1
|
Wu X, Kim GH, Salisbury ML, Barber D, Bartholmai BJ, Brown KK, Conoscenti CS, De Backer J, Flaherty KR, Gruden JF, Hoffman EA, Humphries SM, Jacob J, Maher TM, Raghu G, Richeldi L, Ross BD, Schlenker-Herceg R, Sverzellati N, Wells AU, Martinez FJ, Lynch DA, Goldin J, Walsh SLF. Computed Tomographic Biomarkers in Idiopathic Pulmonary Fibrosis. The Future of Quantitative Analysis. Am J Respir Crit Care Med 2019; 199:12-21. [DOI: 10.1164/rccm.201803-0444pp] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
6 |
71 |
2
|
De Backer LA, Vos W, De Backer J, Van Holsbeke C, Vinchurkar S, De Backer W. The acute effect of budesonide/formoterol in COPD: a multi-slice computed tomography and lung function study. Eur Respir J 2011; 40:298-305. [PMID: 22183484 DOI: 10.1183/09031936.00072511] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification of chronic obstructive pulmonary disease (COPD) does not always match with other clinical disease descriptors such as exacerbation frequency and quality of life, indicating that forced expiratory volume in 1 s (FEV(1)) is not a perfect descriptor of the disease. The aim of this study was to find out whether changes in airway geometry after inhalation of the most commonly used inhalation therapy in severe COPD can more adequately be described with an image-based approach than with spirometry. 10 COPD GOLD stage III patients were assessed in a double-blind crossover study. Airway volumes were analysed using segmentation of multi-slice computed tomography (MSCT) images; airway resistance was determined using computational fluid dynamics (CFD). Distal airway volume significantly increased (p=0.011) in patients 4 h after receiving a budesonide/formoterol combination from 9.6±4.67 cm(3) to 10.14±4.81 cm(3). Also CFD-determined airway resistance significantly decreased (p=0.047) from 0.051±0.021 kPa·s·L(-1) to 0.043±0.019 kPa·s·L(-1). None of the lung function parameters showed a significant change. Only functional residual capacity (FRC) showed a trend to decline (p=0.056). Only the image-based parameters were able to predict the visit at which the combination product was administered. This study showed that imaging is a sensitive, complementary tool to describe changes in airway structure.
Collapse
|
Journal Article |
14 |
48 |
3
|
Vinchurkar S, Backer LD, Vos W, Holsbeke CV, Backer JD, Backer WD. A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients: effect of upper airway morphology and comparison with in vivo data. Inhal Toxicol 2012; 24:81-8. [PMID: 22260527 DOI: 10.3109/08958378.2011.644351] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Asthma affects 20 million Americans resulting in an economic burden of approximately $18 billion in the US alone (Allergies and Asthma Foundation 2000; National Center for Environmental Health (NCEH) 1999). Research studies based on differences in patient-specific airway morphology for asthma and the associated effect on deposition of inhaled aerosols are currently not available in the literature. Therefore, the role of morphological variations such as upper airway (extrathoracic) occlusion is not well documented. OBJECTIVE Functional imaging based computational fluid dynamics (CFD) of the respiratory airways for five asthmatic subjects is performed in this study using computed tomography (CT) based patient-specific airway models and boundary conditions. METHODS CT scans for 5 asthma patients were used to reconstruct 3D lung models using segmentation software. An averaged inhalation profile and patient-specific lobar flow distribution were used to perform the simulation. The simulations were used to obtain deposition for BDP/Formoterol® HFA pMDI in the patient-specific airway models. RESULTS The lung deposition obtained using CFD was in excellent agreement with available in vivo data using the same product. Specifically, CFD resulted in 30% lung deposition, whereas in vivo lung deposition was reported to be approximately 31%. CONCLUSION It was concluded that a combination of patient-specific airway models and lobar boundary conditions can be used to obtain accurate lung deposition estimates. Lower lung deposition can be expected for patients with higher extrathoracic resistance. Novel respiratory drug delivery devices need to accommodate population sub-groups based on these morphological and anatomical differences in addition to subject age.
Collapse
|
Journal Article |
13 |
47 |
4
|
Lins M, Vandevenne J, Thillai M, Lavon BR, Lanclus M, Bonte S, Godon R, Kendall I, De Backer J, De Backer W. Assessment of Small Pulmonary Blood Vessels in COVID-19 Patients Using HRCT. Acad Radiol 2020; 27:1449-1455. [PMID: 32741657 PMCID: PMC7381940 DOI: 10.1016/j.acra.2020.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/05/2023]
Abstract
RATIONALE AND OBJECTIVES Mounting evidence supports the role of pulmonary hemodynamic alternations in the pathogenesis of COVID-19. Previous studies have demonstrated that changes in pulmonary blood volumes measured on computed tomography (CT) are associated with histopathological markers of pulmonary vascular pruning, suggesting that quantitative CT analysis may eventually be useful in the assessment pulmonary vascular dysfunction more broadly. MATERIALS AND METHODS Building upon previous work, automated quantitative CT measures of small blood vessel volume and pulmonary vascular density were developed. Scans from 103 COVID-19 patients and 107 healthy volunteers were analyzed and their results compared, with comparisons made both on lobar and global levels. RESULTS Compared to healthy volunteers, COVID-19 patients showed significant reduction in BV5 (pulmonary blood volume contained in blood vessels of <5 mm2) expressed as BV5/(total pulmonary blood volume; p < 0.0001), and significant increases in BV5-10 and BV 10 (pulmonary blood volumes contained in vessels between 5 and 10 mm2 and above 10 mm2, respectively, p < 0.0001). These changes were consistent across lobes. CONCLUSION COVID-19 patients display striking anomalies in the distribution of blood volume within the pulmonary vascular tree, consistent with increased pulmonary vasculature resistance in the pulmonary vessels below the resolution of CT.
