1
|
Spence JR, Mayhew CN, Rankin SA, Kuhar M, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011; 470:105-9. [PMID: 21151107 PMCID: PMC3033971 DOI: 10.1038/nature09691] [Citation(s) in RCA: 1393] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 11/23/2010] [Indexed: 12/12/2022]
Abstract
Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro. For example, human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells that have therapeutic efficacy in animal models of liver disease and diabetes, respectively. However, the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development. This involved activin-induced definitive endoderm formation, FGF/Wnt-induced posterior endoderm pattering, hindgut specification and morphogenesis, and a pro-intestinal culture system to promote intestinal growth, morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal 'organoids' consisted of a polarized, columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers. The epithelium contained functional enterocytes, as well as goblet, Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development, we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3, a pro-endocrine transcription factor that is mutated in enteric anendocrinosis, is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1393 |
2
|
Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 2013; 16:255-61. [DOI: 10.1016/j.mib.2013.06.003] [Citation(s) in RCA: 633] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 12/12/2022]
|
|
12 |
633 |
3
|
Dye BR, Hill DR, Ferguson MAH, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015; 4. [PMID: 25803487 PMCID: PMC4370217 DOI: 10.7554/elife.05098] [Citation(s) in RCA: 541] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here, we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids, which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs are an excellent model to study human lung development, maturation and disease.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
541 |
4
|
Abstract
The endoderm germ layer contributes to the respiratory and gastrointestinal tracts and to all of their associated organs. Over the past decade, studies in vertebrate model organisms, including frog, fish, chick, and mouse, have greatly enhanced our understanding of the molecular basis of endoderm organ development. We review this progress with a focus on early stages of endoderm organogenesis including endoderm formation, gut tube morphogenesis and patterning, and organ specification. Lastly, we discuss how developmental mechanisms that regulate endoderm organogenesis are used to direct differentiation of embryonic stem cells into specific adult cell types, which function to alleviate disease symptoms in animal models.
Collapse
|
Review |
15 |
538 |
5
|
Watson CL, Mahe MM, Múnera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI, Vallance JE, Mayhew CN, Sun Y, Grabowski G, Finkbeiner SR, Spence JR, Shroyer NF, Wells JM, Helmrath MA. An in vivo model of human small intestine using pluripotent stem cells. Nat Med 2014; 20:1310-4. [PMID: 25326803 DOI: 10.1038/nm.3737] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
Differentiation of human pluripotent stem cells (hPSCs) into organ-specific subtypes offers an exciting avenue for the study of embryonic development and disease processes, for pharmacologic studies and as a potential resource for therapeutic transplant. To date, limited in vivo models exist for human intestine, all of which are dependent upon primary epithelial cultures or digested tissue from surgical biopsies that include mesenchymal cells transplanted on biodegradable scaffolds. Here, we generated human intestinal organoids (HIOs) produced in vitro from human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that can engraft in vivo. These HIOs form mature human intestinal epithelium with intestinal stem cells contributing to the crypt-villus architecture and a laminated human mesenchyme, both supported by mouse vasculature ingrowth. In vivo transplantation resulted in marked expansion and maturation of the epithelium and mesenchyme, as demonstrated by differentiated intestinal cell lineages (enterocytes, goblet cells, Paneth cells, tuft cells and enteroendocrine cells), presence of functional brush-border enzymes (lactase, sucrase-isomaltase and dipeptidyl peptidase 4) and visible subepithelial and smooth muscle layers when compared with HIOs in vitro. Transplanted intestinal tissues demonstrated digestive functions as shown by permeability and peptide uptake studies. Furthermore, transplanted HIO-derived tissue was responsive to systemic signals from the host mouse following ileocecal resection, suggesting a role for circulating factors in the intestinal adaptive response. This model of the human small intestine may pave the way for studies of intestinal physiology, disease and translational studies.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
418 |
6
|
Moolten FL, Wells JM. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82:297-300. [PMID: 2299679 DOI: 10.1093/jnci/82.4.297] [Citation(s) in RCA: 383] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retroviral vectors constructed to contain the herpes simplex virus thymidine kinase (HSV-TK) gene were used for transduction of this gene into murine sarcoma and lymphoma cells to yield sublines susceptible in vitro to the cytotoxicity of ganciclovir, a drug specifically activated by HSV-TK. In vivo, ganciclovir induced complete, durable regressions in most mice bearing transplanted HSV-TK-positive sarcomas; its efficacy against lymphomas was only marginal, possibly because of their greater instability of gene expression. The results imply the potential value of an anticancer strategy entailing the prophylactic use of retroviral vectors to create tissue mosaicism for drug sensitivity.
