1
|
Chan-Seng-Yue M, Kim JC, Wilson GW, Ng K, Figueroa EF, O'Kane GM, Connor AA, Denroche RE, Grant RC, McLeod J, Wilson JM, Jang GH, Zhang A, Dodd A, Liang SB, Borgida A, Chadwick D, Kalimuthu S, Lungu I, Bartlett JMS, Krzyzanowski PM, Sandhu V, Tiriac H, Froeling FEM, Karasinska JM, Topham JT, Renouf DJ, Schaeffer DF, Jones SJM, Marra MA, Laskin J, Chetty R, Stein LD, Zogopoulos G, Haibe-Kains B, Campbell PJ, Tuveson DA, Knox JJ, Fischer SE, Gallinger S, Notta F. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet 2020; 52:231-240. [PMID: 31932696 DOI: 10.1038/s41588-019-0566-9] [Citation(s) in RCA: 388] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic adenocarcinoma presents as a spectrum of a highly aggressive disease in patients. The basis of this disease heterogeneity has proved difficult to resolve due to poor tumor cellularity and extensive genomic instability. To address this, a dataset of whole genomes and transcriptomes was generated from purified epithelium of primary and metastatic tumors. Transcriptome analysis demonstrated that molecular subtypes are a product of a gene expression continuum driven by a mixture of intratumoral subpopulations, which was confirmed by single-cell analysis. Integrated whole-genome analysis uncovered that molecular subtypes are linked to specific copy number aberrations in genes such as mutant KRAS and GATA6. By mapping tumor genetic histories, tetraploidization emerged as a key mutational process behind these events. Taken together, these data support the premise that the constellation of genomic aberrations in the tumor gives rise to the molecular subtype, and that disease heterogeneity is due to ongoing genomic instability during progression.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
388 |
2
|
McDonald PC, Chafe SC, Brown WS, Saberi S, Swayampakula M, Venkateswaran G, Nemirovsky O, Gillespie JA, Karasinska JM, Kalloger SE, Supuran CT, Schaeffer DF, Bashashati A, Shah SP, Topham JT, Yapp DT, Li J, Renouf DJ, Stanger BZ, Dedhar S. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia. Gastroenterology 2019; 157:823-837. [PMID: 31078621 DOI: 10.1053/j.gastro.2019.05.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Most pancreatic ductal adenocarcinomas (PDACs) express an activated form of KRAS, become hypoxic and dysplastic, and are refractory to chemo and radiation therapies. To survive in the hypoxic environment, PDAC cells upregulate enzymes and transporters involved in pH regulation, including the extracellular facing carbonic anhydrase 9 (CA9). We evaluated the effect of blocking CA9, in combination with administration of gemcitabine, in mouse models of pancreatic cancer. METHODS We knocked down expression of KRAS in human (PK-8 and PK-1) PDAC cells with small hairpin RNAs. Human and mouse (KrasG12D/Pdx1-Cre/Tp53/RosaYFP) PDAC cells were incubated with inhibitors of MEK (trametinib) or extracellular signal-regulated kinase (ERK), and some cells were cultured under hypoxic conditions. We measured levels and stability of the hypoxia-inducible factor 1 subunit alpha (HIF1A), endothelial PAS domain 1 protein (EPAS1, also called HIF2A), CA9, solute carrier family 16 member 4 (SLC16A4, also called MCT4), and SLC2A1 (also called GLUT1) by immunoblot analyses. We analyzed intracellular pH (pHi) and extracellular metabolic flux. We knocked down expression of CA9 in PDAC cells, or inhibited CA9 with SLC-0111, incubated them with gemcitabine, and assessed pHi, metabolic flux, and cytotoxicity under normoxic and hypoxic conditions. Cells were also injected into either immune-compromised or immune-competent mice and growth of xenograft tumors was assessed. Tumor fragments derived from patients with PDAC were surgically ligated to the pancreas of mice and the growth of tumors was assessed. We performed tissue microarray analyses of 205 human PDAC samples to measure levels of CA9 and associated expression of genes that regulate hypoxia with outcomes of patients using the Cancer Genome Atlas database. RESULTS Under hypoxic conditions, PDAC cells had increased levels of HIF1A and HIF2A, upregulated expression of CA9, and activated glycolysis. Knockdown of KRAS in PDAC cells, or incubation with trametinib, reduced the posttranscriptional stabilization of HIF1A and HIF2A, upregulation of CA9, pHi, and glycolysis in response to hypoxia. CA9 was expressed by 66% of PDAC samples analyzed; high expression of genes associated with metabolic adaptation to hypoxia, including CA9, correlated with significantly reduced survival times of patients. Knockdown or pharmacologic inhibition of CA9 in PDAC cells significantly reduced pHi in cells under hypoxic conditions, decreased gemcitabine-induced glycolysis, and increased their sensitivity to gemcitabine. PDAC cells with knockdown of CA9 formed smaller xenograft tumors in mice, and injection of gemcitabine inhibited tumor growth and significantly increased survival times of mice. In mice with xenograft tumors grown from human PDAC cells, oral administration of SLC-0111 and injection of gemcitabine increased intratumor acidosis and increased cell death. These tumors, and tumors grown from PDAC patient-derived tumor fragments, grew more slowly than xenograft tumors in mice given control agents, resulting in longer survival times. In KrasG12D/Pdx1-Cre/Tp53/RosaYFP genetically modified mice, oral administration of SLC-0111 and injection of gemcitabine reduced numbers of B cells in tumors. CONCLUSIONS In response to hypoxia, PDAC cells that express activated KRAS increase expression of CA9, via stabilization of HIF1A and HIF2A, to regulate pH and glycolysis. Disruption of this pathway slows growth of PDAC xenograft tumors in mice and might be developed for treatment of pancreatic cancer.
