1
|
Lawson JE, Douglas MG. Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae. Isolation and analysis of AAC2. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68111-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
37 |
134 |
2
|
Nelson DR, Lawson JE, Klingenberg M, Douglas MG. Site-directed mutagenesis of the yeast mitochondrial ADP/ATP translocator. Six arginines and one lysine are essential. J Mol Biol 1993; 230:1159-70. [PMID: 8487299 DOI: 10.1006/jmbi.1993.1233] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ADP/ATP translocator mediates adenine nucleotide exchange across the inner mitochondrial membrane. ADP/ATP exchange is essential when yeast are grown on a non-fermentable carbon source such as glycerol, but it is not required for growth on glucose. Failure to grow on glycerol is therefore a phenotypic indicator of protein function, and it has been used here to screen site-directed mutants to identify functionally important amino acids in the yeast adenine nucleotide translocator (AAC2). Single mutations of all four charged amino acids in the transmembrane segments of AAC2 (K38A, R96D, R96H, R96L, R96P, R204L, R294A) resulted in loss of function, as did mutations in the matrix arginine cluster (R252I, R253I, R254I). Seven other residues were mutated without affecting growth on glycerol (C73S, C244S, C271S, K179M, K182I, P247G, W235F). The non-functional mutants have been used to select intragenic suppressors to gain further insight into the structure of this membrane transport protein.
Collapse
|
Comparative Study |
32 |
94 |
3
|
Lawson JE, Niu XD, Browning KS, Trong HL, Yan J, Reed LJ. Molecular cloning and expression of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase and sequence similarity with protein phosphatase 2C. Biochemistry 1993; 32:8987-93. [PMID: 8396421 DOI: 10.1021/bi00086a002] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
After many unsuccessful attempts to detect cDNA encoding the catalytic subunit of bovine pyruvate dehydrogenase phosphatase (PDPc) in bovine cDNA libraries, an approach based on the polymerase chain reaction (PCR) was undertaken. Overlapping DNA fragments were generated by PCR from bovine genomic DNA and from cDNA synthesized from total RNA with synthetic oligonucleotide primers on the basis of experimentally determined amino acid sequences. The DNA fragments were subcloned and sequenced. The complete cDNA is 1900 base pairs in length and contains an open reading frame of 1614 nucleotides encoding a putative presequence of 71 amino acid residues and a mature protein of 467 residues with a calculated M(r) of 52,625. Hybridization analysis showed a single mRNA transcript of about 2.0 kilobases. Comparison of the deduced amino acid sequences of the mitochondrial PDPc and the rat cytosolic protein phosphatase 2C indicates that these protein serine/threonine phosphatases evolved from a common ancestor. The mature form of PDPc was coexpressed in Escherichia coli with the chaperonin proteins groEL and groES. The recombinant protein (rPDPc) was purified to near homogeneity. Its activity toward the bovine 32P-labeled pyruvate dehydrogenase complex was Mg(2+)-dependent and Ca(2+)-stimulated and comparable to that of native bovine PDP. An active, truncated form of rPDPc, with M(r) approximately 45,000, was produced in variable amounts during growth of cells and/or during the purification procedure.