Collapse
|
research-article |
5 |
47 |
5
|
Vos W, De Backer J, Poli G, De Volder A, Ghys L, Van Holsbeke C, Vinchurkar S, De Backer L, De Backer W. Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol. Respiration 2013; 86:393-401. [PMID: 23595105 DOI: 10.1159/000347120] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inhaled formulations using extrafine particles of long-acting β2-agonists and corticosteroids were developed to optimize asthma treatment. Findings that these combinations reach and treat smaller airways more effectively are predominantly based on general non-specific outcomes with little information on regional characteristics. OBJECTIVES This study aims to assess long-term effects of extrafine beclomethasone/formoterol on small airways of asthmatic patients using novel functional imaging methods. METHODS Twenty-four stable asthma patients were subdivided into three groups (steroid naive, n = 7; partially controlled, n = 6; well controlled, n = 11). Current treatment was switched to a fixed combination of extrafine beclomethasone/formoterol (Foster®; Chiesi Pharmaceuticals, Parma, Italy). Patients underwent lung function evaluation and thorax high-resolution computerized tomography (HRCT) scan. Local airway resistance was obtained from computational fluid dynamics (CFD). RESULTS After 6 months, the entire population showed improvement in pre-bronchodilation imaging parameters, including small airway volume (p = 0.0007), resistance (p = 0.011), and asthma control score (p = 0.016). Changes in small airway volume correlated with changes in asthma control score (p = 0.004). Forced expiratory volume in 1 s (p = 0.044) and exhaled nitric oxide (p = 0.040) also improved. Functional imaging provided more detail and clinical relevance compared to lung function tests, especially in the well-controlled group where only functional imaging parameters showed significant improvement, while the correlation with asthma control score remained. CONCLUSIONS Extrafine beclomethasone/formoterol results in a significant reduction of small airway obstruction, detectable by functional imaging (HRCT/CFD). Changes in imaging parameters correlated significantly with clinically relevant improvements. This indicates that functional imaging is a useful tool for sensitive assessment of changes in the respiratory system after asthma treatment.
Collapse
|
|
12 |
42 |
6
|
De Backer J, Vos W, Vinchurkar S, Van Holsbeke C, Poli G, Claes R, Salgado R, De Backer W. The effects of extrafine beclometasone/formoterol (BDP/F) on lung function, dyspnea, hyperinflation, and airway geometry in COPD patients: novel insight using functional respiratory imaging. J Aerosol Med Pulm Drug Deliv 2014; 28:88-99. [PMID: 25004168 DOI: 10.1089/jamp.2013.1064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The efficacy of inhaled corticosteroids (ICS) in moderately severe COPD patients remains unclear. At the same time, the use of extrafine particles in COPD patients is a topic of ongoing research. OBJECTIVES This study assessed the effect of ICS in steroid-naïve mild COPD patients and the effect of reducing the ICS dose in more severe COPD patients previously using ICS when switching to an extrafine particle BDP/F formulation (Foster using Modulite technology, Chiesi Pharmaceutici, Parma, Italy). METHODS Novel functional respiratory imaging (FRI) methods, consisting of multi-slice CT scans and Computational Fluid Dynamics, were used in combination with conventional pulmonary function tests and patient reported outcomes. RESULTS The study showed that the administration of extrafine BDP/F after 4-6 h led to a significant improvement in lung function parameters and hyperinflation as determined by spirometry, body plethysmography, and functional respiratory imaging. After 6 months of treatment, it was observed that, compared to baseline, the hyperinflation on lobar level at total lung capacity was significantly reduced (-1.19±7.19 %p, p=0.009). In addition, a significant improvement in SGRQ symptom score was noted in the entire patient population. Patients who improved in terms of hyperinflation also improved their MMRC dyspnea score. CFD indicated a difference in regional deposition between extrafine and non-extrafine formulations with -11% extrathoracic deposition and up to +4% lobe deposition for the extrafine formulation. CONCLUSIONS The study showed that the administration of extrafine BDP/F improved lung function parameters and hyperinflation. Patients previously treated with ICS remained stable despite the lower dose, while ICS naïve patients improved in terms of lobar hyperinflation. FRI seems to be a sensitive biomarker to detect clinically relevant changes that are not detected by spirometry. The next step is to confirm these findings in a controlled trial.
Collapse
|
Journal Article |
11 |
42 |
7
|
Van Holsbeke C, De Backer J, Vos W, Verdonck P, Van Ransbeeck P, Claessens T, Braem M, Vanderveken O, De Backer W. Anatomical and functional changes in the upper airways of sleep apnea patients due to mandibular repositioning: A large scale study. J Biomech 2011; 44:442-9. [DOI: 10.1016/j.jbiomech.2010.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/20/2010] [Accepted: 09/27/2010] [Indexed: 11/27/2022]
|
|
14 |
34 |
8
|
Hajian B, De Backer J, Vos W, Van Holsbeke C, Ferreira F, Quinn DA, Hufkens A, Claes R, De Backer W. Pulmonary vascular effects of pulsed inhaled nitric oxide in COPD patients with pulmonary hypertension. Int J Chron Obstruct Pulmon Dis 2016; 11:1533-41. [PMID: 27462149 PMCID: PMC4940019 DOI: 10.2147/copd.s106480] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Severe chronic obstructive pulmonary disease (COPD) is often associated with secondary pulmonary hypertension (PH), which worsens prognosis. PH can be lowered by oxygen, but also by inhaled nitric oxide (NO), which has the potential to improve the health status of these patients. NO is an important mediator in vascular reactions in the pulmonary circulation. Oral compounds can act through NO-mediated pathways, but delivering pulsed inhaled NO (iNO) directly to the airways and pulmonary vasculature could equally benefit patients. Therefore, a proof-of-concept study was performed to quantify pulmonary blood vessel caliber changes after iNO administration using computed tomography (CT)-based functional respiratory imaging (FRI). Methods Six patients with secondary PH due to COPD received “pulsed” iNO in combination with oxygen for 20 minutes via a nasal cannula. Patients underwent a high-resolution CT scan with contrast before and after iNO. Using FRI, changes in volumes of blood vessels and associated lobes were quantified. Oxygen saturation and blood pressure were monitored and patients were asked about their subjective feelings. Results Pulmonary blood vessel volume increased by 7.06%±5.37% after iNO. A strong correlation (Ω20=0.32, P=0.002) was obtained between ventilation and observed vasodilation, suggesting that using the pulsed system, iNO is directed toward the ventilated zones, which consequently experience more vasodilation. Patients did not develop oxygen desaturation, remained normotensive, and perceived an improvement in their dyspnea sensation. Conclusion Inhalation of pulsed NO with oxygen causes vasodilation in the pulmonary circulation of COPD patients, mainly in the well-ventilated areas. A high degree of heterogeneity was found in the level of vasodilation. Patients tend to feel better after the treatment. Chronic use trials are warranted.