Collapse
|
|
35 |
383 |
7
|
Abstract
Endoderm, one of the three principal germ layers, contributes to all organs of the alimentary tract. For simplicity, this review divides formation of endodermal organs into four fundamental steps: (a) formation of endoderm during gastrulation, (b) morphogenesis of a gut tube from a sheet of cells, (c) budding of organ domains from the tube, and (d) differentiation of organ-specific cell types within the growing buds. We discuss possible mechanisms that regulate how undifferentiated endoderm becomes specified into a myriad of cell types that populate the respiratory and gastrointestinal tracts.
Collapse
|
Review |
26 |
365 |
8
|
Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H, Thompson W, Karns RA, Mayhew CN, McGrath PS, McCauley HA, Zhang RR, Lewis K, Hakozaki S, Ferguson A, Saiki N, Yoneyama Y, Takeuchi I, Mabuchi Y, Akazawa C, Yoshikawa HY, Wells JM, Takebe T. Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metab 2019; 30:374-384.e6. [PMID: 31155493 PMCID: PMC6687537 DOI: 10.1016/j.cmet.2019.05.007] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/20/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Human organoid systems recapitulate in vivo organ architecture yet fail to capture complex pathologies such as inflammation and fibrosis. Here, using 11 different healthy and diseased pluripotent stem cell lines, we developed a reproducible method to derive multi-cellular human liver organoids composed of hepatocyte-, stellate-, and Kupffer-like cells that exhibit transcriptomic resemblance to in vivo-derived tissues. Under free fatty acid treatment, organoids, but not reaggregated cocultured spheroids, recapitulated key features of steatohepatitis, including steatosis, inflammation, and fibrosis phenotypes in a successive manner. Interestingly, an organoid-level biophysical readout with atomic force microscopy demonstrated that organoid stiffening reflects the fibrosis severity. Furthermore, organoids from patients with genetic dysfunction of lysosomal acid lipase phenocopied severe steatohepatitis, rescued by FXR agonism-mediated reactive oxygen species suppression. The presented key methodology and preliminary results offer a new approach for studying a personalized basis for inflammation and fibrosis in humans, thus facilitating the discovery of effective treatments.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
335 |
9
|
McCracken KW, Howell JC, Wells JM, Spence JR. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 2011; 6:1920-8. [PMID: 22082986 DOI: 10.1038/nprot.2011.410] [Citation(s) in RCA: 320] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here we describe a protocol for generating 3D human intestinal tissues (called organoids) in vitro from human pluripotent stem cells (hPSCs). To generate intestinal organoids, pluripotent stem cells are first differentiated into FOXA2(+)SOX17(+) endoderm by treating the cells with activin A for 3 d. After endoderm induction, the pluripotent stem cells are patterned into CDX2(+) mid- and hindgut tissue using FGF4 and WNT3a. During this patterning step, 3D mid- or hindgut spheroids bud from the monolayer epithelium attached to the tissue culture dish. The 3D spheroids are further cultured in Matrigel along with prointestinal growth factors, and they proliferate and expand over 1-3 months to give rise to intestinal tissue, complete with intestinal mesenchyme and epithelium comprising all of the major intestinal cell types. To date, this is the only method for efficiently directing the differentiation of hPSCs into 3D human intestinal tissue in vitro.