Collapse
|
Comparative Study |
32 |
68 |
4
|
Lawson JE, Behal RH, Reed LJ. Disruption and mutagenesis of the Saccharomyces cerevisiae PDX1 gene encoding the protein X component of the pyruvate dehydrogenase complex. Biochemistry 1991; 30:2834-9. [PMID: 2007123 DOI: 10.1021/bi00225a015] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disruption of the PDX1 gene encoding the protein X component of the mitochondrial pyruvate dehydrogenase (PDH) complex in Saccharomyces cerevisiae did not affect viability of the cells. However, extracts of mitochondria from the mutant, in contrast to extracts of wild-type mitochondria, did not catalyze a CoA- and NAD(+)-linked oxidation of pyruvate. The PDH complex isolated from the mutant cells contained pyruvate dehydrogenase (E1 alpha + E1 beta) and dihydrolipoamide acetyltransferase (E2) but lacked protein X and dihydrolipoamide dehydrogenase (E3). Mutant cells transformed with the gene for protein X on a unit-copy plasmid produced a PDH complex that contained protein X and E3, as well as E1 alpha, E1 beta, and E2, and exhibited overall activity similar to that of the wild-type PDH complex. These observations indicate that protein X is not involved in assembly of the E2 core nor is it an integral part of the E2 core. Rather, protein X apparently plays a structural role in the PDH complex; i.e., it binds and positions E3 to the E2 core, and this specific binding is essential for a functional PDH complex. Additional evidence for this conclusion was obtained with deletion mutations. Deletion of most of the lipoyl domain (residues 6-80) of protein X had little effect on the overall activity of the PDH complex. This observation indicates that the lipoyl domain, and its covalently bound lipoyl moiety, is not essential for protein X function. However, deletion of the putative subunit binding domain (residues approximately 144-180) of protein X resulted in loss of high-affinity binding of E3 and concomitant loss of overall activity of the PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
34 |
61 |
5
|
Zhou ZH, Liao W, Cheng RH, Lawson JE, McCarthy DB, Reed LJ, Stoops JK. Direct evidence for the size and conformational variability of the pyruvate dehydrogenase complex revealed by three-dimensional electron microscopy. The "breathing" core and its functional relationship to protein dynamics. J Biol Chem 2001; 276:21704-13. [PMID: 11285267 DOI: 10.1074/jbc.m101765200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural studies by three-dimensional electron microscopy of the Saccharomyces cerevisiae truncated dihydrolipoamide acetyltransferase (tE(2)) component of the pyruvate dehydrogenase complex reveal an extraordinary example of protein dynamics. The tE(2) forms a 60-subunit core with the morphology of a pentagonal dodecahedron and consists of 20 cone-shaped trimers interconnected by 30 bridges. Frozen-hydrated and stained molecules of tE(2) in the same field vary in size approximately 20%. Analyses of the data show that the size distribution is bell-shaped, and there is an approximately 40-A difference in the diameter of the smallest and largest structures that corresponds to approximately 14 A of variation in the length of the bridge between interconnected trimers. Companion studies of mature E(2) show that the complex of the intact subunit exhibits a similar size variation. The x-ray structure of Bacillus stearothermophilus tE(2) shows that there is an approximately 10-A gap between adjacent trimers and that the trimers are interconnected by the potentially flexible C-terminal ends of two adjacent subunits. We propose that this springlike feature is involved in a thermally driven expansion and contraction of the core and, since it appears to be a common feature in the phylogeny of pyruvate dehydrogenase complexes, protein dynamics is an integral component of the function of these multienzyme complexes.
Collapse
|
|
24 |
53 |
6
|
Lawson JE, Park SH, Mattison AR, Yan J, Reed LJ. Cloning, expression, and properties of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase. J Biol Chem 1997; 272:31625-9. [PMID: 9395502 DOI: 10.1074/jbc.272.50.31625] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
cDNA encoding the regulatory subunit of bovine mitochondrial pyruvate dehydrogenase phosphatase (PDPr) has been cloned. Overlapping cDNA fragments were generated by the polymerase chain reaction from bovine genomic DNA and from cDNA synthesized from bovine poly(A)+ RNA and total RNA. The complete cDNA (2885 base pairs) contains an open reading frame of 2634 nucleotides encoding a putative presequence of 31 amino acid residues and a mature protein of 847 residues with a calculated Mr of 95,656. This value is in agreement with the molecular mass of native PDPr (95,800 +/- 200 Da) determined by matrix-assisted laser desorption-ionization mass spectrometry. The mature form of PDPr was expressed in Escherichia coli as a maltose-binding protein fusion, and the recombinant protein was purified to near homogeneity. It exhibited properties characteristic of the native PDPr, including recognition by antibodies against native bovine PDPr, ability to decrease the sensitivity of the catalytic subunit to Mg2+, and reversal of this inhibitory effect by the polyamine spermine. A BLAST search of protein data bases revealed that PDPr is distantly related to the mitochondrial flavoprotein dimethylglycine dehydrogenase, which functions in choline degradation.
Collapse
|
Comparative Study |
28 |
29 |
7
|
Yan J, Lawson JE, Reed LJ. Role of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase. Proc Natl Acad Sci U S A 1996; 93:4953-6. [PMID: 8643510 PMCID: PMC39386 DOI: 10.1073/pnas.93.10.4953] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bovine pyruvate dehydrogenase phosphatase (PDP) is a Mg2+-dependent and Ca2+-stimulated heterodimer that is a member of the protein phosphatase 2C family and is localized to mitochondria. Insight into the function of the regulatory subunit of PDP (PDPr) has been gained. It decreases the sensitivity of the catalytic subunit of PDP (PDPc) to Mg2+. The apparent Km of PDPc for Mg2+ is increased about 5-fold, from about 0.35 mM to 1.6 mM. The polyamine spermine increases the sensitivity of PDP but not PDPc to Mg2+, apparently by interacting with PDPr. PDPc but not PDP can use the phosphopeptide RRAT(P)VA as a substrate. These observations are interpreted to indicate that PDPr blocks or distorts the active site of PDPc and that spermine produces a conformational change in PDPr that reverses its inhibitory effect. These findings suggest that PDPr may be involved in the insulin-induced activation of the mitochondrial PDP in adipose tissue, which is characterized by a decrease in its apparent Km for Mg2+.