Collapse
|
Video-Audio Media |
9 |
34 |
9
|
De Backer J, Vos W, Van Holsbeke C, Vinchurkar S, Claes R, Parizel PM, De Backer W. Effect of high-dose N-acetylcysteine on airway geometry, inflammation, and oxidative stress in COPD patients. Int J Chron Obstruct Pulmon Dis 2013; 8:569-79. [PMID: 24293993 PMCID: PMC3842218 DOI: 10.2147/copd.s49307] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated the potential beneficial effect of N-acetylcysteine (NAC) in chronic obstructive pulmonary disease (COPD). However, the required dose and responder phenotype remain unclear. The current study investigated the effect of high-dose NAC on airway geometry, inflammation, and oxidative stress in COPD patients. Novel functional respiratory imaging methods combining multislice computed tomography images and computer-based flow simulations were used with high sensitivity for detecting changes induced by the therapy. METHODS Twelve patients with Global Initiative for Chronic Obstructive Lung Disease stage II COPD were randomized to receive NAC 1800 mg or placebo daily for 3 months and were then crossed over to the alternative treatment for a further 3 months. RESULTS Significant correlations were found between image-based resistance values and glutathione levels after treatment with NAC (P = 0.011) and glutathione peroxidase at baseline (P = 0.036). Image-based resistance values appeared to be a good predictor for glutathione peroxidase levels after NAC (P = 0.02), changes in glutathione peroxidase levels (P = 0.035), and reduction in lobar functional residual capacity levels (P = 0.00084). In the limited set of responders to NAC therapy, the changes in airway resistance were in the same order as changes induced by budesonide/formoterol. CONCLUSION A combination of glutathione, glutathione peroxidase, and imaging parameters could potentially be used to phenotype COPD patients who would benefit from addition of NAC to their current therapy. The findings of this small pilot study need to be confirmed in a larger pivotal trial.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
30 |
10
|
Tahir BA, Van Holsbeke C, Ireland RH, Swift AJ, Horn FC, Marshall H, Kenworthy JC, Parra-Robles J, Hartley R, Kay R, Brightling CE, De Backer J, Vos W, Wild JM. Comparison of CT-based Lobar Ventilation with 3He MR Imaging Ventilation Measurements. Radiology 2015; 278:585-92. [PMID: 26322908 DOI: 10.1148/radiol.2015142278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare lobar lung ventilation computed from expiratory and inspiratory computed tomographic (CT) data with direct measurements of ventilation at hyperpolarized helium 3 ((3)He) magnetic resonance (MR) imaging by using same-breath hydrogen 1 ((1)H) MR imaging examinations to coregister the multimodality images. MATERIALS AND METHODS The study was approved by the national research ethics committee, and written patient consent was obtained. Thirty patients with asthma underwent breath-hold CT at total lung capacity and functional residual capacity. (3)He and (1)H MR images were acquired during the same breath hold at a lung volume of functional residual capacity plus 1 L. Lobar segmentations delineated by major fissures on both CT scans were used to calculate the percentage of ventilation per lobe from the change in inspiratory and expiratory lobar volumes. CT-based ventilation was compared with (3)He MR imaging ventilation by using diffeomorphic image registration of (1)H MR imaging to CT, which enabled indirect registration of (3)He MR imaging to CT. Statistical analysis was performed by using the Wilcoxon signed-rank test, Pearson correlation coefficient, and Bland-Altman analysis. RESULTS The mean ± standard deviation absolute difference between the CT and (3)He MR imaging percentage of ventilation volume in all lobes was 4.0% (right upper and right middle lobes, 5.4% ± 3.3; right lower lobe, 3.7% ± 3.9; left upper lobe, 2.8% ± 2.7; left lower lobe, 3.9% ± 2.6; Wilcoxon signed-rank test, P < .05). The Pearson correlation coefficient between the two techniques in all lobes was 0.65 (P < .001). Greater percentage of ventilation was seen in the upper lobes with (3)He MR imaging and in the lower lobes with CT. This was confirmed with Bland-Altman analysis, with 95% limits of agreement for right upper and middle lobes, -2.4, 12.7; right lower lobe, -11.7, 4.6; left upper lobe, -4.9, 8.7; and left lower lobe, -9.8, 2.8. CONCLUSION The percentage of regional ventilation per lobe calculated at CT was comparable to a direct measurement of lung ventilation at hyperpolarized (3)He MR imaging. This work provides evidence for the validity of the CT model, and same-breath (1)H MR imaging enables regional interpretation of (3)He ventilation MR imaging on the underlying lung anatomy at thin-section CT.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
30 |
11
|
Morris MF, Pershad Y, Kang P, Ridenour L, Lavon B, Lanclus M, Godon R, De Backer J, Glassberg MK. Altered pulmonary blood volume distribution as a biomarker for predicting outcomes in COVID-19 disease. Eur Respir J 2021; 58:2004133. [PMID: 33632795 PMCID: PMC7908189 DOI: 10.1183/13993003.04133-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Evidence suggests that vascular inflammation and thrombosis may be important drivers of poor clinical outcomes in patients with COVID-19. We hypothesised that a significant decrease in the percentage of blood volume in vessels with a cross-sectional area between 1.25 and 5 mm2 relative to the total pulmonary blood volume (BV5%) on chest computed tomography (CT) in COVID-19 patients is predictive of adverse clinical outcomes. METHODS We performed a retrospective analysis of chest CT scans from 10 hospitals across two US states in 313 COVID-19-positive and 195 COVID-19-negative patients seeking acute medical care. RESULTS BV5% was predictive of outcomes in COVID-19 patients in a multivariate model, with a BV5% threshold below 25% associated with OR 5.58 for mortality, OR 3.20 for intubation and OR 2.54 for the composite of mortality or intubation. A model using age and BV5% had an area under the receiver operating characteristic curve of 0.85 to predict the composite of mortality or intubation in COVID-19 patients. BV5% was not predictive of clinical outcomes in patients without COVID-19. CONCLUSIONS The data suggest BV5% as a novel biomarker for predicting adverse outcomes in patients with COVID-19 seeking acute medical care.
