1
|
McConn BR, Kraft AL, Durso LM, Ibekwe AM, Frye JG, Wells JE, Tobey EM, Ritchie S, Williams CF, Cook KL, Sharma M. An analysis of culture-based methods used for the detection and isolation of Salmonella spp., Escherichia coli, and Enterococcus spp. from surface water: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172190. [PMID: 38575025 DOI: 10.1016/j.scitotenv.2024.172190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Identification of methods for the standardized assessment of bacterial pathogens and antimicrobial resistance (AMR) in environmental water can improve the quality of monitoring and data collected, support global surveillance efforts, and enhance the understanding of environmental water sources. We conducted a systematic review to assemble and synthesize available literature that identified methods for assessment of prevalence and abundance of bacterial fecal indicators and pathogens in water for the purposes of monitoring bacterial pathogens and AMR. After screening for quality, 175 unique publications were identified from 15 databases, and data were extracted for analysis. This review identifies the most common and robust methods, and media used to isolate target organisms from surface water sources, summarizes methodological trends, and recognizes knowledge gaps. The information presented in this review will be useful when establishing standardized methods for monitoring bacterial pathogens and AMR in water in the United States and globally.
Collapse
|
2
|
Harlow K, Summers KL, Oliver WT, Wells JE, Crouse M, Neville BW, Rempel LA, Rivera I, Ramsay TG, Davies CP. Weaning transition, but not the administration of probiotic candidate Kazachstania slooffiae, shaped the gastrointestinal bacterial and fungal communities in nursery piglets. Front Vet Sci 2024; 10:1303984. [PMID: 38274656 PMCID: PMC10808496 DOI: 10.3389/fvets.2023.1303984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
As in-feed antibiotics are phased out of swine production, producers are seeking alternatives to facilitate improvements in growth typically seen from this previously common feed additive. Kazachstania slooffiae is a prominent commensal fungus in the swine gut that peaks in relative abundance shortly after weaning and has beneficial interactions with other bacteriome members important for piglet health. In this study, piglets were supplemented with K. slooffiae to characterize responses in piglet health as well as fungal and bacterial components of the microbiome both spatially (along the entire gastrointestinal tract and feces) and temporally (before, during, and after weaning). Litters were assigned to one of four treatments: no K. slooffiae (CONT); one dose of K. slooffiae 7 days before weaning (day 14; PRE); one dose of K. slooffiae at weaning (day 21; POST); or one dose of K. slooffiae 7 days before weaning and one dose at weaning (PREPOST). The bacteriome and mycobiome were analyzed from fecal samples collected from all piglets at day 14, day 21, and day 49, and from organ samples along the gastrointestinal (GI) tract at day 21 and day 49. Blood samples were taken at day 14 and day 49 for cytokine analysis, and fecal samples were assayed for antimicrobial resistance. While some regional shifts were seen in response to K. slooffiae administration in the mycobiome of the GI tract, no remarkable changes in weight gain or health of the animals were observed, and changes were more likely due to sow and the environment. Ultimately, the combined microbiome changed most considerably following the transition from suckling to nursery diets. This work describes the mycobiome along the piglet GI tract through the weaning transition for the first time. Based on these findings, K. slooffiae administered at this concentration may not be an effective tool to hasten colonization of K. slooffiae in the piglet GI tract around the weaning transition nor support piglet growth, microbial gut health, or immunity. However, diet and environment greatly influence microbial community development.
Collapse
|
3
|
Dornbach CW, Hales KE, Gubbels ER, Wells JE, Hoffman AA, Hanratty AN, Line DJ, Smock TM, Manahan JL, McDaniel ZS, Kohl KB, Burdick Sanchez NC, Carroll JA, Rusche WC, Smith ZK, Broadway PR. Longitudinal Assessment of Prevalence and Incidence of Salmonella and Escherichia coli O157 Resistance to Antimicrobials in Feedlot Cattle Sourced and Finished in Two Different Regions of the United States. Foodborne Pathog Dis 2023; 20:334-342. [PMID: 37405734 DOI: 10.1089/fpd.2023.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
The objective was to investigate the influence of cattle origin and region of finishing on the prevalence of Salmonella, Escherichia coli O157:H7, and select antimicrobial resistance in E. coli populations. Yearling heifers (n = 190) were utilized in a 2 × 2 factorial arrangement. After determining fecal Salmonella prevalence, heifers were sorted into one of four treatments: heifers originating from South Dakota (SD) and finished in SD (SD-SD); heifers originating from SD and finished in Texas (SD-TX); heifers originating from TX and finished in SD (TX-SD); and heifers originating from TX and finished in TX (TX-TX). Fecal, pen, and water scum line samples were collected longitudinally throughout the study; hide swab and subiliac lymph node (SLN) samples were collected at study end. A treatment × time interaction was observed (p ≤ 0.01) for fecal Salmonella prevalence, with prevalence being greatest for TX-TX and TX-SD heifers before transport. From day (d) 14 through study end, prevalence was greatest for TX-TX and SD-TX heifers compared with SD-SD and TX-SD heifers. Salmonella prevalence on hides were greater (p ≤ 0.01) for heifers finished in TX compared with SD. Salmonella prevalence in SLN tended (p = 0.06) to be greater in TX-TX and SD-TX heifers compared with TX-SD and SD-SD. Fecal E. coli O157:H7 prevalence had a treatment × time interaction (p = 0.04), with SD-TX prevalence being greater than TX-SD on d 56 and SD-SD and TX-TX being intermediate. A treatment × time interaction was observed for fecal trimethoprim-sulfamethoxazole-resistant and cefotaxime-resistant E. coli O157:H7 prevalence (p ≤ 0.01). Overall, these data suggest that the region of finishing influences pathogenic bacterial shedding patterns, with the initial 14 d after feedlot arrival being critical for pathogen carriage.