Collapse
|
Journal Article |
14 |
320 |
10
|
Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SCJ, Jonatan D, Zorn AM, Wells JM. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 2007; 27:7802-15. [PMID: 17875931 PMCID: PMC2169141 DOI: 10.1128/mcb.02179-06] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The canonical Wnt pathway is necessary for gut epithelial cell proliferation, and aberrant activation of this pathway causes intestinal neoplasia. We report a novel mechanism by which the Sox family of transcription factors regulate the canonical Wnt signaling pathway. We found that some Sox proteins antagonize while others enhance beta-catenin/T-cell factor (TCF) activity. Sox17, which is expressed in the normal gut epithelium but exhibits reduced expression in intestinal neoplasia, is antagonistic to Wnt signaling. When overexpressed in SW480 colon carcinoma cells, Sox17 represses beta-catenin/TCF activity in a dose-dependent manner and inhibits proliferation. Sox17 and Sox4 are expressed in mutually exclusive domains in normal and neoplastic gut tissues, and gain- and loss-of-function studies demonstrate that Sox4 enhances beta-catenin/TCF activity and the proliferation of SW480 cells. In addition to binding beta-catenin, both Sox17 and Sox4 physically interact with TCF/lymphoid enhancer factor (LEF) family members via their respective high-mobility-group box domains. Results from gain- and loss-of-function experiments suggest that the interaction of Sox proteins with beta-catenin and TCF/LEF proteins regulates the stability of beta-catenin and TCF/LEF. In particular, Sox17 promotes the degradation of both beta-catenin and TCF proteins via a noncanonical, glycogen synthase kinase 3beta-independent mechanism that can be blocked by proteasome inhibitors. In contrast, Sox4 may function to stabilize beta-catenin protein. These findings indicate that Sox proteins can act as both antagonists and agonists of beta-catenin/TCF activity, and this mechanism may regulate Wnt signaling responses in many developmental and disease contexts.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
260 |
11
|
Wells JM, Melton DA. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 2000; 127:1563-72. [PMID: 10725233 DOI: 10.1242/dev.127.8.1563] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endoderm that forms the respiratory and digestive tracts is a sheet of approximately 500–1000 cells around the distal cup of an E7.5 mouse embryo. Within 2 days, endoderm folds into a primitive gut tube from which numerous organs will bud. To characterize the signals involved in the developmental specification of this early endoderm, we have employed an in vitro assay using germ layer explants and show that adjacent germ layers provide soluble, temporally specific signals that induce organ-specific gene expression in endoderm. Furthermore, we show that FGF4 expressed in primitive streak-mesoderm can induce the differentiation of endoderm in a concentration-dependent manner. We conclude that the differentiation of gastrulation-stage endoderm is directed by adjacent mesoderm and ectoderm, one of the earliest reported patterning events in formation of the vertebrate gut tube.
Collapse
|
|
25 |
257 |
12
|
Jenni L, Marti S, Schweizer J, Betschart B, Le Page RW, Wells JM, Tait A, Paindavoine P, Pays E, Steinert M. Hybrid formation between African trypanosomes during cyclical transmission. Nature 1986; 322:173-5. [PMID: 3724860 DOI: 10.1038/322173a0] [Citation(s) in RCA: 242] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trypanosomes of the species Trypanosoma brucei reproduce primarily by binary fission, but the frequency of enzyme electrophoretic variants in natural populations of T. brucei has provided indirect evidence for the existence of a sexual cycle. These studies, coupled with studies of restriction fragment length polymorphisms of genes encoding glycolytic enzymes, have also provided evidence for T. brucei being diploid. Here we report direct evidence of gene exchange between two different clones of trypanosomes after mixed infection and full cyclical development in the tsetse fly vector.
Collapse
|
|
39 |
242 |
13
|
Abstract
Organoids are multicellular structures that can be derived from adult organs or pluripotent stem cells. Early versions of organoids range from simple epithelial structures to complex, disorganized tissues with large cellular diversity. The current challenge is to engineer cellular complexity into organoids in a controlled manner that results in organized assembly and acquisition of tissue function. These efforts have relied on studies of organ assembly during embryonic development and have resulted in the development of organoids with multilayer tissue complexity and higher-order functions. We discuss how the next generation of organoids can be designed by means of an engineering-based narrative design to control patterning, assembly, morphogenesis, growth, and function.