Collapse
|
|
6 |
149 |
3
|
Karasinska JM, Topham JT, Kalloger SE, Jang GH, Denroche RE, Culibrk L, Williamson LM, Wong HL, Lee MKC, O'Kane GM, Moore RA, Mungall AJ, Moore MJ, Warren C, Metcalfe A, Notta F, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Renouf DJ, Schaeffer DF. Altered Gene Expression along the Glycolysis-Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer. Clin Cancer Res 2019; 26:135-146. [PMID: 31481506 DOI: 10.1158/1078-0432.ccr-19-1543] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of clinically actionable molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) is key to improving patient outcome. Intertumoral metabolic heterogeneity contributes to cancer survival and the balance between distinct metabolic pathways may influence PDAC outcome. We hypothesized that PDAC can be stratified into prognostic metabolic subgroups based on alterations in the expression of genes involved in glycolysis and cholesterol synthesis. EXPERIMENTAL DESIGN We performed bioinformatics analysis of genomic, transcriptomic, and clinical data in an integrated cohort of 325 resectable and nonresectable PDAC. The resectable datasets included retrospective The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) cohorts. The nonresectable PDAC cohort studies included prospective COMPASS, PanGen, and BC Cancer Personalized OncoGenomics program (POG). RESULTS On the basis of the median normalized expression of glycolytic and cholesterogenic genes, four subgroups were identified: quiescent, glycolytic, cholesterogenic, and mixed. Glycolytic tumors were associated with the shortest median survival in resectable (log-rank test P = 0.018) and metastatic settings (log-rank test P = 0.027). Patients with cholesterogenic tumors had the longest median survival. KRAS and MYC-amplified tumors had higher expression of glycolytic genes than tumors with normal or lost copies of the oncogenes (Wilcoxon rank sum test P = 0.015). Glycolytic tumors had the lowest expression of mitochondrial pyruvate carriers MPC1 and MPC2. Glycolytic and cholesterogenic gene expression correlated with the expression of prognostic PDAC subtype classifier genes. CONCLUSIONS Metabolic classification specific to glycolytic and cholesterogenic pathways provides novel biological insight into previously established PDAC subtypes and may help develop personalized therapies targeting unique tumor metabolic profiles.See related commentary by Mehla and Singh, p. 6.
Collapse
|
Comment |
6 |
139 |
4
|
Jones MR, Williamson LM, Topham JT, Lee MKC, Goytain A, Ho J, Denroche RE, Jang G, Pleasance E, Shen Y, Karasinska JM, McGhie JP, Gill S, Lim HJ, Moore MJ, Wong HL, Ng T, Yip S, Zhang W, Sadeghi S, Reisle C, Mungall AJ, Mungall KL, Moore RA, Ma Y, Knox JJ, Gallinger S, Laskin J, Marra MA, Schaeffer DF, Jones SJM, Renouf DJ. NRG1 Gene Fusions Are Recurrent, Clinically Actionable Gene Rearrangements in KRAS Wild-Type Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2019; 25:4674-4681. [PMID: 31068372 DOI: 10.1158/1078-0432.ccr-19-0191] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/07/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE Gene fusions involving neuregulin 1 (NRG1) have been noted in multiple cancer types and have potential therapeutic implications. Although varying results have been reported in other cancer types, the efficacy of the HER-family kinase inhibitor afatinib in the treatment of NRG1 fusion-positive pancreatic ductal adenocarcinoma is not fully understood. EXPERIMENTAL DESIGN Forty-seven patients with pancreatic ductal adenocarcinoma received comprehensive whole-genome and transcriptome sequencing and analysis. Two patients with gene fusions involving NRG1 received afatinib treatment, with response measured by pretreatment and posttreatment PET/CT imaging. RESULTS Three of 47 (6%) patients with advanced pancreatic ductal adenocarcinoma were identified as KRAS wild type by whole-genome sequencing. All KRAS wild-type tumors were positive for gene fusions involving the ERBB3 ligand NRG1. Two of 3 patients with NRG1 fusion-positive tumors were treated with afatinib and demonstrated a significant and rapid response while on therapy. CONCLUSIONS This work adds to a growing body of evidence that NRG1 gene fusions are recurrent, therapeutically actionable genomic events in pancreatic cancers. Based on the clinical outcomes described here, patients with KRAS wild-type tumors harboring NRG1 gene fusions may benefit from treatment with afatinib.See related commentary by Aguirre, p. 4589.
Collapse
|
Journal Article |
6 |
94 |
5
|
Chun HJE, Johann PD, Milne K, Zapatka M, Buellesbach A, Ishaque N, Iskar M, Erkek S, Wei L, Tessier-Cloutier B, Lever J, Titmuss E, Topham JT, Bowlby R, Chuah E, Mungall KL, Ma Y, Mungall AJ, Moore RA, Taylor MD, Gerhard DS, Jones SJM, Korshunov A, Gessler M, Kerl K, Hasselblatt M, Frühwald MC, Perlman EJ, Nelson BH, Pfister SM, Marra MA, Kool M. Identification and Analyses of Extra-Cranial and Cranial Rhabdoid Tumor Molecular Subgroups Reveal Tumors with Cytotoxic T Cell Infiltration. Cell Rep 2019; 29:2338-2354.e7. [PMID: 31708418 PMCID: PMC6905433 DOI: 10.1016/j.celrep.2019.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/20/2019] [Accepted: 10/02/2019] [Indexed: 11/23/2022] Open
Abstract
Extra-cranial malignant rhabdoid tumors (MRTs) and cranial atypical teratoid RTs (ATRTs) are heterogeneous pediatric cancers driven primarily by SMARCB1 loss. To understand the genome-wide molecular relationships between MRTs and ATRTs, we analyze multi-omics data from 140 MRTs and 161 ATRTs. We detect similarities between the MYC subgroup of ATRTs (ATRT-MYC) and extra-cranial MRTs, including global DNA hypomethylation and overexpression of HOX genes and genes involved in mesenchymal development, distinguishing them from other ATRT subgroups that express neural-like features. We identify five DNA methylation subgroups associated with anatomical sites and SMARCB1 mutation patterns. Groups 1, 3, and 4 exhibit cytotoxic T cell infiltration and expression of immune checkpoint regulators, consistent with a potential role for immunotherapy in rhabdoid tumor patients.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
71 |
6
|
Grant RC, Denroche R, Jang GH, Nowak KM, Zhang A, Borgida A, Holter S, Topham JT, Wilson J, Dodd A, Jang R, Prince R, Karasinska JM, Schaeffer DF, Wang Y, Zogopoulos G, Berry S, Simeone D, Renouf DJ, Notta F, O'Kane G, Knox J, Fischer S, Gallinger S. Clinical and genomic characterisation of mismatch repair deficient pancreatic adenocarcinoma. Gut 2021; 70:1894-1903. [PMID: 32933947 DOI: 10.1136/gutjnl-2020-320730] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To describe the clinical, pathological and genomic characteristics of pancreatic cancer with DNA mismatch repair deficiency (MMRD) and proficiency (MMRP). DESIGN We identified patients with MMRD and MMRP pancreatic cancer in a clinical cohort (N=1213, 519 with genetic testing, 53 with immunohistochemistry (IHC)) and a genomic cohort (N=288 with whole-genome sequencing (WGS)). RESULTS 12 out of 1213 (1.0%) in the clinical cohort were MMRD by IHC or WGS. Of the 14 patients with Lynch syndrome, 3 (21.4%) had an MMRP pancreatic cancer by IHC, and 4 (28.6%) were excluded because tissue was unavailable for testing. MMRD cancers had longer overall survival after surgery (weighted HR after coarsened exact matching 0.11, 95% CI 0.02 to 0.78, p=0.001). One patient with an unresectable MMRD cancer has an ongoing partial response 3 years after starting treatment with PD-L1/CTLA-4 inhibition. This tumour showed none of the classical histopathological features of MMRD. 9 out of 288 (3.1%) tumours with WGS were MMRD. Despite markedly higher tumour mutational burden and neoantigen loads, MMRD cancers were significantly less likely to have mutations in usual pancreatic cancer driver genes like KRAS and SMAD4, but more likely to have mutations in genes that drive cancers with microsatellite instability like ACV2RA and JAK1. MMRD tumours were significantly more likely to have a basal-like transcriptional programme and elevated transcriptional markers of immunogenicity. CONCLUSIONS MMRD pancreatic cancers have distinct clinical, pathological and genomic profiles. Patients with MMRD pancreatic cancer should be considered for basket trials targeting enhanced immunogenicity or the unique genomic drivers in these malignancies.