Collapse
|
research-article |
4 |
25 |
12
|
Barbosa EJM, Lanclus M, Vos W, Van Holsbeke C, De Backer W, De Backer J, Lee J. Machine Learning Algorithms Utilizing Quantitative CT Features May Predict Eventual Onset of Bronchiolitis Obliterans Syndrome After Lung Transplantation. Acad Radiol 2018; 25:1201-1212. [PMID: 29472146 DOI: 10.1016/j.acra.2018.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES Long-term survival after lung transplantation (LTx) is limited by bronchiolitis obliterans syndrome (BOS), defined as a sustained decline in forced expiratory volume in the first second (FEV1) not explained by other causes. We assessed whether machine learning (ML) utilizing quantitative computed tomography (qCT) metrics can predict eventual development of BOS. MATERIALS AND METHODS Paired inspiratory-expiratory CT scans of 71 patients who underwent LTx were analyzed retrospectively (BOS [n = 41] versus non-BOS [n = 30]), using at least two different time points. The BOS cohort experienced a reduction in FEV1 of >10% compared to baseline FEV1 post LTx. Multifactor analysis correlated declining FEV1 with qCT features linked to acute inflammation or BOS onset. Student t test and ML were applied on baseline qCT features to identify lung transplant patients at baseline that eventually developed BOS. RESULTS The FEV1 decline in the BOS cohort correlated with an increase in the lung volume (P = .027) and in the central airway volume at functional residual capacity (P = .018), not observed in non-BOS patients, whereas the non-BOS cohort experienced a decrease in the central airway volume at total lung capacity with declining FEV1 (P = .039). Twenty-three baseline qCT parameters could significantly distinguish between non-BOS patients and eventual BOS developers (P < .05), whereas no pulmonary function testing parameters could. Using ML methods (support vector machine), we could identify BOS developers at baseline with an accuracy of 85%, using only three qCT parameters. CONCLUSIONS ML utilizing qCT could discern distinct mechanisms driving FEV1 decline in BOS and non-BOS LTx patients and predict eventual onset of BOS. This approach may become useful to optimize management of LTx patients.
Collapse
|
|
7 |
22 |
13
|
Van Holsbeke C, De Backer J, Vos W, Marshall J. Use of functional respiratory imaging to characterize the effect of inhalation profile and particle size on lung deposition of inhaled corticosteroid/long-acting β2-agonists delivered via a pressurized metered-dose inhaler. Ther Adv Respir Dis 2019; 12:1753466618760948. [PMID: 29499614 PMCID: PMC5937159 DOI: 10.1177/1753466618760948] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Functional respiratory imaging (FRI) uses three-dimensional models of human lungs and computational fluid dynamics to simulate functional changes within airways and predict the deposition of inhaled drugs. This study used FRI to model the effects of different patient inhalation and drug formulation factors on lung deposition of an inhaled corticosteroid/long-acting β2-agonist (ICS/LABA) combination, administered by a pressurized metered-dose inhaler. Methods: Three-dimensional models of the lungs of six patients with asthma (mean forced expiratory volume in 1 s, 83%), treated with an ICS/LABA, were included. FRI modelling was used to simulate (1) the effects on lung deposition of inhalation duration and particle size [fine particle fraction (FPF), proportion of particles <5 µm; and mass median aerodynamic diameter (MMAD), average size of inhalable particles]; (2) deposition of fluticasone propionate/formoterol (FP/FORM) 125/5 µg; and (3) how inhalation profiles and flow rates affected FP/FORM deposition. Results: Total lung depositions (TLDs) following 1-, 3- and 5-s inhalations were 22.8%, 36.1% and 41.6% (metered dose), respectively, and central-to-peripheral deposition (C:P) ratios were 1.81, 0.86 and 0.61, respectively. TLD increased with increasing FPF, from ~8% at 10% FPF to ~36% at 40% FPF (metered dose); by contrast, MMAD had little effect on TLD, which was similar across MMADs (1.5–4.5 µm) at each FPF. FP/FORM deposited throughout central and peripheral airways with gradual (sinusoidal) and sharp (rapid) inhalations. TLD ranged from 35.8 to 44.0% (metered dose) for gradual and sharp inhalations at 30 and 60 L/min mean flow rates. Conclusions: These data provide important insights into the potential effects of inhalation characteristics (inhalation profile and duration) and aerosol formulation (FPF) on lung deposition of inhaled therapies. FRI thus represents a useful alternative to scintigraphy techniques. Future FRI studies will further our understanding of the deposition of inhaled drugs and help improve the management of asthma.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
21 |
14
|
Thillai M, Patvardhan C, Swietlik EM, McLellan T, De Backer J, Lanclus M, De Backer W, Ruggiero A. Functional respiratory imaging identifies redistribution of pulmonary blood flow in patients with COVID-19. Thorax 2020; 76:182-184. [PMID: 32859733 DOI: 10.1136/thoraxjnl-2020-215395] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 01/20/2023]
Abstract
An increasing observation is that some patients with COVID-19 have normal lung compliance but significant hypoxaemia different from typical acute respiratory distress syndrome (ARDS). We hypothesised that changes in pulmonary blood distribution may be partially responsible and used functional respiratory imaging on CT scans to calculate pulmonary blood volume. We found that patients with COVID-19 had significantly reduced blood volume in the smaller calibre blood vessels (here defined as <5 mm2 cross-sectional area) compared with matched ARDS patients and healthy controls. This suggests that using high levels of PEEP may not alone be enough to oxygenate these patients and that additional management strategies may be needed.