Collapse
|
4
|
Long NS, Hales KE, Berry ED, Legako JF, Woerner DR, Broadway PR, Carroll JA, Burdick Sanchez NC, Fernando SC, Wells JE. Antibimicrobial Susceptibility of Trimethoprim-Sulfamethoxazole and 3rd-Generation Cephalosporin-Resistant Escherichia coli Isolates Enumerated Longitudinally from Feedlot Arrival to Harvest in High-Risk Beef Cattle Administered Common Metaphylactic Antimicrobials. Foodborne Pathog Dis 2023; 20:252-260. [PMID: 37384919 DOI: 10.1089/fpd.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Multidrug resistant (MDR) Escherichia coli threaten the preservation of antimicrobials to treat infections in humans and livestock. Thus, it is important to understand where antimicrobial-resistant E. coli persist and factors that contribute to its their development. Crossbred cattle (n = 249; body weight = 244 kg ±25 kg standard deviation) were blocked by arrival date and assigned metaphylactic antimicrobial treatments of sterile saline control, tulathromycin (TUL), ceftiofur, or florfenicol at random. Trimethoprim-sulfamethoxazole (COTR) and third-generation cephalosporin (CTXR)-resistant E. coli were isolated from fecal samples on days 0, 28, 56, 112, 182, and study END (day 252 for block 1 and day 242 for block 2). Then, susceptibility testing was conducted on all confirmed isolates. MDR was detected in both COTR and CTXR E. coli isolates. In COTR isolates, the number of antimicrobials each isolate was resistant to and the minimum inhibitory concentration (MIC) for amoxicillin-clavulanic acid, ceftriaxone, and gentamicin was greatest on day 28 compared with all other days (p ≤ 0.04). Similarly, chloramphenicol MIC was greater on day 28 than on day 0 (p < 0.01). Overall, sulfisoxazole MIC was less for TUL than all other treatments (p ≤ 0.02), and trimethoprim-sulfamethoxazole MIC was greater for TUL than all other treatments (p ≤ 0.03). Finally, there was no effect of treatment, day, or treatment × day for tetracycline or meropenem MIC (p ≥ 0.07). In CTXR isolates, there was an effect of day for all antimicrobials tested except ampicillin and meropenem (p ≤ 0.06). In conclusion, administering a metaphylactic antimicrobial at feedlot arrival did influence the susceptibility of COTR and CTXR E. coli. However, MDR E. coli are widely distributed, and the MIC for most antimicrobials was not different from the initial value upon completion of the feeding period.
Collapse
|
5
|
Coppin CM, Smock TM, Helmuth CL, Manahan JL, Long NS, Hoffman AA, Carroll JA, Broadway PR, Burdick Sanchez NC, Wells JE, Fernando SC, Hales KE. The effects of administering different metaphylactic antimicrobials on growth performance and health outcomes of high-risk, newly received feedlot steers. Transl Anim Sci 2022; 6:txac140. [PMID: 36415567 PMCID: PMC9673257 DOI: 10.1093/tas/txac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/13/2022] [Indexed: 12/26/2024] Open
Abstract
Bovine respiratory disease (BRD) is the primary animal health concern facing feedlot producers. Many antimicrobial mitigation strategies are available, but few studies have compared feedlot performance during both the receiving and finishing periods following application of different antimicrobials used as metaphylaxis at arrival. The objective of this study was to compare antimicrobial metaphylaxis methods on clinical health and growth performance across both the receiving and finishing periods. A total of 238 multiple-sourced steers in two source blocks were used in a generalized complete block design. The four treatments included: 1) a negative control, 5 mL of sterile saline injected subcutaneously (CON); 2) subcutaneous administration of florfenicol at 40 mg/kg of BW (NUF); 3) subcutaneous administration of ceftiofur in the posterior aspect of the ear at 6.6 mg/kg of BW (EXC); and 4) subcutaneous administration of tulathromycin at 2.5 mg/kg of BW (DRA). The morbidity rate for the first treatment of BRD was decreased for the DRA and EXC treatments compared to CON and NUF (P < 0.01). Additionally, average daily gain (ADG), dry matter intake (DMI), and gain-to-feed (G:F) were greater (P ≤ 0.02) in the DRA treatment during the receiving period compared to all other treatments. The ADG was also greater (P < 0.05) for EXC than the CON treatment throughout the finishing period. Nonetheless, other growth performance variables did not differ among metaphylactic treatments during the finishing period (P ≥ 0.14). Likewise, no differences in carcass characteristics or liver abscess score were observed (P ≥ 0.18). All complete blood count (CBC) variables were affected by day (P ≤ 0.01) except mean corpuscular hemoglobin concentration (P = 0.29). Treatment × time interactions were observed for platelet count, white blood cell (WBC) count, monocyte count and percentage, and lymphocyte percentage (P ≤ 0.03). However, there were no observed hematological variables that differed among treatment (P ≥ 0.10). The results indicate that some commercially available antimicrobials labeled for metaphylactic use are more efficacious than others in decreasing morbidity rate.
Collapse
|
6
|
Long NS, Wells JE, Berry ED, Legako JF, Woerner DR, Loneragan GH, Broadway PR, Carroll JA, Sanchez NCB, Fernando SC, Bacon CM, Helmuth CL, Smock TM, Manahan JL, Hoffman AA, Hales KE. Metaphylactic antimicrobial effects on occurrences of antimicrobial resistance in Salmonella enterica, Escherichia coli and Enterococcus spp. measured longitudinally from feedlot arrival to harvest in high-risk beef cattle. J Appl Microbiol 2022; 133:1940-1955. [PMID: 35766106 PMCID: PMC9546201 DOI: 10.1111/jam.15691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS Our objective was to determine how injectable antimicrobials affected populations of Salmonella enterica, Escherichia coli and Enterococcus spp. in feedlot cattle. METHODS AND RESULTS Two arrival date blocks of high-risk crossbred beef cattle (n = 249; mean BW = 244 kg) were randomly assigned one of four antimicrobial treatments administered on day 0: sterile saline control (CON), tulathromycin (TUL), ceftiofur (CEF) or florfenicol (FLR). Faecal samples were collected on days 0, 28, 56, 112, 182 and study end (day 252 for block 1 and day 242 for block 2). Hide swabs and subiliac lymph nodes were collected the day before and the day of harvest. Samples were cultured for antimicrobial-resistant Salmonella, Escherichia coli and Enterococcus spp. The effect of treatment varied by day across all targeted bacterial populations (p ≤ 0.01) except total E. coli. Total E. coli counts were greatest on days 112, 182 and study end (p ≤ 0.01). Tulathromycin resulted in greater counts and prevalence of Salmonella from faeces than CON at study end (p ≤ 0.01). Tulathromycin and CEF yielded greater Salmonella hide prevalence and greater counts of 128ERYR E. coli at study end than CON (p ≤ 0.01). No faecal Salmonella resistant to tetracyclines or third-generation cephalosporins were detected. Ceftiofur was associated with greater counts of 8ERYR Enterococcus spp. at study end (p ≤ 0.03). By the day before harvest, antimicrobial use did not increase prevalence or counts for all other bacterial populations compared with CON (p ≥ 0.13). CONCLUSIONS Antimicrobial resistance (AMR) in feedlot cattle is not caused solely by using a metaphylactic antimicrobial on arrival, but more likely a multitude of environmental and management factors.
