000240] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leiomyosarcoma is one of the most common mesenchymal tumors. Proteomics profiling analysis by reverse-phase protein lysate array surprisingly revealed that expression of the epithelial marker E-cadherin (encoded by CDH1) was significantly elevated in a subset of leiomyosarcomas. In contrast, E-cadherin was rarely expressed in the gastrointestinal stromal tumors, another major mesenchymal tumor type. We further sought to 1) validate this finding, 2) determine whether there is a mesenchymal to epithelial reverting transition (MErT) in leiomyosarcoma, and if so 3) elucidate the regulatory mechanism responsible for this MErT. Our data showed that the epithelial cell markers E-cadherin, epithelial membrane antigen, cytokeratin AE1/AE3, and pan-cytokeratin were often detected immunohistochemically in leiomyosarcoma tumor cells on tissue microarray. Interestingly, the E-cadherin protein expression was correlated with better survival in leiomyosarcoma patients. Whole genome microarray was used for transcriptomics analysis, and the epithelial gene expression signature was also associated with better survival. Bioinformatics analysis of transcriptome data showed an inverse correlation between E-cadherin and E-cadherin repressor Slug (SNAI2) expression in leiomyosarcoma, and this inverse correlation was validated on tissue microarray by immunohistochemical staining of E-cadherin and Slug. Knockdown of Slug expression in SK-LMS-1 leiomyosarcoma cells by siRNA significantly increased E-cadherin; decreased the mesenchymal markers vimentin and N-cadherin (encoded by CDH2); and significantly decreased cell proliferation, invasion, and migration. An increase in Slug expression by pCMV6-XL5-Slug transfection decreased E-cadherin and increased vimentin and N-cadherin. Thus, MErT, which is mediated through regulation of Slug, is a clinically significant phenotype in leiomyosarcoma.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
52 |
18
|
Eddy JA, Thorsson V, Lamb AE, Gibbs DL, Heimann C, Yu JX, Chung V, Chae Y, Dang K, Vincent BG, Shmulevich I, Guinney J. CRI iAtlas: an interactive portal for immuno-oncology research. F1000Res 2020; 9:1028. [PMID: 33214875 PMCID: PMC7658727 DOI: 10.12688/f1000research.25141.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
The Cancer Research Institute (CRI) iAtlas is an interactive web platform for data exploration and discovery in the context of tumors and their interactions with the immune microenvironment. iAtlas allows researchers to study immune response characterizations and patterns for individual tumor types, tumor subtypes, and immune subtypes. iAtlas supports computation and visualization of correlations and statistics among features related to the tumor microenvironment, cell composition, immune expression signatures, tumor mutation burden, cancer driver mutations, adaptive cell clonality, patient survival, expression of key immunomodulators, and tumor infiltrating lymphocyte (TIL) spatial maps. iAtlas was launched to accompany the release of the TCGA PanCancer Atlas and has since been expanded to include new capabilities such as (1) user-defined loading of sample cohorts, (2) a tool for classifying expression data into immune subtypes, and (3) integration of TIL mapping from digital pathology images. We expect that the CRI iAtlas will accelerate discovery and improve patient outcomes by providing researchers access to standardized immunogenomics data to better understand the tumor immune microenvironment and its impact on patient responses to immunotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
40 |
19
|
|
|
51 |
36 |
20
|
|
|
50 |
32 |
21
|
Abstract
The character of solar rotation has been examined for two periods in the early 17th century for which detailed sunspot drawings are available: A.D. 1625 through 1626 and 1642 through 1644. The first period occurred 20 years before the start of the Maunder sunspot minimum, 1645 through 1715; the second occurred just at its commencement. Solar rotation in the earlier period was much like that of today. In the later period, the equatorial velocity of the sun was faster by 3 to 5 percent and the differential rotation was enhanced by a factor of 3. The equatorial acceleration with declining solar activity is in the same sense as that found in recent Doppler data. It seems likely that the change in rotation of the solar surface between 1625 and 1645 was associated with the onset of the Maunder Minimum.
Collapse
|
|
48 |
30 |
22
|
Samal A, Craig JP, Coradetti ST, Benz JP, Eddy JA, Price ND, Glass NL. Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:225. [PMID: 28947916 PMCID: PMC5609067 DOI: 10.1186/s13068-017-0901-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. RESULTS To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa. To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa. CONCLUSIONS Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.
Collapse
|
research-article |
8 |
23 |
23
|
Sangar V, Eddy JA, Simeonidis E, Price ND. Mechanistic modeling of aberrant energy metabolism in human disease. Front Physiol 2012; 3:404. [PMID: 23112774 PMCID: PMC3480659 DOI: 10.3389/fphys.2012.00404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/01/2012] [Indexed: 01/21/2023] Open
Abstract
Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.
Collapse
|
Journal Article |
13 |
17 |
24
|
Magis AT, Earls JC, Ko YH, Eddy JA, Price ND. Graphics processing unit implementations of relative expression analysis algorithms enable dramatic computational speedup. ACTA ACUST UNITED AC 2011; 27:872-3. [PMID: 21257608 DOI: 10.1093/bioinformatics/btr033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SUMMARY The top-scoring pair (TSP) and top-scoring triplet (TST) algorithms are powerful methods for classification from expression data, but analysis of all combinations across thousands of human transcriptome samples is computationally intensive, and has not yet been achieved for TST. Implementation of these algorithms for the graphics processing unit results in dramatic speedup of two orders of magnitude, greatly increasing the searchable combinations and accelerating the pace of discovery. AVAILABILITY http://www.igb.illinois.edu/labs/price/downloads/.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
9 |
25
|
Wang C, Funk CC, Eddy JA, Price ND. Transcriptional analysis of aggressiveness and heterogeneity across grades of astrocytomas. PLoS One 2013; 8:e76694. [PMID: 24146911 PMCID: PMC3795736 DOI: 10.1371/journal.pone.0076694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human astrocytoma grades and hopefully can contribute towards improvements in diagnosis and therapy choices. Our results also identify a number of testable hypotheses relating to astrocytoma etiology that may prove helpful in developing much-needed biomarkers for earlier disease detection.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
7 |