Collapse
|
Journal Article |
5 |
21 |
15
|
Hajian B, De Backer J, Vos W, Van Holsbeke C, Clukers J, De Backer W. Functional respiratory imaging (FRI) for optimizing therapy development and patient care. Expert Rev Respir Med 2018; 10:193-206. [PMID: 26731531 DOI: 10.1586/17476348.2016.1136216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional imaging techniques offer the possibility of improved visualization of anatomical structures such as; airways, lobe volumes and blood vessels. Computer-based flow simulations with a three-dimensional element add functionality to the images. By providing valuable detailed information about airway geometry, internal airflow distribution and inhalation profile, functional respiratory imaging can be of use routinely in the clinic. Three dimensional visualization allows for highly detailed follow-up in terms of disease progression or in assessing effects of interventions. Here, we explore the usefulness of functional respiratory imaging in different respiratory diseases. In patients with asthma and COPD, functional respiratory imaging has been used for phenotyping these patients, to predict the responder and non-responder phenotype and to evaluate different innovative therapeutic interventions.
Collapse
|
Review |
7 |
21 |
16
|
De Backer W, De Backer J, Vos W, Verlinden I, Van Holsbeke C, Clukers J, Hajian B, Siddiqui S, Jenkins M, Reisner C, Martin UJ. A randomized study using functional respiratory imaging to characterize bronchodilator effects of glycopyrrolate/formoterol fumarate delivered by a metered dose inhaler using co-suspension delivery technology in patients with COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:2673-2684. [PMID: 30214185 PMCID: PMC6124470 DOI: 10.2147/copd.s171707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Functional respiratory imaging (FRI) uses high-resolution computed tomography (HRCT) scans to assess changes in airway volume and resistance. Patients and methods In this randomized, double-blind, 2-week, crossover, Phase IIIB study, patients with moderate-to-severe COPD received twice-daily glycopyrrolate/formoterol fumarate delivered by a metered dose inhaler (GFF MDI, 18/9.6 μg) and placebo MDI, formulated using innovative co-suspension delivery technology. Co-primary endpoints included the following: specific image-based airway volume (siVaw) and specific image-based airway resistance (siRaw) at Day 15, measured using FRI. Secondary and other endpoints included the following: change from baseline in post-dose forced expiratory volume in 1 second (FEV1) and inspiratory capacity (IC; spirometry) and ratio to baseline in post-dose functional residual capacity (FRC) and residual volume (RV; body plethysmography). Results Twenty patients (46-78 years of age) were randomized and treated; of whom 19 completed the study. GFF MDI treatment increased siVaw by 75% and reduced siRaw by 71% vs placebo MDI (both P<0.0001). Image-based airway volume (iVaw) and image-based airway resistance (iRaw), without adjusting for lobe volume, demonstrated corresponding findings to the co-primary endpoint, as lobe volumes did not change with either treatment. Approximately 48% of the delivered dose of glycopyrronium and formoterol fumarate was estimated to be deposited in the lungs. Compared with placebo, GFF MDI treatment improved post-dose FEV1 and IC (443 mL and 454 mL, respectively; both P<0.001) and reduced FRC and RV (13% and 22%, respectively; both P<0.0001). There were no significant safety findings. Conclusion GFF MDI demonstrated significant, clinically meaningful benefits on FRI-based airway volume and resistance in patients with moderate-to-severe COPD. Benefits were associated with improvements in FEV1, IC, and hyperinflation. Clinical trial registration ClinicalTrials.gov: NCT02643082.
Collapse
|
Randomized Controlled Trial |
7 |
19 |
17
|
Hajian B, De Backer J, Sneyers C, Ferreira F, Barboza KC, Leemans G, Vos W, De Backer W. Pathophysiological mechanism of long-term noninvasive ventilation in stable hypercapnic patients with COPD using functional respiratory imaging. Int J Chron Obstruct Pulmon Dis 2017; 12:2197-2205. [PMID: 28814848 PMCID: PMC5546189 DOI: 10.2147/copd.s136412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Patients with severe COPD often develop chronic hypercapnic respiratory failure. Their prognosis worsens and they are more likely to develop exacerbations. This has major influence on the health-related quality of life. Currently, there is no information about the success of long-term noninvasive ventilation (NIV) among patients who receive NIV in acute settings. Also, little is known about the pathophysiological mechanism of NIV. Methods Ten Global Initiative for Obstructive Lung Disease stage III and IV COPD patients with respiratory failure who were hospitalized following acute exacerbation were treated with NIV using a Synchrony BiPAP device for 6 months. Arterial blood gases and lung function parameters were measured. Low-dose computed tomography of the thorax was performed and used for segmentation. Further analyses provided lobe volume, airway volume, and airway resistance, giving an overall functional description of the separate airways and lobes. Ventilation perfusion (VQ) was calculated. Patient-reported outcomes were evaluated. Results PaCO2 significantly improved from 50.03 mmHg at baseline to 44.75 mmHg after 1 month and 43.37 mmHg after 6 months (P=0.006). Subjects showed improvement in the 6-minute walk tests (6MWTs) by an average of 51 m (from 332 m at baseline to 359 m at 1 month and 383 m at 6 months). Patients demonstrated improvement in self-reported anxiety (P=0.018). The improvement in image-based VQ was positively associated with the 6MWT and the anxiety domain of the Severe Respiratory Insufficiency Questionnaire. Conclusion Though previous studies of long-term NIV have shown conflicting results, this study demonstrates that patients can benefit from long-term NIV treatment, resulting in improved VQ, gas exchange, and exercise tolerance.