Collapse
|
7
|
Rubeck LM, Wells JE, Hanford KJ, Durso LM, Schacht WH, Berry ED. Management-intensive grazing impacts on total Escherichia coli, E. coli O157:H7, and antibiotic resistance genes in a riparian stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152611. [PMID: 34995584 DOI: 10.1016/j.scitotenv.2021.152611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The impacts of management-intensive grazing (MIG) of cattle on concentrations of total Escherichia coli, total suspended solids (TSS), and nitrate-nitrite nitrogen (NO3 + NO2-N), and occurrence of E. coli O157:H7 and selected antibiotic resistance genes (ARGs) in stream water and/or sediments were evaluated. Cattle were grazed for two-week periods in May in each of three years. Overall, grazing increased total E. coli in downstream water by 0.89 log10 MPN/100 mL (p < 0.0001), and downstream total E. coli concentrations were higher than upstream over all sampling intervals. Downstream TSS levels also increased (p ≤ 0.0294) during grazing. In contrast, there was a main effect of treatment for downstream NO3 + NO2-N to be lower than upstream (3.59 versus 3.70 mg/L; p = 0.0323). Overwintering mallard ducks increased total E. coli and TSS concentrations in January and February (p < 0.05). For precipitation events during the 24 h before sampling, each increase of 1.00 cm of rainfall increased total E. coli by 0.49 log10 MPN/100 mL (p = 0.0005). In contrast, there was no association of previous 24 h precipitation volume on TSS (p = 0.1540), and there was a negative linear effect on NO3 + NO2-N (p = 0.0002). E. coli O157:H7 prevalence was low, but the pathogen was detected downstream up to 2½ months after grazing. Examination of ARGs sul1, ermB, blactx-m-32, and intI1 identified the need for additional research to understand the impact of grazing on the ecology of these resistance determinants in pasture-based cattle production. While E. coli remained higher in downstream water compared to upstream, MIG may reduce the magnitude of the downstream E. coli concentrations. Likewise, the MIG strategy may prevent large increases in TSS and NO3 + NO2-N concentrations during heavy rain events. Results indicate that MIG can limit the negative effects of cattle grazing on stream water quality.
Collapse
|
8
|
See AE, Tom WA, Hales KE, Wells JE, Fernando SC. PSVII-13 Amplicon-Based Sequencing of Antimicrobial Resistance Gene Variants in Beef Cattle. J Anim Sci 2022. [DOI: 10.1093/jas/skac064.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
While antimicrobial therapies have conferred immense benefits in both animal and human health, agricultural use of antibiotics has largely contributed to antimicrobial resistance, affecting both agricultural and nonagricultural use. It is estimated that approximately 40% of all antibiotics produced are used in livestock as feed additives. Current explorations of Antimicrobial Resistance (AMR) genes and their abundance have utilized real-time or conventional PCR-based analyses of AMR genes. However, such approaches fail to identify variants within AMR genes and whether certain variants are transmitted faster or are fixed in a given environment. As such, to identify AMR gene diversity within most abundant AMR genes, we have developed and utilized an amplicon-based sequencing strategy to evaluate AMR genes and their hosts. Such AMR gene variants can be correlated with 16S rDNA-based community profiling to understand what bacterial species may be associated with different AMR gene variants, as well as to identify functional variants of the AMR genes that show resistance. This sequence-based AMR gene analysis approach provides information into the diversity and ecology of AMR genes.
Collapse
|
9
|
Weinroth MD, Clawson ML, Arthur TM, Wells JE, Brichta-Harhay DM, Strachan N, Bono JL. Rates of evolutionary change of resident Escherichia coli O157:H7 differ within the same ecological niche. BMC Genomics 2022; 23:275. [PMID: 35392797 PMCID: PMC8991562 DOI: 10.1186/s12864-022-08497-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a pathogen known to reside in cattle feedlots. This retrospective study examined 181 STEC O157:H7 strains collected over 23 years from a closed-system feedlot. All strains were subjected to short-read sequencing, with a subset of 36 also subjected to long-read sequencing. Results Over 96% of the strains fell into four phylogenetically distinct clades. Clade membership was associated with multiple factors including stx composition and the alleles of a well-characterized polymorphism (tir 255 T > A). Small plasmids (2.7 to 40 kb) were found to be primarily clade specific. Within each clade, chromosomal rearrangements were observed along with a core phageome and clade specific phages. Across both core and mobile elements of the genome, multiple SNP alleles were in complete linkage disequilibrium across all strains within specific clades. Clade evolutionary rates varied between 0.9 and 2.8 SNP/genome/year with two tir A allele clades having the lowest evolutionary rates. Investigation into possible causes of the differing rates was not conclusive but revealed a synonymous based mutation in the DNA polymerase III of the fastest evolving clade. Phylogenetic trees generated through our bioinformatic pipeline versus the NCBI’s pathogen detection project were similar, with the two tir A allele clades matching individual NCBI SNP clusters, and the two tir T allele clades assigned to multiple closely-related SNP clusters. Conclusions In one ecological niche, a diverse STEC O157:H7 population exhibited different rates of evolution that associated with SNP alleles in linkage disequilibrium in the core genome and mobile elements, including tir 255 T > A. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08497-6.