Collapse
|
|
4 |
48 |
7
|
Pender A, Titmuss E, Pleasance ED, Fan KY, Pearson H, Brown SD, Grisdale CJ, Topham JT, Shen Y, Bonakdar M, Taylor GA, Williamson LM, Mungall KL, Chuah E, Mungall AJ, Moore RA, Lavoie JM, Yip S, Lim H, Renouf DJ, Sun S, Holt RA, Jones SJM, Marra MA, Laskin J. Genome and Transcriptome Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced Solid Tumors. Clin Cancer Res 2020; 27:202-212. [PMID: 33020056 DOI: 10.1158/1078-0432.ccr-20-1163] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid tumors with dramatic and durable responses seen across multiple tumor types. However, identifying patients who will respond to these drugs remains challenging, particularly in the context of advanced and previously treated cancers. EXPERIMENTAL DESIGN We characterized fresh tumor biopsies from a heterogeneous pan-cancer cohort of 98 patients with metastatic predominantly pretreated disease through the Personalized OncoGenomics program at BC Cancer (Vancouver, Canada) using whole genome and transcriptome analysis (WGTA). Baseline characteristics and follow-up data were collected retrospectively. RESULTS We found that tumor mutation burden, independent of mismatch repair status, was the most predictive marker of time to progression (P = 0.007), but immune-related CD8+ T-cell and M1-M2 macrophage ratio scores were more predictive for overall survival (OS; P = 0.0014 and 0.0012, respectively). While CD274 [programmed death-ligand 1 (PD-L1)] gene expression is comparable with protein levels detected by IHC, we did not observe a clinical benefit for patients with this marker. We demonstrate that a combination of markers based on WGTA provides the best stratification of patients (P = 0.00071, OS), and also present a case study of possible acquired resistance to pembrolizumab in a patient with non-small cell lung cancer. CONCLUSIONS Interpreting the tumor-immune interface to predict ICI efficacy remains challenging. WGTA allows for identification of multiple biomarkers simultaneously that in combination may help to identify responders, particularly in the context of a heterogeneous population of advanced and previously treated cancers, thus precluding tumor type-specific testing.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
43 |
8
|
Topham JT, Karasinska JM, Lee MKC, Csizmok V, Williamson LM, Jang GH, Denroche RE, Tsang ES, Kalloger SE, Wong HL, O'Kane GM, Moore RA, Mungall AJ, Notta F, Loree JM, Wilson JM, Bathe O, Tang PA, Goodwin R, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Renouf DJ, Schaeffer DF. Subtype-Discordant Pancreatic Ductal Adenocarcinoma Tumors Show Intermediate Clinical and Molecular Characteristics. Clin Cancer Res 2021; 27:150-157. [PMID: 33051307 DOI: 10.1158/1078-0432.ccr-20-2831] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE RNA-sequencing-based subtyping of pancreatic ductal adenocarcinoma (PDAC) has been reported by multiple research groups, each using different methodologies and patient cohorts. "Classical" and "basal-like" PDAC subtypes are associated with survival differences, with basal-like tumors associated with worse prognosis. We amalgamated various PDAC subtyping tools to evaluate the potential of such tools to be reliable in clinical practice. EXPERIMENTAL DESIGN Sequencing data for 574 PDAC tumors was obtained from prospective trials and retrospective public databases. Six published PDAC subtyping strategies (Moffitt regression tools, clustering-based Moffitt, Collisson, Bailey, and Karasinska subtypes) were used on each sample, and results were tested for subtype call consistency and association with survival. RESULTS Basal-like and classical subtype calls were concordant in 88% of patient samples, and survival outcomes were significantly different (P < 0.05) between prognostic subtypes. Twelve percent of tumors had subtype-discordant calls across the different methods, showing intermediate survival in univariate and multivariate survival analyses. Transcriptional profiles compatible with that of a hybrid subtype signature were observed for subtype-discordant tumors, in which classical and basal-like genes were concomitantly expressed. Subtype-discordant tumors showed intermediate molecular characteristics, including subtyping gene expression (P < 0.0001) and mutant KRAS allelic imbalance (P < 0.001). CONCLUSIONS Nearly 1 in 6 patients with PDAC have tumors that fail to reliably fall into the classical or basal-like PDAC subtype categories, based on two regression tools aimed toward clinical practice. Rather, these patient tumors show intermediate prognostic and molecular traits. We propose close consideration of the non-binary nature of PDAC subtypes for future incorporation of subtyping into clinical practice.