Collapse
|
Journal Article |
8 |
16 |
18
|
Burrowes KS, De Backer J, Kumar H. Image-based computational fluid dynamics in the lung: virtual reality or new clinical practice? WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28608962 DOI: 10.1002/wsbm.1392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 11/05/2022]
Abstract
The development and implementation of personalized medicine is paramount to improving the efficiency and efficacy of patient care. In the respiratory system, function is largely dictated by the choreographed movement of air and blood to the gas exchange surface. The passage of air begins in the upper airways, either via the mouth or nose, and terminates at the alveolar interface, while blood flows from the heart to the alveoli and back again. Computational fluid dynamics (CFD) is a well-established tool for predicting fluid flows and pressure distributions within complex systems. Traditionally CFD has been used to aid in the effective or improved design of a system or device; however, it has become increasingly exploited in biological and medical-based applications further broadening the scope of this computational technique. In this review, we discuss the advancement in application of CFD to the respiratory system and the contributions CFD is currently making toward improving precision medicine. The key areas CFD has been applied to in the pulmonary system are in predicting fluid transport and aerosol distribution within the airways. Here we focus our discussion on fluid flows and in particular on image-based clinically focused CFD in the ventilatory system. We discuss studies spanning from the paranasal sinuses through the conducting airways down to the level of the alveolar airways. The combination of imaging and CFD is enabling improved device design in aerosol transport, improved biomarkers of lung function in clinical trials, and improved predictions and assessment of surgical interventions in the nasal sinuses. WIREs Syst Biol Med 2017, 9:e1392. doi: 10.1002/wsbm.1392 For further resources related to this article, please visit the WIREs website.
Collapse
|
Review |
8 |
16 |
19
|
Lanclus M, Clukers J, Van Holsbeke C, Vos W, Leemans G, Holbrechts B, Barboza K, De Backer W, De Backer J. Machine Learning Algorithms Utilizing Functional Respiratory Imaging May Predict COPD Exacerbations. Acad Radiol 2019; 26:1191-1199. [PMID: 30477949 DOI: 10.1016/j.acra.2018.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVES Acute chronic obstructive pulmonary disease exacerbations (AECOPD) have a significant negative impact on the quality of life and accelerate progression of the disease. Functional respiratory imaging (FRI) has the potential to better characterize this disease. The purpose of this study was to identify FRI parameters specific to AECOPD and assess their ability to predict future AECOPD, by use of machine learning algorithms, enabling a better understanding and quantification of disease manifestation and progression. MATERIALS AND METHODS A multicenter cohort of 62 patients with COPD was analyzed. FRI obtained from baseline high resolution CT data (unenhanced and volume gated), clinical, and pulmonary function test were analyzed and incorporated into machine learning algorithms. RESULTS A total of 11 baseline FRI parameters could significantly distinguish ( p < 0.05) the development of AECOPD from a stable period. In contrast, no baseline clinical or pulmonary function test parameters allowed significant classification. Furthermore, using Support Vector Machines, an accuracy of 80.65% and positive predictive value of 82.35% could be obtained by combining baseline FRI features such as total specific image-based airway volume and total specific image-based airway resistance, measured at functional residual capacity. Patients who developed an AECOPD, showed significantly smaller airway volumes and (hence) significantly higher airway resistances at baseline. CONCLUSION This study indicates that FRI is a sensitive tool (PPV 82.35%) for predicting future AECOPD on a patient specific level in contrast to classical clinical parameters.
Collapse
|
Multicenter Study |
6 |
16 |
20
|
Begg M, Hamblin JN, Jarvis E, Bradley G, Mark S, Michalovich D, Lennon M, Wajdner HE, Amour A, Wilson R, Saunders K, Tanaka R, Arai S, Tang T, Van Holsbeke C, De Backer J, Vos W, Titlestad IL, FitzGerald JM, Killian K, Bourbeau J, Poirier C, Maltais F, Cahn A, Hessel EM. Exploring PI3Kδ Molecular Pathways in Stable COPD and Following an Acute Exacerbation, Two Randomized Controlled Trials. Int J Chron Obstruct Pulmon Dis 2021; 16:1621-1636. [PMID: 34113094 PMCID: PMC8184158 DOI: 10.2147/copd.s309303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background Inhibition of phosphoinositide 3-kinase δ (PI3Kδ) exerts corrective effects on the dysregulated migration characteristics of neutrophils isolated from patients with chronic obstructive pulmonary disease (COPD). Objective To develop novel, induced sputum endpoints to demonstrate changes in neutrophil phenotype in the lung by administering nemiralisib, a potent and selective inhaled PI3Kδ inhibitor, to patients with stable COPD or patients with acute exacerbation (AE) of COPD. Methods In two randomized, double-blind, placebo-controlled clinical trials patients with A) stable COPD (N=28, randomized 3:1) or B) AECOPD (N=44, randomized 1:1) received treatment with inhaled nemiralisib (1mg). Endpoints included induced sputum at various time points before and during treatment for the measurement of transcriptomics (primary endpoint), inflammatory mediators, functional respiratory imaging (FRI), and spirometry. Results In stable COPD patients, the use of nemiralisib was associated with alterations in sputum neutrophil transcriptomics suggestive of an improvement in migration phenotype; however, the same nemiralisib-evoked effects were not observed in AECOPD. Inhibition of sputum inflammatory mediators was also observed in stable but not AECOPD patients. In contrast, a placebo-corrected improvement in forced expiratory volume in 1 sec of 136 mL (95% Credible Intervals -46, 315mL) with a probability that the true treatment ratio was >0% (Pr(θ>0)) of 93% was observed in AECOPD. However, FRI endpoints remained unchanged. Conclusion We provide evidence for nemiralisib-evoked changes in neutrophil migration phenotype in stable COPD but not AECOPD, despite improving lung function in the latter group. We conclude that induced sputum can be used for measuring evidence of alteration of neutrophil phenotype in stable patients, and our study provides a data set of the sputum transcriptomic changes during recovery from AECOPD.