Collapse
|
10
|
Rempel LA, Keel BN, Oliver WT, Wells JE, Lents CA, Nonneman DJ, Rohrer GA. Dam parity structure and body condition during lactation influence piglet growth and gilt sexual maturation through pre-finishing. J Anim Sci 2022; 100:6562283. [PMID: 35363309 PMCID: PMC9030212 DOI: 10.1093/jas/skac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 12/31/2022] Open
Abstract
Energy demands during lactation greatly influence sow body condition and piglet performance. We hypothesized that primiparous sows or sows with reduced body condition would produce piglets with reduced growth and delayed sexual maturation. Eight weekly farrowing seasons were used to evaluate sow body condition (post-farrowing, PF and weaning, WN) and piglet growth from 157 dams. Body condition was measured at PF and WN using sow calipers (last rib and hip) and 10th rib ultrasound. Sows were categorized as thin, moderate, or fat by caliper (PF or WN). Individual pig weights were recorded on approximately 1, 10, WN, 45, 100, and 145 d of age. At 100 and 145 d of age, 10th-rib backfat and loin eye area were measured on 567 pigs and first estrus was monitored in 176 gilts reserved for breeding selection beginning at approximately 170 d of age. Sows had similar (P > 0.10) PF last rib caliper measurements but at WN, first parity sows had the smallest caliper measurements compared to other parities (P < 0.05). Parities 1, 2, and 3 sows had similar (P > 0.10) loin eye area at PF; however, at WN first parity sows had the smallest loin eye area (P < 0.05; 38.2 ± 0.63 cm2). Parity 1 sows had the greatest (P < 0.05) reduction of backfat and loin eye area over the lactation period (-2.9 ± 0.31 mm and -2.6 ± 0.49 cm2, respectively). At 1 d of age and WN, piglets from first parity sows weighed the least (P < 0.05) but were the heaviest (P < 0.05) at 100 and 145 d of age. Pigs from first parity litters had larger (P < 0.05) loin eye area at 100 and 145 d of age and greater backfat (P < 0.05) at 145 d of age. Fat sows at WN (last rib or hip) had the lightest (P < 0.05) piglets at 10 d of age and WN. However, at 45 d of age, piglets from fat sows (last rib or hip) were heavier (P < 0.05) than piglets from moderate and thin sows. Tenth rib backfat at 100 and 145 d of age tended (P < 0.10) to be less in pigs reared by thin sows (PF and WN hip). Tenth rib loin eye area was similar among pigs reared by fat, moderate, or thin sows. Gilts developed in litters from fourth parity sows had (P < 0.05) delayed age at puberty in contrast to gilts from first or third parity sows (200.9 ± 4.96 d vs. 189.0 ± 2.29 d and 187.5 ± 2.84 d, respectively). Although progeny body weights were typically less from first parity dams through 45 d of age, these progeny were similar or heavier at 100 and 145 d of age in contrast to progeny from other parities. Furthermore, gilt progeny from first parity dams did not have delayed pubertal attainment.
Collapse
|
11
|
Weinroth MD, Belk AD, Dean C, Noyes N, Dittoe DK, Rothrock MJ, Ricke SC, Myer PR, Henniger MT, Ramírez GA, Oakley BB, Summers KL, Miles AM, Ault-Seay TB, Yu Z, Metcalf JL, Wells JE. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies. J Anim Sci 2022; 100:skab346. [PMID: 35106579 PMCID: PMC8807179 DOI: 10.1093/jas/skab346] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiome studies in animal science using 16S rRNA gene sequencing have become increasingly common in recent years as sequencing costs continue to fall and bioinformatic tools become more powerful and user-friendly. The combination of molecular biology, microbiology, microbial ecology, computer science, and bioinformatics-in addition to the traditional considerations when conducting an animal science study-makes microbiome studies sometimes intimidating due to the intersection of different fields. The objective of this review is to serve as a jumping-off point for those animal scientists less familiar with 16S rRNA gene sequencing and analyses and to bring up common issues and concerns that arise when planning an animal microbiome study from design through analysis. This review includes an overview of 16S rRNA gene sequencing, its advantages, and its limitations; experimental design considerations such as study design, sample size, sample pooling, and sample locations; wet lab considerations such as field handing, microbial cell lysis, low biomass samples, library preparation, and sequencing controls; and computational considerations such as identification of contamination, accounting for uneven sequencing depth, constructing diversity metrics, assigning taxonomy, differential abundance testing, and, finally, data availability. In addition to general considerations, we highlight some special considerations by species and sample type.
Collapse
|
12
|
Lindholm-Perry AK, Kuehn LA, Wells JE, Rempel LA, Chitko-McKown CG, Keel BN, Oliver WT. Hematology parameters as potential indicators of feed efficiency in pigs. Transl Anim Sci 2021; 5:txab219. [PMID: 34909604 DOI: 10.1093/tas/txab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
The identification of an inexpensive, indirect measure of feed efficiency in swine could be a useful tool to help identify animals with improved phenotypes to supplement expensive phenotypes including individual feed intakes. The purpose of this study was to determine whether hematology parameters in pigs at the beginning and end of a feed efficiency study, or changes in those values over the study, were associated with average daily gain (ADG), average daily feed intake (ADFI), or gain-to-feed (G:F). Whole blood samples were taken at days 0 and 42 from pigs (n = 178) that were monitored for individual feed intakes and body weight gain during a 6-week study. Blood samples were analyzed for blood cell parameters including white blood cell (WBC), neutrophil, lymphocyte, monocyte, eosinophil and basophil counts, red blood cell (RBC) counts, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC), platelet count, and mean platelet volume (MPV). Feed efficiency parameters were predicted using an ANOVA model including fixed effects of farrowing group and pen (sex constant) and individual hematology parameters at day 0, day 42 or their change as covariates. At day 0, platelet count was positively associated with ADFI (P < 0.05) and negatively associated with G:F (P < 0.1), and lymphocyte count was positively associated with ADFI (P < 0.05). At day 42, neutrophil, RBC counts, hemoglobin and hematocrit were associated with ADFI (P < 10-3). Over the course of the study, changes in RBC measurements including RBC, hemoglobin, MCV, MCH, and MCHC (P < 10-4) which may improve oxygen carrying capacity, were associated with ADG and ADFI. The change in hematocrit over the course of the study was the only parameter that was associated with all three measures of feed efficiency (P < 0.05). Changes in RBC parameters, especially hematocrit, may be useful measurements to supplement feed efficiency phenotypes in swine.