Collapse
|
research-article |
6 |
235 |
14
|
Spence JR, Lange AW, Lin SCJ, Kaestner KH, Lowy AM, Kim I, Whitsett JA, Wells JM. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell 2009; 17:62-74. [PMID: 19619492 DOI: 10.1016/j.devcel.2009.05.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/28/2009] [Accepted: 05/04/2009] [Indexed: 11/29/2022]
Abstract
The ventral pancreas, biliary system, and liver arise from the posterior ventral foregut, but the cell-intrinsic pathway by which these organ lineages are separated is not known. Here we show that the extrahepatobiliary system shares a common origin with the ventral pancreas and not the liver, as previously thought. These pancreatobiliary progenitor cells coexpress the transcription factors PDX1 and SOX17 at E8.5 and their segregation into a PDX1+ ventral pancreas and a SOX17+ biliary primordium is Sox17-dependent. Deletion of Sox17 at E8.5 results in the loss of biliary structures and ectopic pancreatic tissue in the liver bud and common duct, while Sox17 overexpression suppresses pancreas development and promotes ectopic biliary-like tissue throughout the PDX1+ domain. Restricting SOX17+ biliary progenitor cells to the ventral region of the gut requires the notch effector Hes1. Our results highlight the role of Sox17 and Hes1 in patterning and morphogenetic segregation of ventral foregut lineages.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
221 |
15
|
McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 2017; 144:958-962. [PMID: 28292841 DOI: 10.1242/dev.140731] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro, and how organoids are now being used as a primary research tool to investigate human developmental biology.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
210 |
16
|
Robinson K, Chamberlain LM, Schofield KM, Wells JM, Le Page RW. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 1997; 15:653-7. [PMID: 9219268 DOI: 10.1038/nbt0797-653] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To determine whether a protective immune response could be elicited by oral delivery of a recombinant bacterial vaccine, tetanus toxin fragment C (TTFC) was expressed constitutively in Lactococcus lactis and administered orally to C57 BL/6 mice. The antibody titers elicited were lower than those following intranasal immunization (a route already known to result in high-level systemic anti-TTFC immune responses) but the protective efficacy was the same order of magnitude. The serum antibody isotypes elicited were predominantly IgG1 and IgG2a. TTFC-specific fecal IgA responses could be detected following oral or intranasal immunization. Chemically killed lactococci administered via the intranasal route were also able to elicit serum antibody responses of similar levels and kinetics to those induced by live bacteria.
Collapse
|
Comparative Study |
28 |
210 |
17
|
Koike H, Iwasawa K, Ouchi R, Maezawa M, Giesbrecht K, Saiki N, Ferguson A, Kimura M, Thompson WL, Wells JM, Zorn AM, Takebe T. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature 2019; 574:112-116. [PMID: 31554966 PMCID: PMC7643931 DOI: 10.1038/s41586-019-1598-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/20/2019] [Indexed: 11/29/2022]
Abstract
Organogenesis is a complex and interconnected process that is orchestrated by multiple boundary tissue interactions1-7. However, it remains unclear how individual, neighbouring components coordinate to establish an integral multi-organ structure. Here we report the continuous patterning and dynamic morphogenesis of hepatic, biliary and pancreatic structures, invaginating from a three-dimensional culture of human pluripotent stem cells. The boundary interactions between anterior and posterior gut spheroids differentiated from human pluripotent stem cells enables retinoic acid-dependent emergence of hepato-biliary-pancreatic organ domains specified at the foregut-midgut boundary organoids in the absence of extrinsic factors. Whereas transplant-derived tissues are dominated by midgut derivatives, long-term-cultured microdissected hepato-biliary-pancreatic organoids develop into segregated multi-organ anlages, which then recapitulate early morphogenetic events including the invagination and branching of three different and interconnected organ structures, reminiscent of tissues derived from mouse explanted foregut-midgut culture. Mis-segregation of multi-organ domains caused by a genetic mutation in HES1 abolishes the biliary specification potential in culture, as seen in vivo8,9. In sum, we demonstrate that the experimental multi-organ integrated model can be established by the juxtapositioning of foregut and midgut tissues, and potentially serves as a tractable, manipulatable and easily accessible model for the study of complex human endoderm organogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
203 |
18
|
Gu G, Wells JM, Dombkowski D, Preffer F, Aronow B, Melton DA. Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development 2003; 131:165-79. [PMID: 14660441 DOI: 10.1242/dev.00921] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
200 |
19
|
Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH. Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 2004; 132:35-47. [PMID: 15576401 DOI: 10.1242/dev.01570] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell fate and morphogenesis within the embryo is dependent upon secreted molecules that transduce signals between neighboring tissues. Reciprocal mesenchymal-epithelial interactions have proven essential during branching morphogenesis and cell differentiation within the lung; however, the interactions that result in lung specification from the foregut endoderm, prior to lung bud formation, are poorly understood. In this study, we investigate the tissue requirements and signals necessary for specification of a pulmonary cell fate using embryo tissue explants. We show that NKX2.1, an early transcription factor crucial for lung development, is expressed in the ventral foregut endoderm shortly after albumin and Pdx1, early markers of the liver and pancreas lineages, respectively. Similar to hepatic specification, direct contact of cardiac mesoderm with ventral endoderm is required to induce in vitro expression of NKX2.1 and downstream lung target genes including surfactant protein C and Clara cell secretory protein. In the absence of cardiac mesoderm, ventral foregut endoderm explants respond to exogenous fibroblast growth factor (FGF) 1 and FGF2 in a dose-dependent manner, with lower concentrations activating liver specific genes and higher concentrations activating lung specific genes. This signaling appears to be instructive, as the prospective dorsal midgut endoderm, which predominantly gives rise to the intestinal tract, is competent to respond to FGFs by inducing NKX2.1. Furthermore, the temporal expression and selective inhibition of FGF receptors 1 and 4 present within the endoderm implies that signaling through FGFR4 is involved in specifying lung versus liver. Together, the findings suggest that a concentration threshold of FGFs emanating from the cardiac mesoderm are involved in patterning the foregut endoderm.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
189 |
20
|
Frank AL, Taber LH, Wells CR, Wells JM, Glezen WP, Paredes A. Patterns of shedding of myxoviruses and paramyxoviruses in children. J Infect Dis 1981; 144:433-41. [PMID: 6273473 DOI: 10.1093/infdis/144.5.433] [Citation(s) in RCA: 186] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the Houston Family Study, young children were cultured for virus weekly or biweekly and during acute respiratory illnesses. The interval between the onset of illness and positive culture was examined for 179 infections during 1975-1979. In week 1 after onset, 73%, 73%, and 66% of cultures were positive for influenza A virus, respiratory syncytial virus (RSV), and parainfluenza virus type 3, respectively. Pooled data from influenza B virus infections in 1977 and 1980 showed that 73% of cultures were positive in week 1. Influenza A virus in week 2 or RSV in weeks 2 and 3 was isolated from very few children. However, 37% of cultures were positive for influenza B virus during week 2, and 17% of cultures were still positive for parainfluenza virus type 3 during week 3. Shedding of parainfluenza virus type 3 on days 29-38 was also observed. Parainfluenza virus type 3, RSV, and influenza A virus were isolated up to six days before the onset of illness.
Collapse
|
|
44 |
186 |
21
|
Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, Hudson JR, Howell JC, Chatuvedi P, Spence JR, Shannon JM, Zorn AM, Helmrath MA, Wells JM. Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell 2017; 21:51-64.e6. [PMID: 28648364 PMCID: PMC5531599 DOI: 10.1016/j.stem.2017.05.020] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
186 |
22
|
Wells JM, Wilson PW, Le Page RW. Improved cloning vectors and transformation procedure for Lactococcus lactis. THE JOURNAL OF APPLIED BACTERIOLOGY 1993; 74:629-36. [PMID: 8349525 DOI: 10.1111/j.1365-2672.1993.tb05195.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Four shuttle vectors (pMIG 1, 2, 2H and 3) have been constructed based on the broad host-range plasmid pCK1. All the pMIG vectors possess a multiple cloning site containing 12 or more unique restriction enzyme sites, and are stably maintained at either high or low copy number in Lactococcus lactis and in Escherichia coli. By cloning the E. coli pUC replicon into one of these vectors a plasmid was constructed which can replicate to high copy number in recA strains of E. coli. The broad host-range of the pCK1 replicon may enable these cloning vectors to be used in a number of Gram-positive bacteria. One of these vectors was used to optimize an electroporation procedure for transformation of a commonly used plasmid-cured strain MG1363 of L. lactis which routinely yielded 1 x 10(7) to 5 x 10(7) transformants micrograms-1 supercoiled DNA using stored, snap-frozen cells. This transformation efficiency was obtained by growing the cells in medium containing the cell wall weakening agent glycine, to an upper limit of 2.5% w/v. Although growth of L. lactis strain MG1363 was inhibited by the use of 0.5 mol l-1 sucrose as an osmotic stabilizer, the presence of sucrose in the electroporation buffer was critical for high transformation efficiency. Other variables which were tested for their effect on the efficiency of transformation were cell concentration, DNA concentration, pulse time and field strength. These results provide a model procedure which can be followed to optimize conditions for the genetic transformation of various strains of L. lactis.