Collapse
|
|
4 |
28 |
9
|
Topham JT, O'Callaghan CJ, Feilotter H, Kennecke HF, Lee YS, Li W, Banks KC, Quinn K, Renouf DJ, Jonker DJ, Tu D, Chen EX, Loree JM. Circulating Tumor DNA Identifies Diverse Landscape of Acquired Resistance to Anti-Epidermal Growth Factor Receptor Therapy in Metastatic Colorectal Cancer. J Clin Oncol 2023; 41:485-496. [PMID: 36007218 PMCID: PMC9870216 DOI: 10.1200/jco.22.00364] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Anti-epidermal growth factor receptor (EGFR) antibodies are effective treatments for metastatic colorectal cancer. Improved understanding of acquired resistance mechanisms may facilitate circulating tumor DNA (ctDNA) monitoring, anti-EGFR rechallenge, and combinatorial strategies to delay resistance. METHODS Patients with treatment-refractory metastatic colorectal cancer (n = 169) enrolled on the CO.26 trial had pre-anti-EGFR tissue whole-exome sequencing (WES) compared with baseline and week 8 ctDNA assessments with the GuardantOMNI assay. Acquired alterations were compared between patients with prior anti-EGFR therapy (n = 66) and those without. Anti-EGFR therapy occurred a median of 111 days before ctDNA assessment. RESULTS ctDNA identified 12 genes with increased mutation frequency after anti-EGFR therapy, including EGFR (P = .0007), KRAS (P = .0017), LRP1B (P = .0046), ZNF217 (P = .0086), MAP2K1 (P = .018), PIK3CG (P = .018), BRAF (P = .048), and NRAS (P = .048). Acquired mutations appeared as multiple concurrent subclonal alterations, with most showing decay over time. Significant increases in copy-gain frequency were noted in 29 genes after anti-EGFR exposure, with notable alterations including EGFR (P < .0001), SMO (P < .0001), BRAF (P < .0001), MET (P = .0002), FLT3 (P = .0002), NOTCH4 (P = .0006), ERBB2 (P = .004), and FGFR1 (P = .006). Copy gains appeared stable without decay 8 weeks later. There were 13 gene fusions noted among 11 patients, all but one of which was associated with prior anti-EGFR therapy. Polyclonal resistance was common with acquisition of ≥ 10 resistance related alterations noted in 21% of patients with previous anti-EGFR therapy compared with 5% in those without (P = .010). Although tumor mutation burden (TMB) did not differ pretreatment (P = .63), anti-EGFR exposure increased TMB (P = .028), whereas lack of anti-EGFR exposure resulted in declining TMB (P = .014). CONCLUSION Paired tissue and ctDNA sequencing identified multiple novel mutations, copy gains, and fusions associated with anti-EGFR therapy that frequently co-occur as subclonal alterations in the same patient.
Collapse
|
research-article |
2 |
25 |
10
|
Topham JT, Tsang ES, Karasinska JM, Metcalfe A, Ali H, Kalloger SE, Csizmok V, Williamson LM, Titmuss E, Nielsen K, Negri GL, Spencer Miko SE, Jang GH, Denroche RE, Wong HL, O'Kane GM, Moore RA, Mungall AJ, Loree JM, Notta F, Wilson JM, Bathe OF, Tang PA, Goodwin R, Morin GB, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma. Nat Commun 2022; 13:5941. [PMID: 36209277 PMCID: PMC9547977 DOI: 10.1038/s41467-022-33718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
Oncogenic KRAS mutations are absent in approximately 10% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a subgroup of mPDAC with therapeutic options beyond standard-of-care cytotoxic chemotherapy. While distinct gene fusions have been implicated in KRAS wildtype mPDAC, information regarding other types of mutations remain limited, and gene expression patterns associated with KRAS wildtype mPDAC have not been reported. Here, we leverage sequencing data from the PanGen trial to perform comprehensive characterization of the molecular landscape of KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification encompassing transcription factors PROX1 and NR5A2. By leveraging data from colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight similarities between cholangiocarcinoma and KRAS wildtype mPDAC involving both mutation and expression-based signatures and validate these findings using an independent dataset. These data further establish KRAS wildtype mPDAC as a unique molecular entity, with therapeutic opportunities extending beyond gene fusion events. KRAS wildtype metastatic pancreatic ductal adenocarcinoma (mPDAC) could represent a distinct molecular entity from other PDACs. Here, the authors analyse KRAS wildtype mPDAC tumours using genomics and transcriptomics and find molecular similarities with cholangiocarcinomas.
Collapse
|
|
3 |
17 |
11
|
Tsang ES, Topham JT, Karasinska JM, Lee MKC, Williamson LM, Mendis S, Denroche RE, Jang GH, Kalloger SE, Moore RA, Mungall AJ, Bathe OF, Tang PA, Notta F, Wilson JM, Laskin J, O'Kane GM, Knox JJ, Goodwin RA, Loree JM, Jones SJM, Marra MA, Gallinger S, Schaeffer DF, Renouf DJ. Delving into Early-onset Pancreatic Ductal Adenocarcinoma: How Does Age Fit In? Clin Cancer Res 2020; 27:246-254. [PMID: 32958704 DOI: 10.1158/1078-0432.ccr-20-1042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE With the rising incidence of early-onset pancreatic cancer (EOPC), molecular characteristics that distinguish early-onset pancreatic ductal adenocarcinoma (PDAC) tumors from those arising at a later age are not well understood. EXPERIMENTAL DESIGN We performed bioinformatic analysis of genomic and transcriptomic data generated from 269 advanced (metastatic or locally advanced) and 277 resectable PDAC tumor samples. Patient samples were stratified into EOPC (age of onset ≤55 years; n = 117), intermediate (age of onset 55-70 years; n = 264), and average (age of onset ≥70 years; n = 165) groups. Frequency of somatic mutations affecting genes commonly implicated in PDAC, as well as gene expression patterns, were compared between EOPC and all other groups. RESULTS EOPC tumors showed significantly lower frequency of somatic single-nucleotide variant (SNV)/insertions/deletions (indel) in CDKN2A (P = 0.0017), and were more likely to achieve biallelic mutation of CDKN2A through homozygous copy loss as opposed to heterozygous copy loss coupled with a loss-of-function SNV/indel mutation, the latter of which was more common for tumors with later ages of onset (P = 1.5e-4). Transcription factor forkhead box protein C2 (FOXC2) was significantly upregulated in EOPC tumors (P = 0.032). Genes significantly correlated with FOXC2 in PDAC samples were enriched for gene sets related to epithelial-to-mesenchymal transition (EMT) and included VIM (P = 1.8e-8), CDH11 (P = 6.5e-5), and CDH2 (P = 2.4e-2). CONCLUSIONS Our comprehensive analysis of sequencing data generated from a large cohort of PDAC patient samples highlights a distinctive pattern of biallelic CDKN2A mutation in EOPC tumors. Increased expression of FOXC2 in EOPC, with the correlation between FOXC2 and EMT pathways, represents novel molecular characteristics of EOPC.See related commentary by Lou, p. 8.