Collapse
|
13
|
Keel BN, Lindholm-Perry AK, Oliver WT, Wells JE, Jones SA, Rempel LA. Characterization and comparative analysis of transcriptional profiles of porcine colostrum and mature milk at different parities. BMC Genom Data 2021; 22:25. [PMID: 34376140 PMCID: PMC8353812 DOI: 10.1186/s12863-021-00980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Porcine milk is a complex fluid, containing a myriad of immunological, biochemical, and cellular components, made to satisfy the nutritional requirements of the neonate. Whole milk contains many different cell types, including mammary epithelial cells, neutrophils, macrophages, and lymphocytes, as well nanoparticles, such as milk exosomes. To-date, only a limited number of livestock transcriptomic studies have reported sequencing of milk. Moreover, those studies focused only on sequencing somatic cells as a proxy for the mammary gland with the goal of investigating differences in the lactation process. Recent studies have indicated that RNA originating from multiple cell types present in milk can withstand harsh environments, such as the digestive system, and transmit regulatory molecules from maternal to neonate. Transcriptomic profiling of porcine whole milk, which is reflective of the combined cell populations, could help elucidate these mechanisms. To this end, total RNA from colostrum and mature milk samples were sequenced from 65 sows at differing parities. A stringent bioinformatic pipeline was used to identify and characterize 70,841 transcripts. RESULTS The 70,841 identified transcripts included 42,733 previously annotated transcripts and 28,108 novel transcripts. Differential gene expression analysis was conducted using a generalized linear model coupled with the Lancaster method for P-value aggregation across transcripts. In total, 1667 differentially expressed genes (DEG) were identified for the milk type main effect, and 33 DEG were identified for the milk type x parity interaction. Several gene ontology (GO) terms related to immune response were significant for the milk type main effect, supporting the well-known fact that immunoglobulins and immune cells are transferred to the neonate via colostrum. CONCLUSIONS This is the first study to perform global transcriptome analysis from whole milk samples in sows from different parities. Our results provide important information and insight into synthesis of milk proteins and innate immunity and potential targets for future improvement of swine lactation and piglet development.
Collapse
|
14
|
Abbas W, Keel BN, Kachman SD, Fernando SC, Wells JE, Hales KE, Lindholm-Perry AK. Rumen epithelial transcriptome and microbiome profiles of rumen epithelium and contents of beef cattle with and without liver abscesses. J Anim Sci 2021; 98:5973699. [PMID: 33170221 DOI: 10.1093/jas/skaa359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
Abscess is the highest cause of liver condemnation and is estimated to cost the beef industry US$64 million annually. Fusobacterium necrophorum, commonly found in the bovine rumen, is the primary bacteria associated with liver abscess in cattle. Theoretically, damage to the rumen wall allows F. necrophorum to invade the bloodstream and colonize the liver. The objective of this study was to determine the changes in gene expression in the rumen epithelium and microbial populations adherent to the rumen epithelium and in the rumen contents of beef cattle with liver abscesses compared with those with no liver abscesses. Rumen epithelial tissue and rumen content were collected from 31 steers and heifers with liver abscesses and 30 animals with no liver abscesses. Ribonucleic acid (RNA) sequencing was performed on the rumen epithelium, and a total of 221 genes were identified as differentially expressed in the animals with liver abscesses compared with animals with no abscesses, after removal of genes that were identified as a result of interaction with sex. The nuclear factor kappa-light-chain enhancer of activated B cells signaling and interferon signaling pathways were significantly enriched in the differentially expressed gene (DEG) set. The majority of the genes in these pathways were downregulated in animals with liver abscesses. In addition, RNA translation and protein processing genes were also downregulated, suggesting that protein synthesis may be compromised in animals with liver abscesses. The rumen content bacterial communities were significantly different from the rumen wall epimural bacterial communities. Permutational multivariate analysis of variance (PERMANOVA) analysis did not identify global differences in the microbiome of the rumen contents but did identify differences in the epimural bacterial communities on the rumen wall of animals without and with liver abscesses. In addition, associations between DEG and specific bacterial amplicon sequence variants of epimural bacteria were observed. The DEG and bacterial profile on the rumen papillae identified in this study may serve as a method to monitor animals with existing liver abscesses or to predict those that are more likely to develop liver abscesses.
Collapse
|
15
|
Abbas W, Lindholm-Perry AK, Keel BN, Wells JE, Hales K, Knoell A, Paz HA, Fernando S. 224 Epimural microbiota and rumen epithelial gene expression in healthy and liver-abscessed animals. J Anim Sci 2020. [DOI: 10.1093/jas/skaa054.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Different dietary and feed additive strategies have been developed to reduce the liver abscess in feedlot cattle, but liver abscesses are still a major problem in beef production. We have limited knowledge about how rumen microbial communities interact with host epithelial gene expression in healthy and liver-abscessed animals. The objective of this study was to investigate the associations between the rumen content associated and rumen epimural microbiome and epithelial gene expression in liver-abscessed and healthy animals. To this end, we collected the ruminal contents and tissue samples from healthy (N=30; score=0, steers n=19 and heifers n=11) and liver-abscessed (N=30; score=A+, steers n=21 and heifers n=9) feedlot cattle at harvest. The bacterial community compositions in the ruminal contents and papillae were evaluated via 16S rDNA sequencing of the V4 region using the Illumina MiSeq platform. Additionally, total RNA was extracted from rumen epithelial tissues and sequenced using the Illumina NextSeq platform. The permutational analysis (PERMANOVA) on Bray Curtis distances matrices showed the microbial community in the ruminal contents was significantly different (P< 0.001) from the bacterial community observed in rumen papillae. The ruminal contents contained a higher abundance of Bacteroidetes and Proteobacteria while papillae contained higher abundance of Firmicutes. The epimural microbiota was different (P< 0.01) between healthy and liver abscessed animals while ruminal contents microbiome was not different between the two groups. The DeSeq2 algorithm identified differentially expressed genes (221) related to MAPK, NF-kappa B signaling pathway, immune and inflammatory response in liver-abscessed animals. Additionally, a wide range of epimural bacterial taxa were correlated (-0.52 to 0.67) with differentially expressed genes. These data demonstrate the interaction between epimural microbiota and the host and its effect on liver abscesses, and indicate the need to study the epimural microbiome for its impact on liver abscesses in feedlot cattle. USDA is an equal opportunity provider and employer.