Collapse
|
research-article |
29 |
29 |
8
|
Lawson JE, Niu XD, Reed LJ. Functional analysis of the domains of dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Biochemistry 1991; 30:11249-54. [PMID: 1958662 DOI: 10.1021/bi00111a009] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The LAT1 gene encoding the dihydrolipoamide acetyltransferase component (E2) of the pyruvate dehydrogenase (PDH) complex from Saccharomyces cerevisiae was disrupted, and the lat1 null mutant was used to analyze the structure and function of the domains of E2. Disruption of LAT1 did not affect the viability of the cells. Apparently, flux through the PDH complex is not required for growth of S. cerevisiae under the conditions tested. The wild-type and mutant PDH complexes were purified to near-homogeneity and were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and enzyme assays. Mutant cells transformed with LAT1 on a unit-copy plasmid produced a PDH complex very similar to that of the wild-type PDH complex. Deletion of most of the putative lipoyl domain (residues 8-84) resulted in loss of about 85% of the overall activity, but did not affect the acetyltransferase activity of E2 or the binding of pyruvate dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), and protein X to the truncated E2. Similar results were obtained by deleting the lipoyl domain plus the first hinge region (residues 8-145) and by replacing lysine-47, the putative site of covalent attachment of the lipoyl moiety, by arginine. Although the lipoyl domain of E2 and/or its covalently bound lipoyl moiety were removed, the mutant complexes retained 12-15% of the overall activity of the wild-type PDH complex. Replacement of both lysine-47 in E2 and the equivalent lysine-43 in protein X by arginine resulted in complete loss of overall activity of the mutant PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
34 |
28 |
9
|
Knapp JE, Carroll D, Lawson JE, Ernst SR, Reed LJ, Hackert ML. Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. Protein Sci 2000; 9:37-48. [PMID: 10739245 PMCID: PMC2144448 DOI: 10.1110/ps.9.1.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The dihydrolipoamide succinyltransferase (E2o) component of the alpha-ketoglutarate dehydrogenase complex catalyzes the transfer of a succinyl group from the S-succinyldihydrolipoyl moiety to coenzyme A. E2o is normally a 24-mer, but is found as a trimer when E2o is expressed with a C-terminal [His]6 tag. The crystal structure of the trimeric form of the catalytic domain (CD) of the Escherichia coli E2o has been solved to 3.0 A resolution using the Molecular Replacement method. The refined model contains an intact trimer in the asymmetric unit and has an R-factor of 0.257 (Rfree = 0.286) for 18,699 reflections between 10.0 and 3.0 A resolution. The core of tE2oCD (residues 187-396) superimposes onto that of the cubic E2oCD with an RMS difference of 0.4 A for all main-chain atoms. The C-terminal end of tE2oCD (residues 397-404) rotates by an average of 37 degrees compared to cubic E2oCD, disrupting the normal twofold interface. Despite the alteration of quaternary structure, the active site of tE2oCD shows no significant differences from that of the cubic E2oCD, although several side chains in the active site are more ordered in the trimeric form of E2oCD. Analysis of the available sequence data suggests that the majority of E2 components have active sites that resemble that of E. coli E2oCD. The remaining E2 components can be divided into three groups based on active-site sequence similarity. Analysis of the surface properties of both crystal forms of E. coli E2oCD suggests key residues that may be involved in the protein-protein contacts that occur between the catalytic and lipoyl domains of E2o.