Collapse
|
research-article |
4 |
15 |
21
|
Vos W, Hajian B, De Backer J, Van Holsbeke C, Vinchurkar S, Claes R, Hufkens A, Parizel PM, Bedert L, De Backer W. Functional respiratory imaging to assess the interaction between systemic roflumilast and inhaled ICS/LABA/LAMA. Int J Chron Obstruct Pulmon Dis 2016; 11:263-71. [PMID: 26917956 PMCID: PMC4745845 DOI: 10.2147/copd.s93830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Patients with COPD show a significant reduction of the lobar hyperinflation at the functional residual capacity level in the patients who improved >120 mL in forced expiratory volume in 1 second (FEV1) after 6 months of treatment with roflumilast in addition to inhaled corticosteroids (ICSs)/long-acting beta-2 agonists (LABAs)/long-acting muscarinic antagonists (LAMAs). Methods Functional respiratory imaging was used to quantify lobar hyperinflation, blood vessel density, ventilation, aerosol deposition, and bronchodilation. To investigate the exact mode of action of roflumilast, correlations between lobar and global measures have been tested using a mixed-model approach with nested random factors and Pearson correlation, respectively. Results The reduction in lobar hyperinflation appears to be associated with a larger blood vessel density in the respective lobes (t=−2.154, P=0.040); lobes with a higher percentage of blood vessels reduce more in hyperinflation in the responder group. Subsequently, it can be observed that lobes that reduce in hyperinflation after treatment are better ventilated (t=−5.368, P<0.001). Functional respiratory imaging (FRI)-based aerosol deposition showed that enhanced ventilation leads to more peripheral particle deposition of ICS/LABA/LAMA in the better-ventilated areas (t=2.407, P=0.024). Finally, the study showed that areas receiving more particles have increased FRI-based bronchodilation (t=2.564, P=0.017), leading to an increase in FEV1 (R=0.348, P=0.029). Conclusion The study demonstrated that orally administered roflumilast supports the reduction of regional hyperinflation in areas previously undertreated by inhalation medication. The local reduction in hyperinflation induces a redistribution of ventilation and aerosol deposition, leading to enhanced efficacy of the concomitant ICS/LABA/LAMA therapy. FRI appears to be a sensitive tool to describe the mode of action of novel compounds in chronic obstructive pulmonary disease. Future studies need to confirm the enhanced sensitivity and the potential of FRI parameters to act as surrogates for clinically relevant, but more difficult to measure, end points such as exacerbations.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
13 |
22
|
Usmani OS, Scichilone N, Mignot B, Belmans D, Van Holsbeke C, De Backer J, De Maria R, Cuoghi E, Topole E, Georges G. Airway Deposition of Extrafine Inhaled Triple Therapy in Patients with COPD: A Model Approach Based on Functional Respiratory Imaging Computer Simulations. Int J Chron Obstruct Pulmon Dis 2020; 15:2433-2440. [PMID: 33116458 PMCID: PMC7548261 DOI: 10.2147/copd.s269001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction There is a clear correlation between small airways dysfunction and poor clinical outcomes in patients with chronic obstructive pulmonary disease (COPD), and it is therefore important that inhalation therapy (both bronchodilator and anti-inflammatory) can deposit in the small airways. Two single-inhaler triple therapy (SITT) combinations are currently approved for the maintenance treatment of COPD: extrafine formulation beclomethasone dipropionate/formoterol fumarate/glycopyrronium bromide (BDP/FF/GB), and non-extrafine formulation fluticasone furoate/vilanterol/umeclidinium (FluF/VI/UMEC). This study evaluated the lung deposition of the inhaled corticosteroid (ICS), long-acting β2-agonist (LABA), and long-acting muscarinic antagonist (LAMA) components of these two SITTs. Materials and Methods Lung deposition was estimated in-silico using functional respiratory imaging, a validated technique that uses aerosol delivery performance profiles, patients' high-resolution computed tomography (HRCT) lung scans, and patient-derived inhalation profiles to simulate aerosol lung deposition. Results HRCT scan data from 20 patients with COPD were included in these analyses, who had post-bronchodilator forced expiratory volume in 1 second (FEV1) ranging from 19.3% to 66.0% predicted. For intrathoracic deposition (as a percentage of the emitted dose), deposition of the ICS component was higher from BDP/FF/GB than FluF/VI/UMEC; the two triple therapies had similar performance for both the LABA component and the LAMA component. Peripheral deposition of all three components was higher with BDP/FF/GB than FluF/VI/UMEC. Furthermore, the ratios of central to peripheral deposition for all three components of BDP/FF/GB were <1, indicating greater peripheral than central deposition (0.48±0.13, 0.48±0.13 and 0.49±0.13 for BDP, FF and GB, respectively; 1.96±0.84, 0.97±0.34 and 1.20±0.48 for FluF, VI and UMEC, respectively). Conclusions Peripheral (small airways) deposition of all three components (ICS, LABA, and LAMA) was higher from BDP/FF/GB than from FluF/VI/UMEC, based on profiles from patients with moderate to very severe COPD. This is consistent with the extrafine formulation of BDP/FF/GB.