Collapse
|
16
|
Clemmons BA, Schneider LG, Melchior EA, Lindholm-Perry AK, Hales KE, Wells JE, Freetly HC, Hansen SL, Drewnoski ME, Hartman SJ, Myer PR. The effects of feeding ferric citrate on ruminal bacteria, methanogenic archaea and methane production in growing beef steers. Access Microbiol 2020; 3:acmi000180. [PMID: 33997611 PMCID: PMC8115977 DOI: 10.1099/acmi.0.000180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
Methane produced by cattle is one of the contributors of anthropogenic greenhouse gas. Methods to lessen methane emissions from cattle have been met with varying success; thus establishing consistent methods for decreasing methane production are imperative. Ferric iron may possibly act to decrease methane by acting as an alternative electron acceptor. The objective of this study was to assess the effect of ferric citrate on the rumen bacterial and archaeal communities and its impact on methane production. In this study, eight steers were used in a repeated Latin square design with 0, 250, 500 or 750 mg Fe/kg DM of ferric iron (as ferric citrate) in four different periods. Each period consisted of a 16 day adaptation period and 5 day sampling period. During each sampling period, methane production was measured, and rumen content was collected for bacterial and archaeal community analyses. Normally distributed data were analysed using a mixed model ANOVA using the GLIMMIX procedure of SAS, and non-normally distributed data were analysed in the same manner following ranking. Ferric citrate did not have any effect on bacterial community composition, methanogenic archaea nor methane production (P>0.05). Ferric citrate may not be a viable option to observe a ruminal response for decreases in enteric methane production.
Collapse
|
17
|
Freetly HC, Dickey A, Lindholm-Perry AK, Thallman RM, Keele JW, Foote AP, Wells JE. Digestive tract microbiota of beef cattle that differed in feed efficiency. J Anim Sci 2020; 98:5701150. [PMID: 31930312 DOI: 10.1093/jas/skaa008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
We hypothesized cattle that differed in BW gain had different digestive tract microbiota. Two experiments were conducted. In both experiments, steers received a diet that consisted of 8.0% chopped alfalfa hay, 20% wet distillers grain with solubles, 67.75% dry-rolled corn, and 4.25% vitamin/mineral mix (including monensin) on a dry matter basis. Steers had ad libitum access to feed and water. In experiment 1, 144 steers (age = 310 ± 1.5 d; BW = 503 ± 37.2 kg) were individually fed for 105 d. Ruminal digesta samples were collected from eight steers with the greatest (1.96 ± 0.02 kg/d) and eight steers with the least ADG (1.57 ± 0.02 kg/d) that were within ±0.32 SD of the mean (10.1 ± 0.05 kg/d) dry matter. In experiment 2, 66 steers (age = 396 ± 1 d; BW = 456 ± 5 kg) were individually fed for 84 d. Rumen, duodenum, jejunum, ileum, cecum, and colon digesta samples were collected from eight steers with the greatest (2.39 ± 0.06 kg/d) and eight steers with the least ADG (1.85 ± 0.06 kg/d) that were within ±0.55 SD of the mean dry matter intake (11.9 ± 0.1 kg/d). In both studies, DNA was isolated and the V1 to V3 regions of the 16S rRNA gene were sequenced. Operational taxonomic units were classified using 0.03 dissimilarity and identified using the Greengenes 16S rRNA gene database. In experiment 1, there were no differences in the Chao1, Shannon, Simpson, and InvSimpson diversity indexes or the permutation multivariate analysis of variance (PERMANOVA; P = 0.57). The hierarchical test returned six clades as being differentially abundant between steer classifications (P < 0.05). In experiment 2, Chao1, Shannon, Simpson, and InvSimpson diversity indexes and PERMANOVA between steer classified as less or greater ADG did not differ (P > 0.05) for the rumen, duodenum, ileum, cecum, and colon. In the jejunum, there tended to be a difference in the Chao1 (P = 0.09) and Simpson diversity (P = 0.09) indexes between steer classifications, but there was no difference in the Shannon (P = 0.14) and InvSimpson (P = 0.14) diversity indexes. Classification groups for the jejunum differed (P = 0.006) in the PERMANOVA. The hierarchical dependence false discovery rate procedure returned 11 clades as being differentially abundant between steer classifications in the jejunum (P < 0.05). The majority of the OTU were in the Families Corynebacteriaceae and Coriobacteriaceae. This study suggests that intestinal differences in the microbiota of ruminants may be associated with animal performance.
Collapse
|
18
|
Wells JE, Berry ED, Kim M, Bono JL, Oliver WT, Kalchayanand N, Wang R, Freetly HC, Means WJ. Determination of gastrointestinal tract colonization sites from feedlot cattle transiently shedding or super-shedding Escherichia coli O157:H7 at harvest. J Appl Microbiol 2020; 129:1419-1426. [PMID: 32350973 DOI: 10.1111/jam.14684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/24/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
AIMS The objective of the study was to determine levels of Escherichia coli O157:H7 colonization in the gastrointestinal tract (GIT) of naturally shedding cattle shedding the pathogen at low- or super-shedder levels. METHODS AND RESULTS Over 2 years, feedlot cattle were sampled multiple times for faecal shedding of E. coli O157:H7. Just prior to harvest (1-2 days), animals that were super-shedders (≥104 CFU per gram of faeces) were specifically identified, and based on the longer term screening data, pen cohorts that were low-shedders (years 1 and 2) or chronic-shedders (year 1) were also identified. At harvest, samples were collected from throughout the GIT, including the rectoanal junction (RAJ) for enumeration and enrichment of E. coli O157:H7. The mouth samples exhibited the greatest prevalence for the pathogen, and the abomasum and rumen exhibited the lowest prevalence (P < 0·05). Super-shedders had significantly greater prevalence for all GIT locations except the mouth and abomasum compared to low-shedders, but the super-shedders were the only animals with positive abomasum samples. Samples from the super-shedders were enumerable for most GIT locations, and the rectum and RAJ locations were the only locations that were significantly greater than other locations (P < 0·05). CONCLUSIONS Across all animals naturally exposed to E. coli O157:H7, the risk of ingestion is high, but rumen and abomasum are potential barriers to passage. In super-shedders, the passage through the GIT was greater, allowing colonization in the rectum and at the RAJ. SIGNIFICANCE AND IMPACT OF THE STUDY Escherichia coli O157:H7 low-shedding cattle had lower pathogen levels throughout the GIT, indicating intrinsic GIT factors to these cattle may reduce pathogen passage through the GIT, including the abomasum, and minimize risk of RAJ colonization.