Collapse
|
research-article |
25 |
27 |
10
|
Miran SG, Lawson JE, Reed LJ. Characterization of PDH beta 1, the structural gene for the pyruvate dehydrogenase beta subunit from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1993; 90:1252-6. [PMID: 8433986 PMCID: PMC45850 DOI: 10.1073/pnas.90.4.1252] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gene encoding the pyruvate dehydrogenase (PDH) beta subunit (E1 beta) of the PDH complex from Saccharomyces cerevisiae has been cloned, sequenced, disrupted, and expressed. Two overlapping DNA fragments were generated from a yeast genomic DNA library by the polymerase chain reaction with synthetic oligonucleotide primers based on amino acid sequences of the yeast and human E1 beta subunits. The DNA fragments were subcloned and sequenced. The composite sequence has an open reading frame of 1098 nucleotides encoding a putative presequence of 33 amino acid residues and a mature protein of 333 residues with a calculated M(r) = 36,486. Yeast and human E1 beta exhibit 62% sequence identity. The size of the mRNA is approximately 1.5 kilobases. Hybridization analysis showed that the E1 beta gene (PDH beta 1) is localized to chromosome II. Disruption of PDH beta 1 is not lethal under vegetative growth conditions. The null mutant transformed with PDH beta 1 on a unit-copy plasmid produced mature E1 beta and a functional PDH complex.
Collapse
|
research-article |
32 |
21 |
11
|
Dykstra SJ, Minielli JL, Lawson JE, Ferguson HC, Dungan KW. Lysergic acid and quinidine analogs. 2-(o-Acylaminophenethyl)piperidines. J Med Chem 1973; 16:1015-20. [PMID: 4745503 DOI: 10.1021/jm00267a012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
|
52 |
16 |
12
|
Moberly JB, Xu J, Desjardins PJ, Daniels SE, Bandy DP, Lawson JE, Link AJ, Truitt KE. A randomized, double-blind, celecoxib- and placebo-controlled study of the effectiveness of CS-706 in acute postoperative dental pain. Clin Ther 2007; 29:399-412. [PMID: 17577461 DOI: 10.1016/s0149-2918(07)80078-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2006] [Indexed: 01/21/2023]
Abstract
BACKGROUND CS-706 is a cyclooxygenase-2 (COX-2)-selective inhibitor with an in vitro selectivity ratio (COX-1:COX-2) similar to that of celecoxib. It has exhibited analgesic, anti-inflammatory, and antitumor properties in animal models. OBJECTIVES This study evaluated the tolerability of single doses of CS-706 and compared the analgesic efficacy of CS-706 with that of celecoxib and placebo in the dental pain model. METHODS This was a randomized, double-blind, double-dummy, active- and placebo-controlled study. Healthy male and female subjects with moderate to severe pain intensity (PI) after dental surgery were randomized ( approximately 50 per group) to receive a single oral dose of CS-706 10, 50, 100, or 200 mg; celecoxib 400 mg; or placebo. PI and pain relief (PR) were measured on categorical and visual analog scales through 24 hours after the dose. The primary efficacy variable was the time-weighted sum of PR scores at 4 hours after the dose (TOPAR4). The onset of analgesia was assessed by calculating the pain intensity difference (PID). Perceptible and meaningful pain relief were assessed using a 2-stopwatch method. RESULTS The majority of subjects were female (62.0%) and white (59.5%). Subjects' mean (SD) age was 22.6 (3.9) years, and their mean body mass index was 25.3 (5.1) kg/m(2). All doses of CS-706 were associated with significant analgesic efficacy compared with placebo based on the primary end point, TOPAR4 (P<0.001), and on all secondary end points (P<0.05, comparisons of all CS-706 doses vs placebo) with the exception of time to 100% PR for CS-706 10 mg. Single 50-, 100-, and 200-mg doses of CS-706 also were significantly more effective than celecoxib for TOPAR4 (P=0.036, P=0.004, and P=0.006, respectively). The onset of analgesia (PID >or= 1) for all CS-706 doses occurred within 1 hour after dosing (P<0.001 vs placebo). The median duration of analgesia, measured as the time to administration of rescue medication, was significantly greater for all doses of CS-706 compared with placebo (5.7 hours for CS-706 10 mg, >24 hours for CS-706 50, 100, and 200 mg, and 1.7 hours for placebo; P<0.001 for CS-706 50, 100, and 200 mg). These data suggest that once-daily administration of CS-706 may be effective in providing relief of acute pain. The incidence of adverse events was similar among all treatment groups. Adverse events occurring in >or= 5 % of subjects in any treatment group were nausea, vomiting, dry socket, dizziness, headache, and paresthesia. CONCLUSION Single doses of CS-706 had significant analgesic efficacy compared with celecoxib and placebo in the relief of postoperative dental pain in the healthy subjects enrolled in this study.