Collapse
|
Comment |
5 |
17 |
12
|
Tsang ES, Grisdale CJ, Pleasance E, Topham JT, Mungall K, Reisle C, Choo C, Carreira M, Bowlby R, Karasinska JM, MacMillan D, Williamson LM, Chuah E, Moore RA, Mungall AJ, Zhao Y, Tessier-Cloutier B, Ng T, Sun S, Lim HJ, Schaeffer DF, Renouf DJ, Yip S, Laskin J, Marra MA, Jones SJM, Loree JM. Uncovering Clinically Relevant Gene Fusions with Integrated Genomic and Transcriptomic Profiling of Metastatic Cancers. Clin Cancer Res 2020; 27:522-531. [PMID: 33148671 DOI: 10.1158/1078-0432.ccr-20-1900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Gene fusions are important oncogenic drivers and many are actionable. Whole-genome and transcriptome (WGS and RNA-seq, respectively) sequencing can discover novel clinically relevant fusions. EXPERIMENTAL DESIGN Using WGS and RNA-seq, we reviewed the prevalence of fusions in a cohort of 570 patients with cancer, and compared prevalence to that predicted with commercially available panels. Fusions were annotated using a consensus variant calling pipeline (MAVIS) and required that a contig of the breakpoint could be constructed and supported from ≥2 structural variant detection approaches. RESULTS In 570 patients with advanced cancer, MAVIS identified 81 recurrent fusions by WGS and 111 by RNA-seq, of which 18 fusions by WGS and 19 by RNA-seq were noted in at least 3 separate patients. The most common fusions were EML4-ALK in thoracic malignancies (9/69, 13%), and CMTM8-CMTM7 in colorectal cancer (4/73, 5.5%). Combined genomic and transcriptomic analysis identified novel fusion partners for clinically relevant genes, such as NTRK2 (novel partners: SHC3, DAPK1), and NTRK3 (novel partners: POLG, PIBF1). CONCLUSIONS Utilizing WGS/RNA-seq facilitates identification of novel fusions in clinically relevant genes, and detected a greater proportion than commercially available panels are expected to find. A significant benefit of WGS and RNA-seq is the innate ability to retrospectively identify variants that becomes clinically relevant over time, without the need for additional testing, which is not possible with panel-based approaches.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
14 |
13
|
Tsang ES, Csizmok V, Williamson LM, Pleasance E, Topham JT, Karasinska JM, Titmuss E, Schrader I, Yip S, Tessier-Cloutier B, Mungall K, Ng T, Sun S, Lim HJ, Loree JM, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Homologous recombination deficiency signatures in gastrointestinal and thoracic cancers correlate with platinum therapy duration. NPJ Precis Oncol 2023; 7:31. [PMID: 36964191 PMCID: PMC10039042 DOI: 10.1038/s41698-023-00368-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
There is emerging evidence about the predictive role of homologous recombination deficiency (HRD), but this is less defined in gastrointestinal (GI) and thoracic malignancies. We reviewed whole genome (WGS) and transcriptomic (RNA-Seq) data from advanced GI and thoracic cancers in the Personalized OncoGenomics trial (NCT02155621) to evaluate HRD scores and single base substitution (SBS)3, which is associated with BRCA1/2 mutations and potentially predictive of defective HRD. HRD scores were calculated by sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. Regression analyses examined the association between HRD and time to progression on platinum (TTPp). We included 223 patients with GI (n = 154) or thoracic (n = 69) malignancies. TTPp was associated with SBS3 (p < 0.01) but not HRD score in patients with GI malignancies, whereas neither was associated with TTPp in thoracic malignancies. Tumors with gBRCA1/2 mutations and a somatic second alteration exhibited high SBS3 and HRD scores, but these signatures were also present in several tumors with germline but no somatic second alterations, suggesting silencing of the wild-type allele or BRCA1/2 haploinsufficiency. Biallelic inactivation of an HR gene, including loss of XRCC2 and BARD1, was identified in BRCA1/2 wild-type HRD tumors and these patients had prolonged response to platinum. Thoracic cases with high HRD score were associated with high RECQL5 expression (p ≤ 0.025), indicating another potential mechanism of HRD. SBS3 was more strongly associated with TTPp in patients with GI malignancies and may be complementary to using HRD and BRCA status in identifying patients who benefit from platinum therapy.
Collapse
|
|
2 |
10 |
14
|
Topham JT, Titmuss E, Pleasance ED, Williamson LM, Karasinska JM, Culibrk L, Lee MKC, Mendis S, Denroche RE, Jang GH, Kalloger SE, Wong HL, Moore RA, Mungall AJ, O'Kane GM, Knox JJ, Gallinger S, Loree JM, Mager DL, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Endogenous Retrovirus Transcript Levels Are Associated with Immunogenic Signatures in Multiple Metastatic Cancer Types. Mol Cancer Ther 2020; 19:1889-1897. [PMID: 32518206 DOI: 10.1158/1535-7163.mct-20-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing of solid tumors has revealed variable signatures of immunogenicity across tumors, but underlying molecular characteristics driving such variation are not fully understood. Although expression of endogenous retrovirus (ERV)-containing transcripts can provide a source of tumor-specific neoantigen in some cancer models, associations between ERV levels and immunogenicity across different types of metastatic cancer are not well established. We performed bioinformatics analysis of genomic, transcriptomic, and clinical data across an integrated cohort of 199 patients with metastatic breast, colorectal, and pancreatic ductal adenocarcinoma tumors. Within each cancer type, we identified a subgroup of viral mimicry tumors in which increased ERV levels were coupled with transcriptional signatures of autonomous antiviral response and immunogenicity. In addition, viral mimicry colorectal and pancreatic tumors showed increased expression of DNA demethylation gene TET2 Taken together, these data demonstrate the existence of an ERV-associated viral mimicry phenotype across three distinct metastatic cancer types, while indicating links between ERV abundance, epigenetic dysregulation, and immunogenicity.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
9 |
15
|
Naso JR, Topham JT, Karasinska JM, Lee MK, Kalloger SE, Wong H, Nelson J, Moore RA, Mungall AJ, Jones SJ, Laskin J, Marra MA, Renouf DJ, Schaeffer DF. Tumor infiltrating neutrophils and gland formation predict overall survival and molecular subgroups in pancreatic ductal adenocarcinoma. Cancer Med 2021; 10:1155-1165. [PMID: 33372414 PMCID: PMC7897949 DOI: 10.1002/cam4.3695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND RNA-sequencing-based classifiers can stratify pancreatic ductal adenocarcinoma (PDAC) into prognostically significant subgroups but are not practical for use in clinical workflows. Here, we assess whether histomorphological features may be used as surrogate markers for predicting molecular subgroup and overall survival in PDAC. METHODS Ninety-six tissue samples from 50 patients with non-resectable PDAC were scored for gland formation, stromal maturity, mucin, necrosis, and neutrophil infiltration. Prognostic PDAC gene expression classifiers were run on all tumors using whole transcriptome sequencing data from the POG trial (NCT02155621). Findings were validated using digital TCGA slides (n = 50). Survival analysis used multivariate Cox proportional-hazards tests and log-rank tests. RESULTS The combination of low gland formation and low neutrophil infiltration was significantly associated with the poor prognosis PDAC molecular subgroup (basal-like or squamous) and was an independent predictor of shorter overall survival, in both frozen section (n = 47) and formalin-fixed paraffin-embedded (n = 49) tissue samples from POG patients, and in the TCGA samples. This finding held true in the subgroup analysis of primary (n = 17) and metastatic samples (n = 79). The combination of high gland formation and high neutrophils had low sensitivity but high specificity for favorable prognosis subgroups. CONCLUSIONS The assessment of gland formation and neutrophil infiltration on routine histological sections can aid in prognostication and allow inferences to be made about molecular subtype, which may help guide patient management decisions and contribute to our understanding of heterogeneity in treatment response.