Collapse
|
research-article |
5 |
12 |
23
|
Cahn A, Hamblin JN, Robertson J, Begg M, Jarvis E, Wilson R, Dear G, Leemereise C, Cui Y, Mizuma M, Montembault M, Van Holsbeke C, Vos W, De Backer W, De Backer J, Hessel EM. An Inhaled PI3Kδ Inhibitor Improves Recovery in Acutely Exacerbating COPD Patients: A Randomized Trial. Int J Chron Obstruct Pulmon Dis 2021; 16:1607-1619. [PMID: 34113093 PMCID: PMC8184151 DOI: 10.2147/copd.s309129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose This study evaluated the safety and efficacy of inhaled nemiralisib, a phosphoinositide 3-kinase δ (PI3Kδ) inhibitor, in patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD). Methods In this double-blind, placebo-controlled study, 126 patients (40–80 years with a post-bronchodilator forced expiratory volume in 1 sec (FEV1) ≤80% of predicted (previously documented)) were randomized 1:1 to once daily inhaled nemiralisib (1 mg) or placebo for 84 days, added to standard of care. The primary endpoint was specific imaging airway volume (siVaw) after 28 treatment days and was analyzed using a Bayesian repeated measures model (clintrials.gov: NCT02294734). Results A total of 126 patients were randomized to treatment; 55 on active treatment and 49 on placebo completed the study. When comparing nemiralisib and placebo-treated patients, an 18% placebo-corrected increase from baseline in distal siVaw (95% credible intervals (Cr I) (−1%, 42%)) was observed on Day 28. The probability that the true treatment ratio was >0% (Pr(θ>0)) was 96%, suggestive of a real treatment effect. Improvements were observed across all lung lobes. Patients treated with nemiralisib experienced a 107.3 mL improvement in posterior median FEV1 (change from baseline, 95% Cr I (−2.1, 215.5)) at day 84, compared with placebo. Adverse events were reported by 41 patients on placebo and 49 on nemiralisib, the most common being post-inhalation cough on nemiralisib (35%) vs placebo (3%). Conclusion These data show that addition of nemiralisib to usual care delivers more effective recovery from an acute exacerbation and improves lung function parameters including siVaw and FEV1. Although post-inhalation cough was identified, nemiralisib was otherwise well tolerated, providing a promising novel therapy for this acutely ill patient group.
Collapse
|
Randomized Controlled Trial |
4 |
10 |
24
|
Walsh SLF, De Backer J, Prosch H, Langs G, Calandriello L, Cottin V, Brown KK, Inoue Y, Tzilas V, Estes E. Towards the adoption of quantitative computed tomography in the management of interstitial lung disease. Eur Respir Rev 2024; 33:230055. [PMID: 38537949 PMCID: PMC10966471 DOI: 10.1183/16000617.0055-2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/31/2024] [Indexed: 03/29/2025] Open
Abstract
The shortcomings of qualitative visual assessment have led to the development of computer-based tools to characterise and quantify disease on high-resolution computed tomography (HRCT) in patients with interstitial lung diseases (ILDs). Quantitative CT (QCT) software enables quantification of patterns on HRCT with results that are objective, reproducible, sensitive to change and predictive of disease progression. Applications developed to provide a diagnosis or pattern classification are mainly based on artificial intelligence. Deep learning, which identifies patterns in high-dimensional data and maps them to segmentations or outcomes, can be used to identify the imaging patterns that most accurately predict disease progression. Optimisation of QCT software will require the implementation of protocol standards to generate data of sufficient quality for use in computerised applications and the identification of diagnostic, imaging and physiological features that are robustly associated with mortality for use as anchors in the development of algorithms. Consortia such as the Open Source Imaging Consortium have a key role to play in the collation of imaging and clinical data that can be used to identify digital imaging biomarkers that inform diagnosis, prognosis and response to therapy.
Collapse
|
Review |
1 |
9 |
25
|
Van Gaver H, Op de Beeck S, Dieltjens M, De Backer J, Verbraecken J, De Backer WA, Van de Heyning PH, Braem MJ, Vanderveken OM. Functional imaging improves patient selection for mandibular advancement device treatment outcome in sleep-disordered breathing: a prospective study. J Clin Sleep Med 2022; 18:739-750. [PMID: 34608859 PMCID: PMC8883076 DOI: 10.5664/jcsm.9694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Mandibular advancement devices (MADs) are a noninvasive treatment option for patients with obstructive sleep apnea (OSA) and act by increasing the upper airway volume. However, the exact therapeutic mechanism of action remains unclear. The aim of this study was to assess MAD mechanisms using functional imaging that combines imaging techniques and computational fluid dynamics and assess associations with treatment outcome. METHODS One hundred patients with OSA were prospectively included and treated with a custom-made MAD at a fixed 75% protrusion. A low-dose computed tomography scan was made with and without MADs for computational fluid dynamics analysis. Patients underwent a baseline and 3-month follow-up polysomnography to evaluate treatment efficacy. A reduction in apnea-hypopnea index ≥ 50% defined treatment response. RESULTS Overall, 71 patients completed both 3-month follow-up polysomnography and low-dose computed tomography scan with computational fluid dynamics analysis. MAD treatment significantly reduced the apnea-hypopnea index (16.5 [10.4-23.6] events/h to 9.1 [3.9-16.4] events/h; P < .001, median [quartile 1-quartile 3]) and significantly increased the total upper airway volume (8.6 [5.4-12.8] cm3 vs 10.7 [6.4-15.4] cm3; P = .003), especially the velopharyngeal volume (2.1 [0.5-4.1] cm3 vs 3.3 [1.8-6.0] cm3; P < .001). However, subanalyses in responders and nonresponders only showed a significant increase in the total upper airway volume in responders, not in nonresponders. CONCLUSIONS MAD acts by increasing the total upper airway volume, predominantly due to an increase in the velopharyngeal volume. Responders showed a significant increase in the total upper airway volume with MAD treatment, while there was no significant increase in nonresponders. Findings add evidence to implement functional imaging using computational fluid dynamics in routine MAD outcome prediction. CLINICAL TRIAL REGISTRATION Registry: ClinicalTrials.gov; Name: Predicting Therapeutic Outcome of Mandibular Advancement Device Treatment in Obstructive Sleep Apnea; URL: https://clinicaltrials.gov/ct2/show/NCT01532050; Identifier: NCT01532050. CITATION Van Gaver H, Op de Beeck S, Dieltjens M, et al. Functional imaging improves patient selection for mandibular advancement device treatment outcome in sleep-disordered breathing: a prospective study. J Clin Sleep Med. 2022;18(3):739-750.
Collapse
|
research-article |
3 |
9 |