Collapse
|
|
18 |
11 |
13
|
Lawson JE, Deters DW. Identification and isolation of the cytochrome oxidase subunit II gene in mitochondria of the yeast Hansenula saturnus. Curr Genet 1985; 9:345-50. [PMID: 2836089 DOI: 10.1007/bf00421604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial DNA from the petite negative yeast Hansenula saturnus has been isolated and sized by digestion with restriction enzymes. The size of the mitochondrial genome is approximately 47 kb. The gene for subunit II of cytochrome oxidase was localized in the genome by Southern blotting using a [32P]-labeled probe containing the subunit II gene of the yeast Saccharomyces cerevisiae. The probe hybridized to a 1.7 kb HindIII-BamHI fragment under stringent conditions (65 degrees C), indicating a high degree of homology between the S. cerevisiae and H. saturnus mitochondrial DNA fragments. The 1.7 kb fragment from H. saturnus was cloned into pBR322 and physically mapped. The map was used to obtain the nucleotide sequence of the subunit II gene (Lawson and Deters presented in the accompanying paper).
Collapse
|
|
40 |
6 |
14
|
Lawson JE, Deters DW. Nucleotide sequence of the mitochondrial cytochrome oxidase subunit II gene in the yeast Hansenula saturnus. Curr Genet 1985; 9:351-60. [PMID: 2836090 DOI: 10.1007/bf00421605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gene for subunit II of cytochrome oxidase in the yeast Hansenula saturnus was previously shown to be located on a 1.7 kb HindIII-BamHI fragment of mitochondrial DNA (Lawson and Deters, accompanying paper). In this paper, we report the nucleotide sequence of a large part of this fragment, covering the coding region of the subunit II gene, designated coxII, and its 5' and 3' flanking regions. The coding region of the coxII gene consists of a continuous open reading frame, 744 nucleotides long, containing 6 in frame TGA codons. Examination of the sequence and alignment with known homologous gene sequences of other organisms indicates that TGA codes for tryptophan in H. saturnus mitochondria as it does in several other mitochondria. Despite considerable homology to subunit II of Saccharomyces cerevisiae, there are 9 codons used in coxII that are not used in the corresponding S. cerevisiae gene. CTT, which is believed to code for threonine in S. cerevisiae mitochondria, appears 3 times in coxII and probably codes for leucine. While the CGN family is rarely, if ever, used in S. cerevisiae mitochondria, CGT appears 4 times in coxII and probably codes for arginine. The deduced amino acid sequence, excluding the first ten amino acids at the N-terminus, is 81% homologous to the amino acid sequence of the S. cerevisiae subunit II protein. The first ten amino acids at the N-terminus are not homologous to the N-terminus of the S. cerevisiae protein but are highly homologous to the first ten amino acids of the deduced amino acid sequence of subunit II of Neurospora crassa. Minor variations of a transcription initiation signal and an end of message or processing signal reported in S. cerevisiae are found in the regions flanking the H. saturnus coxII gene. The subunit II gene contains numerous symmetrical elements, i.e. palindromes, inverted repeats, and direct repeats. Some of these have conserved counterparts in the S. cerevisiae subunit II gene, suggesting that they may be functionally or structurally important.
Collapse
|
|
40 |
4 |
15
|
Bailey DR, Gilbert RP, Lawson JE. Postweaning growth of unselected Hereford and Angus cattle fed two different diets. J Anim Sci 1991; 69:2403-12. [PMID: 1885358 DOI: 10.2527/1991.6962403x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two unselected herds of purebred Hereford and Angus cattle were created and their progeny evaluated during a 4-yr period (1964 to 1967) for 168-d postweaning gain when they were fed either a high- or medium-energy diet. Birth weight and 200-d adjusted weaning weight also were measured and the importance of sire x diet interactions for postweaning gain examined. Year effects were significant (P less than .001) for all traits in Herefords and for postweaning gain in Angus. Postweaning gain of both breeds increased in successive years, but no trend was observed for birth and 200-d weights. Bulls were heavier than heifers (P less than .05) for all three traits in both breeds. Hereford and Angus calves receiving the high-energy diet gained more (P less than .001) than their contemporaries fed the medium-energy diet. Sire differences were significant for birth weight in Herefords and for all three traits in Angus. Sire x diet interactions were not significant for postweaning gain in either breed. Genetic correlations were calculated by two methods: the two-way ANOVA approach using sire and sire x diet interaction variance components and the one-way ANOVA approach in which gains by progeny of each sire on each diet were considered to be two distinct traits. The genetic correlations for gain in Herefords could not be estimated by either method because of negative sire variance component estimates. The genetic correlations for gain in Angus were 1.08 for the two-way ANOVA method and 1.43 +/- .64 for the one-way ANOVA method. These results indicate that sires ranked the same based on progeny performance when fed either diet.