Collapse
|
research-article |
4 |
9 |
16
|
Kalloger SE, Karasinska JM, Keung MS, Thompson DL, Ho J, Chow C, Gao D, Topham JT, Warren C, Wong HL, Lee MKC, Renouf DJ, Schaeffer DF. Stroma vs epithelium-enhanced prognostics through histologic stratification in pancreatic ductal adenocarcinoma. Int J Cancer 2020; 148:481-491. [PMID: 32955725 DOI: 10.1002/ijc.33304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 01/05/2023]
Abstract
The mixture of epithelial and stromal components in pancreatic ductal adenocarcinoma (PDAC) may confound sequencing-based studies of tumor gene expression. Virtual microdissection has been suggested as a bioinformatics approach to segment the aforementioned components, and subsequent prognostic gene sets have emerged from this research. We examined the prognostic signature from the epithelial gene set of one such study using laser capture microdissected (LCM) epithelial samples. We also examined this gene set in matched stromal samples to determine whether prognostic findings were specific to the epithelium. LCM samples from 48 long-term and 48 short-term PDAC survivors were obtained. The resultant epithelial and stromal components were subjected to direct mRNA quantification using a 49 gene published PDAC classifier. Component-specific unsupervised hierarchical clustering was used to derive groups and survival differences were quantified. Immunohistochemical validation of particular genes was performed in an independent cohort. Clustering in the epithelial component yielded prognostic differences in univariable analysis (P = .02), but those differences were not significant when controlled for other clinicopathologic covariates (P = .06). Clustering in the stromal component yielded prognostic differences that persisted in the presence of other clinicopathologic covariates (P = .0005). Validation of selected genes in the epithelium (KRT6A-negative prognostic [P = .004]) and stroma (LY6D-improved prognostic [P = .01] and CTSV-negative prognostic [P = .0002]) demonstrated statistical independence in multivariable analysis. Although the genes used in this study were originally identified as being representative of the epithelial component of PDAC, their expression in the stroma appears to provide additional information that may aid in improved prognostication.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
17
|
Chan-Seng-Yue M, Kim JC, Wilson GW, Ng K, Figueroa EF, O'Kane GM, Connor AA, Denroche RE, Grant RC, McLeod J, Wilson JM, Jang GH, Zhang A, Liang SB, Borgida A, Chadwick D, Kalimuthu S, Lungu I, Bartlett JMS, Krzyzanowski PM, Sandhu V, Tiriac H, Froeling FEM, Karasinska JM, Topham JT, Renouf DJ, Schaeffer DF, Jones SJM, Marra MA, Laskin J, Chetty R, Stein LD, Zogopoulos G, Haibe-Kains B, Campbell PJ, Tuveson DA, Knox JJ, Fischer SE, Gallinger S, Notta F. Author Correction: Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet 2020; 52:463. [PMID: 32051610 DOI: 10.1038/s41588-020-0588-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Collapse
|
Published Erratum |
5 |
7 |
18
|
Renouf DJ, Loree JM, Knox JJ, Kavan P, Jonker DJ, Welch S, Couture F, Lemay F, Tehfe M, Harb M, Aucoin N, Ko YJ, Tang PA, Topham JT, Jia S, Du P, Schaeffer DF, Gill S, Tu D, O'Callaghan CJ. Predictive value of plasma tumor mutation burden (TMB) in the CCTG PA.7 trial: Gemcitabine (GEM) and nab-paclitaxel (Nab-P) vs. GEM, nab-P, durvalumab (D) and tremelimumab (T) as first line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). J Clin Oncol 2021. [DOI: 10.1200/jco.2021.39.3_suppl.411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
411 Background: PA.7 evaluated whether combining PD-L1 and CTLA-4 inhibition with GEM and Nab-P increases efficacy as first line therapy in mPDAC. High TMB is associated with immunotherapy sensitivity, with a threshold of ≥10 mut/Mb receiving FDA accelerated approved for pembrolizumab in a tissue agnostic setting. We assessed the predictive value of plasma TMB in the PA.7 trial. Methods: This randomized phase II study (ClinicalTrials.gov NCT02879318) assessed the efficacy and safety of GEM, Nab-P, D, and T (arm A) vs. GEM and Nab-P (arm B) in patients (pts) with mPDAC (n = 180). The primary endpoint was overall survival (OS). Pre-treatment plasma was sequenced with the CLIA-certified PredicineATLAS cfDNA next generation assay (600 genes, 2.4 Mb panel). A pre-specified cut point of 5 mut/MB was selected based on distribution of TMB in the trial. 2-sided alpha set at 0.1. Results: 180 pts were randomized (119 to arm A and 61 to arm B). There was no significant difference in OS (9.8 months in arm A vs. 8.8 months in arm B, p-value 0.72) or PFS (5.5 months and 5.4 months respectively, HR 0.98, p-value 0.91). Plasma TMB analysis was performed on 174/180 pts with available samples, and tumor derived variants were detected in 173/174 pts (99.4%). 172 pts were microsatellite stable and 1 pt was microsatellite high (MSI-H) (plasma TMB 52.9 muts/Mb). Using the pre-specified cut-point of 5 mut/Mb there was no significant predictive value from plasma TMB (interaction p = 0.91). Using a minimum p-value approach, a cut-point of 9 mut/MB appeared predictive (p-interaction = 0.064; significant at pre-specified p = 0.1). 8/174 (4.6%) pts had a plasma TMB ≥9 mut/Mb (5/115 (4.4%) in arm A and 3/59 (5%) in arm B). GEM, Nab-P, D+T was associated with improved OS in patients with plasma TMB ≥9 mut/Mb (HR 0.30, 90% CI 0.06-1.37) while no activity was seen in pts with < 9 mut/Mb, (HR 0.97, 90% CI 0.73-1.29). TMB cut-point analysis revealed a clear trend for a decreasing HR favoring the GEM, Nab-P, D and T arm above the selected cut point, with no benefit in the low TMB group. Conclusions: Plasma TMB analysis was successful in over 99% of pts with available samples. Plasma TMB ≥9 mut/Mb was predictive of benefit from the addition of dual immune checkpoint inhibitors (D and T) to Gem and Nab-P, with a significant interaction p-value. While only present in a subgroup of pts (4.6%), this data defines a group beyond MSI-H PDAC that may benefit from immunotherapy. The optimal cut-point for high TMB in this setting requires validation. A clinical trial specifically assessing the role of chemotherapy combined with immune checkpoint inhibition in high TMB mPDAC is warranted. Clinical trial information: NCT02879318.