Collapse
|
19
|
Berry ED, Wells JE, Durso LM, Friesen KM, Bono JL, Suslow TV. Occurrence of Escherichia coli O157:H7 in Pest Flies Captured in Leafy Greens Plots Grown Near a Beef Cattle Feedlot. J Food Prot 2019; 82:1300-1307. [PMID: 31310171 DOI: 10.4315/0362-028x.jfp-18-601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Leafy greens are leading vehicles for Escherichia coli O157:H7 foodborne illness. Pest flies can harbor this pathogen and may disseminate it to produce. We determined the occurrence of E. coli O157:H7-positive flies in leafy greens planted up to 180 m from a cattle feedlot and assessed their relative risk to transmit this pathogen to leafy greens. The primary fly groups captured on sticky traps at the feedlot and leafy greens plots included house flies (Musca domestica L.), face flies (Musca autumnalis L.), stable flies (Stomoxys calcitrans L.), flesh flies (family Sarcophagidae), and blow flies (family Calliphoridae). E. coli O157:H7 carriage rates of house, face, flesh, and blow flies were similar (P > 0.05), ranging from 22.3 to 29.0 flies per 1,000 flies. In contrast, the carriage rate of stable flies was lower at 1.1 flies per 1,000 flies (P < 0.05). Differences in carriage rates are likely due to the uses of fresh bovine feces and manure by these different pest fly groups. E. coli O157:H7 carriage rates of total flies did not differ (P > 0.05) by distance (ranging from 0 to 180 m) from the feedlot. Most fly isolates were the same predominant pulsed-field gel electrophoresis types found in feedlot surface manure and leafy greens, suggesting a possible role for flies in transmitting E. coli O157:H7 to the leafy greens. However, further research is needed to clarify this role and to determine set-back distances between cattle production facilities and produce crops that will reduce the risk for pathogen contamination by challenging mechanisms like flies.
Collapse
|
20
|
Wells JE, Berry E, Oliver WT. 113 Pathogen shedding in feces of nursery swine. J Anim Sci 2019. [DOI: 10.1093/jas/skz122.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Foodborne pathogens are a significant cause of disease in humans, and meat-producing animals are reservoirs for a variety of these pathogens. Consumption of contaminated meat or meat products is a major route for human infection, but indirect infection can arise from water and other foods contaminated with animal waste. Hence, reducing colonization and fecal shedding is important for sustaining a safe food chain and environment. Swine are potential reservoirs for several of the foodborne and related pathogens. Piglets can be colonized soon after birth, and the transition to the nursery is a stressful period. At farrowing, Campylobacter is a major pathogenic bacterium observed in feces of piglets, and infection can increase significantly during the nursery phase of production. Moreover, pathogen shedding has been associated with reduced performance. Dietary supplementation of carbodox with copper sulfate or lysozyme from egg whites has been shown to reduce Campylobacter shedding in piglets after weaning, but neither treatment significantly affected potentially pathogenic E. coli shedding. Supplementation with a commercial Lactobacillus acidophilus fermentation product had limited effect on pathogen shedding, whereas tiamulin had no significant effect. Nursery swine are prone to pathogen colonization, and there are dietary supplements shown to be effective for reducing shedding during this important phase of swine production.
Collapse
|
21
|
Cervantes MA, Garcia MR, Keel BN, Oliver WT, Wells JE, Rempel LA. PSI-16 Sow parity structure and body condition measurements throughout lactation and relationship to piglet growth. J Anim Sci 2019. [DOI: 10.1093/jas/skz122.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Energy demands during lactation can greatly influence sow body condition and piglet performance. Therfore, it was hypothesized that primiparous sows would have reduced sow body condition measurements and piglet growth. Eight weekly farrowing seasons (N=157 dams) were used to evaluate sow body condition (Post Farrowing; PF to Weaning; WN) and piglet growth. Final number of white composite sows within parity were as follows: Parity 1(P1), 62; P2, 50; P3, 30; and P4, 15. Body condition was measured at PF and WN using sow calipers (last rib and hip) and 10th rib ultrasound. Sows were categorized as thin, moderate, or fat by caliper. Piglets were weighed at Day 0 PF (D0), D10, WN, and D45. All data were analyzed using mixed models and reported as LSM ± SE. Fat sows at WN (last rib or hip) had the lightest (P < 0.05; Table 1) piglets at D10 and WN. However at D45, piglets from fat sows were heavier than piglets from moderate and thin sows(P < 0.05; Table 1). At WN, piglets from P1 sows weighed the least (P < 0.05; Table 1). Parity 4 sows had greater hip caliper measurement compared to P1 sows(P < 0.05; 15.5 ± 0.389 vs 13.92 ± 0.215). Sows had similiar (P > 0.10) PF last rib caliper measurements but at WN, P1 sows had the smallest caliper measurements compared to other parities (P < 0.05). Paraties 1, 2, and 3 sows had similiar (P > 0.10) loin eye area at PF; however, at WN P1 sows had the smallest loin eye area (P < 0.05; 38.2 ± 0.63 cm2). Parity 1 sows had the greatest (P < 0.05) reduction of backfat and loin eye area over the lactation period (-2.9 ± 0.31 mm and -2.6 ± 0.49 cm2, respectively). In conclusion, fat sows, had similar or smaller piglets throughout lactation, but by D45 piglet weights surpassed moderate and thin caliper groups.