Collapse
|
|
34 |
4 |
16
|
Reed LJ, Lawson JE, Niu XD, Yazdi MA, Fussey SP. Biochemical and molecular genetic aspects of eukaryotic pyruvate dehydrogenase multienzyme complexes. J Nutr Sci Vitaminol (Tokyo) 1992; Spec No:46-51. [PMID: 1297788 DOI: 10.3177/jnsv.38.special_46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The alpha-keto acid dehydrogenase multienzyme complexes play central roles in metabolism, are major sites of regulation, and are clinically important. Genes and cDNAs encoding the components of these complexes have been cloned and sequenced. Protein engineering and molecular cloning experiments are providing new insight into organization, structure-function relationships, and the molecular basis of genetic defects in these multienzyme complexes.
Collapse
|
Review |
33 |
4 |
17
|
Lawson JE, Dennis RD, Majewski RF, Gallo DG. Diarylcyclobutane analogs of diethylstilbestrol. J Med Chem 1974; 17:383-6. [PMID: 4830535 DOI: 10.1021/jm00250a001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
Comparative Study |
51 |
3 |
18
|
Lawson JE, Gawaz M, Klingenberg M, Douglas MG. Structure-function studies of adenine nucleotide transport in mitochondria. I. Construction and genetic analysis of yeast mutants encoding the ADP/ATP carrier protein of mitochondria. J Biol Chem 1990; 265:14195-201. [PMID: 2167308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gene encoding the major ADP/ATP carrier in yeast AAC2 (pet9; Lawson, J., and Douglas, M. (1988) J. Biol. Chem. 263, 14812-14818) has been disrupted (delta AAC2) by itself and in combination with a disruption of a second translocator gene AAC1 (delta AAC1). Disruption of AAC2 like the pet9 mutation renders yeast unable to grow on a nonfermentable carbon source. The AAC1 AAC2 double disruption exhibits a phenotype identical to the AAC2. This provides the host strain for the analysis of point mutations in the AAC protein. We have initiated this structure-function analysis by characterizing and confirming that the pet9 mutation is a G to A transition resulting in an arginine to histidine change at position 96. Site-directed replacements at Arg96 confirm its essential function for growth on a nonfermentable carbon source. These data also suggest that in the absence of functional AAC1 and AAC2 gene products, adenine nucleotide transport across the mitochondrial inner membrane must occur by an as yet unidentified translocator or translocation mechanism or that within these cells separate intra- and extramitochondrial adenine nucleotide pools can exist to support growth.
Collapse
|
|
35 |
|
19
|
Lawson JE, Douglas MG. Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae. Isolation and analysis of AAC2. J Biol Chem 1988; 263:14812-8. [PMID: 2844786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genetic and biochemical analysis of Saccharomyces cerevisiae containing a disruption of the nuclear gene (AAC1) encoding the mitochondrial ADP/ATP carrier has revealed a second gene for this protein. The second gene, designated AAC2, has been isolated by genetic complementation and sequenced. AAC2 contains a 954-base pair open reading frame coding for a protein of 318 amino acids which is highly homologous to the AAC1 gene product except that it is nine amino acids longer at the NH2 terminus. The two yeast genes are highly conserved at the level of DNA and protein and share identity with the ADP/ATP carriers from other organisms. Both genes complement an ADP/ATP carrier defect (op1 or pet9). However, the newly isolated gene AAC2 need be present only in one or two copies while the previously isolated AAC1 gene must be present in multiple copies to support growth dependent on a functional carrier protein. This gene dosage-dependent complementation combined with the high degree of conservation suggest that these two functionally equivalent genes may be differentially expressed.
Collapse
|
|
37 |
|
20
|
Lawson JE, Migdal SD, Rosenberg JC, Mc Donald FD. Recovery following prolonged postoperative renal failure. THE JOURNAL OF THE AMERICAN OSTEOPATHIC ASSOCIATION 1981; 80:403-4. [PMID: 7263328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
Case Reports |
44 |
|
21
|
Lawson JE. Hypertensive emergencies. THE JOURNAL OF THE AMERICAN OSTEOPATHIC ASSOCIATION 1983; 82:360-2. [PMID: 6826393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
42 |
|