Collapse
|
|
4 |
6 |
19
|
Huey RW, Shah AT, Reddi HV, Dasari P, Topham JT, Hwang H, Dhillon N, Willett A, Smaglo BG, Estrella JS, Rashid A, Matamoros A, Overman MJ, Choquette L, Omerza G, Kelly K, Wang X, Loree JM, Rueter J, Varadhachary GR, Raghav K. Feasibility and value of genomic profiling in cancer of unknown primary: real-world evidence from prospective profiling study. J Natl Cancer Inst 2023; 115:994-997. [PMID: 37202363 PMCID: PMC10407690 DOI: 10.1093/jnci/djad095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023] Open
Abstract
Real-world evidence regarding the value of integrating genomic profiling (GP) in managing cancer of unknown primary (CUP) is limited. We assessed this clinical utility using a prospective trial of 158 patients with CUP (October 2016-September 2019) who underwent GP using next-generation sequencing designed to identify genomic alterations (GAs). Only 61 (38.6%) patients had sufficient tissue for successful profiling. GAs were seen in 55 (90.2%) patients of which GAs with US Food and Drug Administration-approved genomically matched therapy were seen in 25 (40.9%) patients. A change in therapy was recommended and implemented (primary endpoint of the study) in 16 (10.1%) and 4 (2.5%) patients of the entire study cohort, respectively. The most common reason for inability to implement the profiling-guided therapy was worsening of performance status (56.3%). Integrating GP in management of CUP is feasible but challenging because of paucity of tissue and aggressive natural history of the disease and requires innovative precision strategies.
Collapse
|
Clinical Trial |
2 |
5 |
20
|
Loree JM, Topham JT, Kennecke HF, Feilotter H, Keshavarz-Rahaghi F, Lee YS, Li W, Quinn K, Banks K, Renouf DJ, Jonker DJ, Tu D, O'Callaghan CJ, Chen EX. Tissue and plasma tumor mutation burden (TMB) as predictive biomarkers in the CO.26 trial of durvalumab + tremelimumab (D+T) versus best supportive care (BSC) in metastatic colorectal cancer (mCRC). J Clin Oncol 2021. [DOI: 10.1200/jco.2021.39.3_suppl.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
61 Background: Pembrolizumab was recently granted tissue agnostic FDA accelerated approval for metastatic cancers with TMB≥10 mut/Mb. However, limited data supports immunotherapy in microsatellite stable (MSS) mCRC with TMB≥10 mut/Mb. We assessed tissue TMB and contrasted it to plasma derived TMB in the CO.26 trial. Methods: CO.26 was a phase 2 trial (2-sided ⍺ = 0.1 and 80% power) that randomized 180 patients (pts) 2:1 to D+T or BSC in refractory mCRC. Pre-treatment plasma was sequenced with the GuardantOMNI assay and archival tissue underwent exome sequencing with TMB assessed per the TMB harmonization project. MSI-H cases were excluded. For plasma TMB, we used a previously published cut point (≥28). Results: Overall survival (OS) but not progression free survival (PFS) was improved with D+T in the entire population. Of 180 pts, 163 were evaluable for plasma and 110 for tissue TMB. Median time between archival tissue and plasma collection was 3.1 yrs (IQR 1.9-5.1). Median tissue TMB was 6.6 muts/Mb (IQR 4.1-12.0), while median plasma TMB was 16.3 muts/Mb (IQR 9.4-25.9). Tissue and plasma TMB (r = -0.039, P = 0.69) were not correlated. Tissue TMB≥10 was not prognostic in the BSC arm (HR 1.01, 90%CI 0.52-1.92, P = 0.99) and OS was not improved in pts with tissue TMB≥10 (32/110 pts) following D+T vs BSC. A test of interaction suggested this threshold was not predictive (P = 0.85). Using a minimum P-value approach, no threshold supported high tissue TMB as predictive in MSS mCRC. In fact, the optimal cut point suggested low tissue TMB ( < 4.1 muts/Mb) had the greatest benefit from D+T (P-interaction = 0.048) and pts with TMB ≥4.1 mut/Mb (HR 0.50, 90%CI 0.26-0.96, P = 0.083) trended to better OS in the BSC arm. In contrast, 35/163 pts (21%) were identified in a high plasma TMB group associated with worse OS (HR 2.56, 90%CI 1.45-4.54, P = 0.007) in the BSC arm but improved OS following D+T compared to BSC with P-interaction = 0.082. Only 1 response was noted following D+T in a pt with tissue TMB = 16 mut/Mb and plasma TMB = 13 mut/Mb. Conclusions: Archival tissue TMB≥10 mut/Mb does not appear predictive of D+T benefit in MSS mCRC. Plasma derived TMB may better reflect evolutionary changes following intervening therapy than archival tissue. Clinical trial information: NCT02870920. [Table: see text]
Collapse
|
|
4 |
4 |
21
|
Abstract
In a Perspective, James Topham and Marco Marra discuss progress in the use of genomic information to guide cancer treatment.