Collapse
|
22
|
Abbas W, Howard JT, Paz HA, Hales KE, Wells JE, Kuehn LA, Spangler ML, Erickson GE, Fernando SC. 93 Host genetics help shape the rumen microbiome in beef cattle. J Anim Sci 2019. [DOI: 10.1093/jas/skz122.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
In this study, we investigated the degree to which host genetics shape the rumen microbiome. Complex and diverse microbial communities can alter the nutrient profile available to the animal and subsequent performance. Studies of the gut microbiome have demonstrated that host genotype influences gut microbial species composition. Therefore, microbial species composition in the rumen may be a complex trait that manifests through the convergence of host-genetics and environmental factors. To test this hypothesis, we collected rumen contents and blood samples from 586 beef cattle on different diets from two locations. The rumen samples were used to sequence the V4 region of the 16S rDNA on an Illumina MiSeq platform. Animals were genotyped with various platforms and a common set of 61,974 SNP were used to conduct a genome-wide association study (GWAS) using the microbiome (OTUs, families and phyla) as response variables. The GWAS was performed using Bayesian GBLUP fitting fixed effects of cohort (location and date), and the first 2 principle components to account for population stratification. Median posterior genomic heritability estimates were 0.110, 0.124, and 0.141 at the OTU, family and phylum taxonomic level, respectively. The top 8 1-Mb windows for OTUs, families and phyla were located on 7 different chromosomes. These regions affect the rumen microbiota in multiple ways; some (chromosome 19; position 3.0–4.0 Mb) are associated with closely related taxa (Prevotellaceae, Paraprevotellaceae, and RF16), some (chromosome 27; position 3.0–4.0 Mb) are associated with distantly related taxa (Prevotellaceae, Fibrobacteraceae, RF16, RFP12, S24-7, Lentisphaerae, and Tenericutes) and others (chromosome 23; position 0.0–1.0) controlling both related and unrelated taxa. Overall, the 8 regions identified control 11 different families and 6 different phyla. This study shows that host genetics can affect rumen bacterial community members and points towards the possibility that genomics can be used to manipulate the rumen microbiome.
Collapse
|
23
|
Abstract
AIMS Psychological factors play a critical role in patient presentation, satisfaction, and outcomes. Pain catastrophizing, anxiety, and depression are important to consider, as they are associated with poorer outcomes and are potentially modifiable. The aim of this study was to assess the level of pain catastrophizing, anxiety, and depression in patients with a range of hip pathology and to evaluate their relationship with patient-reported psychosocial and functional outcome measures. PATIENTS AND METHODS Patients presenting to a tertiary-centre specialist hip clinic were prospectively evaluated for outcomes of pain catastrophizing, anxiety, and depression. Validated assessments were undertaken such as: the Pain Catastrophizing Scale (PCS), the Hospital Anxiety Depression Scale (HADS), and the 12-Item Short-Form Health Survey (SF-12). Patient characteristics and demographics were also recorded. Multiple linear regression modelling, with adaptive least absolute shrinkage and selection operator (LASSO) variable selection, was used for analysis. RESULTS A total of 328 patients were identified for inclusion, with diagnoses of hip dysplasia (DDH; n = 50), femoroacetabular impingement (FAI; n = 55), lateral trochanteric pain syndrome (LTP; n = 23), hip osteoarthrosis (OA; n = 184), and avascular necrosis of the hip (AVN; n = 16) with a mean age of 31.0 years (14 to 65), 38.5 years (18 to 64), 63.7 years (20 to 78), 63.5 years (18 to 91), and 39.4 years (18 to 71), respectively. The percentage of patients with abnormal levels of pain catastrophizing, anxiety, or depression was: 22.0%, 16.0%, and 12.0% for DDH, respectively; 9.1%, 10.9%, and 7.3% for FAI, respectively; 13.0%, 4.3%, and 4.3% for LTP, respectively; 21.7%, 11.4%, and 14.1% for OA, respectively; and 25.0%, 43.8%, and 6.3% for AVN, respectively. HADS Anxiety (HADSA) and Hip Disability Osteoarthritis Outcome Score Activities of Daily Living subscale (HOOS ADL) predicted the PCS total (adjusted R2 = 0.4599). Age, HADS Depression (HADSD), and PCS total predicted HADSA (adjusted R2 = 0.4985). Age, HADSA, patient's percentage of perceived function, PCS total, and HOOS Quality of Life subscale (HOOS QOL) predicted HADSD (adjusted R2 = 0.5802). CONCLUSION Patients with hip pathology may exhibit significant pain catastrophizing, anxiety, and depression. Identifying these factors and understanding the impact of psychosocial function could help improve patient treatment outcomes. Perioperative multidisciplinary assessment may be a beneficial part of comprehensive orthopaedic hip care. Cite this article: Bone Joint J 2019;101-B:800-807.
Collapse
|
24
|
Paz HA, Hales KE, Wells JE, Kuehn LA, Freetly HC, Berry ED, Flythe MD, Spangler ML, Fernando SC. Rumen bacterial community structure impacts feed efficiency in beef cattle. J Anim Sci 2018; 96:1045-1058. [PMID: 29617864 PMCID: PMC6093515 DOI: 10.1093/jas/skx081] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
The importance of the rumen microbiota on nutrient cycling to the animal is well recognized; however, our understanding of the influence of the rumen microbiome composition on feed efficiency is limited. The rumen microbiomes of two large animal cohorts (125 heifers and 122 steers) were characterized to identify specific bacterial members (operational taxonomic units [OTUs]) associated with feed efficiency traits (ADFI, ADG, and G:F) in beef cattle. The heifer and steer cohorts were fed a forage-based diet and a concentrate-based diet, respectively. A rumen sample was obtained from each animal via esophageal tubing and bacterial community composition was determined through 16S rRNA gene sequencing of the V4 region. Based on a regression approach that used individual performance measures, animals were classified into divergent feed efficiency groups. Within cohort, an extreme set of 16 animals from these divergent groups was selected as a discovery population to identify differentially abundant OTUs across the rumen bacterial communities. The remaining samples from each cohort were selected to perform forward stepwise regressions using the differentially abundant OTUs as explanatory variables to distinguish predictive OTUs for the feed efficiency traits and to quantify the OTUs collective impact on feed efficiency phenotypes. OTUs belonging to the families Prevotellaceae and Victivallaceae were present across models for heifers, whereas OTUs belonging to the families Prevotellaceae and Lachnospiraceae were present across models for steers. Within the heifer cohort, models explained 19.3%, 25.3%, and 19.8% of the variation for ADFI, ADG, and G:F, respectively. Within the steer cohort, models explained 27.7%, 32.5%, and 26.9% of the variation for ADFI, ADG, and G:F, respectively. Overall, this study suggests a substantial role of the rumen microbiome on feed efficiency responses.
Collapse
|
25
|
Smith KE, Garza AL, Butterfield KM, Dickey AM, Lindholm-Perry AK, Wells JE, Freetly HC, Lodge-Ivey SL. Succession of ruminal bacterial species and fermentation characteristics in preweaned Brangus calves. Transl Anim Sci 2018; 2:S48-S52. [PMID: 32704735 PMCID: PMC7200861 DOI: 10.1093/tas/txy043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022] Open
|