Collapse
|
|
32 |
170 |
23
|
Moolten FL, Wells JM, Heyman RA, Evans RM. Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Hum Gene Ther 1990; 1:125-34. [PMID: 1964092 DOI: 10.1089/hum.1990.1.2-125] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dose limitations imposed on cancer chemotherapeutic agents by their lack of selectivity can, in theory, be circumvented by a strategy entailing the prophylactic insertion into hosts of drug-sensitivity genes that are acquired or expressed in some but not all cells. This strategy predicts that neoplasms arising from drug-sensitive cells might be safely treatable with tumor-eradicative drug doses because the presence of a modicum of drug-insensitive stem cells will protect vital tissues from lethal depopulation. To test this prediction, lymphomas were induced with Abelson leukemia virus in mice bearing a herpes simplex virus thymidine kinase (HSV-TK) transgene selectively expressed in lymphoid cells. Of 12 transgenic mice treated with the HSV-TK-specific substrate ganciclovir (GCV), 11 exhibited complete tumor regressions; 5 of these mice remained tumor-free over observation periods that exceeded 100 days. Among the lymphomas that recurred, most appeared to represent mutant subpopulations that were GCV-insensitive because they had lost HSV-TK, implying that independent insertion of multiple HSV-TK gene copies might provide a means of preventing recurrences. The results of this study demonstrate that chemosensitivity genes can enhance the efficacy of treatment in hosts who subsequently develop a neoplasm. While the use of a germ-line gene insertion model precludes direct human application, the results also imply the merits of exploring an alternative version of the strategy in which somatic insertion of chemosensitivity genes in mosaic fashion is used prophylactically to enhance the prospect that a subsequent tumor will respond to therapy.
Collapse
|
|
35 |
166 |
24
|
Wells JM, Wilson PW, Norton PM, Gasson MJ, Le Page RW. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol 1993; 8:1155-62. [PMID: 8361360 DOI: 10.1111/j.1365-2958.1993.tb01660.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To determine if the food-grade bacterium Lactococcus lactis holds promise as a vaccine antigen delivery vector we have investigated whether this bacterium can be made to produce high levels of a heterologous protein antigen. A regulated expression system has been developed which may be generally suitable for the expression of foreign antigens (and other proteins) in L. lactis. The system utilizes the fast-acting T7 RNA polymerase to transcribe target genes, and provides the first example of the successful use of this polymerase in a Gram-positive bacterium. When the performance of the expression system was characterized using tetanus toxin fragment C (TTFC) up to 22% of soluble cell protein was routinely obtained as TTFC. Mice immunized subcutaneously with L. lactis expressing TTFC were protected from lethal challenge with tetanus toxin. These results show for the first time that L. lactis is able to express substantial quantities of a heterologous protein antigen and that this organism can present this antigen to the immune system in an immunogenic form.
Collapse
|
|
32 |
160 |
25
|
McCracken KW, Zhang X, Wells JM. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature 2017; 541:182-187. [PMID: 28052057 PMCID: PMC5526592 DOI: 10.1038/nature21021] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023]
Abstract
Despite the global prevalence of gastric disease, there are few adequate models in which to study the fundus epithelium of the human stomach. We differentiated human pluripotent stem cells (hPSCs) into gastric organoids containing fundic epithelium by first identifying and then recapitulating key events in embryonic fundus development. We found that disruption of Wnt/β-catenin signalling in mouse embryos led to conversion of fundic to antral epithelium, and that β-catenin activation in hPSC-derived foregut progenitors promoted the development of human fundic-type gastric organoids (hFGOs). We then used hFGOs to identify temporally distinct roles for multiple signalling pathways in epithelial morphogenesis and differentiation of fundic cell types, including chief cells and functional parietal cells. hFGOs are a powerful model for studying the development of the human fundus and the molecular bases of human gastric physiology and pathophysiology, and also represent a new platform for drug discovery.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
157 |