Collapse
|
other |
9 |
4 |
22
|
Renouf DJ, Loree JM, Knox JJ, Kavan P, Jonker DJ, Welch S, Couture F, Lemay F, Tehfe M, Harb M, Aucoin N, Ko YJ, Tang PA, Topham JT, Jia S, Du P, Schaeffer DF, Gill S, Tu D, O'Callaghan CJ. Predictive value of germline ATM mutations in the CCTG PA.7 trial: Gemcitabine (GEM) and nab-paclitaxel (Nab-P) versus GEM, nab-P, durvalumab (D) and tremelimumab (T) as first-line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). J Clin Oncol 2021. [DOI: 10.1200/jco.2021.39.15_suppl.4135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
4135 Background: PA.7 evaluated whether combining PD-L1 and CTLA-4 inhibition with GEM and Nab-P increases efficacy. A previous analysis of the PA.7 data demonstrated high plasma based TMB (≥9 mut/Mb) was associated with improved OS in the Gem, Nab-P, D+T arm. DNA repair pathway aberrations beyond mismatch repair have been associated with potential immune sensitivity. We assessed the predictive value of germline ATM mutations in the PA.7 trial. Methods: This randomized phase II study (ClinicalTrials.gov NCT02879318) assessed the efficacy and safety of GEM, Nab-P, D, and T (arm A) vs. GEM and Nab-P (arm B) in patients (pts) with mPDAC (n = 180). The primary endpoint was overall survival (OS). Pre-treatment plasma was sequenced with the Predicine ATLAS next generation assay (600 gene, 2.4 Mb panel). 2-sided alpha set at 0.1. Results: 180 pts were randomized (119 to arm A and 61 to arm B) There was no significant difference in OS (9.8 months in arm A vs. 8.8 months in arm B, p-value 0.72) or PFS (5.5 months and 5.4 months respectively, HR 0.98, p-value 0.91). Plasma analysis was performed on 174/180 pts with available samples. 16/174 (9.2%) pts had germline ATM mutations, 12 in arm A and 4 in arm B. GEM, Nab-P, D+T was associated with improved OS in patients with ATM mutations (HR 0.10, 90% CI 0.03-0.37; median OS 13.9 months vs. 4.9 months) while no activity was seen in pts with ATM Wild Type (HR 0.99, 90% CI 0.73-1.33; median OS 9.79 months vs. 10.2 months); interaction p = 0.014. Germline ATM mutation status was independent of plasma TMB levels (Wilcoxon p = 0.76). Conclusions: Germline ATM mutation appeared predictive of benefit from the addition of dual immune checkpoint inhibitors (D and T) to Gem and Nab-P, with a significant interaction p-value. In addition to previous data from this trial regarding the predictive value of high plasma TMB (≥9 mut/Mb), this data further supports that there may be independent subgroups of PDAC, beyond MSI-H, that may benefit from immunotherapy, and trials evaluating immunotherapy in subgroups of PDAC with these profiles are warranted. Clinical trial information: NCT02879318.
Collapse
|
|
4 |
2 |
23
|
Topham JT, Renouf DJ, Schaeffer DF. Circulating tumor DNA: toward evolving the clinical paradigm of pancreatic ductal adenocarcinoma. Ther Adv Med Oncol 2023; 15:17588359231157651. [PMID: 36895849 PMCID: PMC9989430 DOI: 10.1177/17588359231157651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Over a decade of sequencing-based genomics research has unveiled a diverse somatic mutation landscape across patients with pancreatic ductal adenocarcinoma (PDAC), and the identification of druggable mutations has aligned with the development of novel targeted therapeutics. However, despite these advances, direct translation of years of PDAC genomics research into the clinical care of patients remains a critical and unmet need. Technologies that enabled the initial mapping of the PDAC mutation landscape, namely whole-genome and transcriptome sequencing, remain overly expensive in terms of both time and financial resources. Consequentially, dependence on these technologies to identify the relatively small subset of patients with actionable PDAC alterations has greatly impeded enrollment for clinical trials testing novel targeted therapies. Liquid biopsy tumor profiling using circulating tumor DNA (ctDNA) generates new opportunities by overcoming these challenges while further addressing issues particularly relevant to PDAC, namely, difficulty of obtaining tumor tissue via fine-needle biopsy and the need for faster turnaround time due to rapid disease progression. Meanwhile, ctDNA-based approaches for tracking disease kinetics with respect to surgical and therapeutic interventions offer a means to elevate the current clinical management of PDAC toward higher granularity and accuracy. This review provides a clinically focused summary of ctDNA advances, limitations, and opportunities in PDAC and postulates ctDNA sequencing technology as a catalyst for evolving the clinical decision-making paradigm of this disease.
Collapse
|
Review |
2 |
2 |
24
|
Lee M, Wong HL, Tsang ES, Addison SMF, Topham JT, Karasinska J, Kalloger S, Loree JM, Schaeffer DF, Renouf DJ. Clinicopathological features of pancreatic cancer-related diabetes. J Clin Oncol 2020. [DOI: 10.1200/jco.2020.38.4_suppl.675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
675 Background: Epidemiological studies suggest pancreatic ductal adenocarcinoma (PDAC) may be strongly interrelated with diabetes. However, little is known about the clinicopathological features of pancreatic cancer related diabetes. Methods: A retrospective chart review was undertaken of all patients with advanced PDAC treated with at least one cycle of palliative chemotherapy at BC Cancer, Vancouver between Jan 2012- Dec 2015. Diagnosis of diabetes was determined by consultation documentation and/or fasting glucose > 7mmol/L or HbA1c > 48mmol/L. Peripancreatic diabetes is defined as diabetes diagnosis < 3 years prior to PDAC diagnosis. Results: 578 patients were identified with median age 66 (49-81), 54.6% male, 39.5% non-smoker and 63.5% ECOG 0/1. 27.3% confirmed diabetics, of which 75.8% (119/157) have peripancreatic diabetes. At initial diagnosis, 11.2% were deemed upfront resectable, 44.0% borderline/locally advanced, and 55.1% metastatic. Median overall survival (OS) for the cohort based on stage of disease at initial diagnosis for borderline, locally advanced and metastatic was 22 months (16.1-27.9), 12 months (10.1-13.9) and 6 months (5.0-7.0) respectively. There was no association with diabetes status and OS noted (p = 0.58). Statistical differences were noted in BMI (24.1 v 26.1, p = 0.003), and proportion of Charlson comorbidity index (CCI) of 2 (2.2 v 88.3%, p < 0.01) between non-diabetic and diabetic patients respectively. Statistical difference between peripancreatic diabetes compared to long-term diabetes were noted in resectable status (18.6 v 7.6%, p = 0.048), weight loss > 2kg (78.6 v 60.5%, p = 0.035), hypertension (25.9 v 59.8%, p = 0.002) and dyslipidemia (18.5 v 42.7%, p = 0.024). Conclusions: The majority of patients diagnosed with advanced PDAC with diabetes appeared to develop diabetes within 3 years prior to diagnosis. Further studies to assess the potential role of pancreatic cancer screening investigations in newly diagnosed diabetics are warranted.
Collapse
|
|
5 |
1 |
25
|
Mendis S, Alcaide M, Topham JT, Johnson B, Morin RD, Chu J, Bosdet I, Kopetz S, Karsan A, Gill S, Laskin J, Jones SJM, Marra MA, Schaeffer DF, Renouf DJ, Loree JM. Integration of Whole-Genome Sequencing With Circulating Tumor DNA Analysis Captures Clonal Evolution and Tumor Heterogeneity in Non-V600 BRAF Mutant Colorectal Cancer. Clin Colorectal Cancer 2020; 19:132-136.e3. [PMID: 32151517 DOI: 10.1016/j.clcc.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
|
Research Support, Non-U.S. Gov't |
5 |
1 |