1
|
James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 1996; 144:1425-36. [PMID: 8978031 PMCID: PMC1207695 DOI: 10.1093/genetics/144.4.1425] [Citation(s) in RCA: 2154] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The two-hybrid system is a powerful technique for detecting protein-protein interactions that utilizes the well-developed molecular genetics of the yeast Saccharomyces cerevisiae. However, the full potential of this technique has not been realized due to limitations imposed by the components available for use in the system. These limitations include unwieldy plasmid vectors, incomplete or poorly designed two-hybrid libraries, and host strains that result in the selection of large numbers of false positives. We have used a novel multienzyme approach to generate a set of highly representative genomic libraries from S. cerevisiae. In addition, a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter. This host strain is extremely sensitive to weak interactions and eliminates nearly all false positives using simple plate assays. Improved vectors were also constructed that simplify the construction of the gene fusions necessary for the two-hybrid system. Our analysis indicates that the libraries and host strain provide significant improvements in both the number of interacting clones identified and the efficiency of two-hybrid selections.
Collapse
|
research-article |
29 |
2154 |
2
|
Robarge KD, Brunton SA, Castanedo GM, Cui Y, Dina MS, Goldsmith R, Gould SE, Guichert O, Gunzner JL, Halladay J, Jia W, Khojasteh C, Koehler MFT, Kotkow K, La H, Lalonde RL, Lau K, Lee L, Marshall D, Marsters JC, Murray LJ, Qian C, Rubin LL, Salphati L, Stanley MS, Stibbard JHA, Sutherlin DP, Ubhayaker S, Wang S, Wong S, Xie M. GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 2009; 19:5576-81. [PMID: 19716296 DOI: 10.1016/j.bmcl.2009.08.049] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/09/2009] [Accepted: 08/11/2009] [Indexed: 12/14/2022]
Abstract
SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.
Collapse
|
Journal Article |
16 |
299 |
3
|
Flygare JA, Beresini M, Budha N, Chan H, Chan IT, Cheeti S, Cohen F, Deshayes K, Doerner K, Eckhardt SG, Elliott LO, Feng B, Franklin MC, Reisner SF, Gazzard L, Halladay J, Hymowitz SG, La H, LoRusso P, Maurer B, Murray L, Plise E, Quan C, Stephan JP, Young SG, Tom J, Tsui V, Um J, Varfolomeev E, Vucic D, Wagner AJ, Wallweber HJA, Wang L, Ware J, Wen Z, Wong H, Wong JM, Wong M, Wong S, Yu R, Zobel K, Fairbrother WJ. Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem 2012; 55:4101-13. [PMID: 22413863 DOI: 10.1021/jm300060k] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of compounds were designed and synthesized as antagonists of cIAP1/2, ML-IAP, and XIAP based on the N-terminus, AVPI, of mature Smac. Compound 1 (GDC-0152) has the best profile of these compounds; it binds to the XIAP BIR3 domain, the BIR domain of ML-IAP, and the BIR3 domains of cIAP1 and cIAP2 with K(i) values of 28, 14, 17, and 43 nM, respectively. These compounds promote degradation of cIAP1, induce activation of caspase-3/7, and lead to decreased viability of breast cancer cells without affecting normal mammary epithelial cells. Compound 1 inhibits tumor growth when dosed orally in the MDA-MB-231 breast cancer xenograft model. Compound 1 was advanced to human clinical trials, and it exhibited linear pharmacokinetics over the dose range (0.049 to 1.48 mg/kg) tested. Mean plasma clearance in humans was 9 ± 3 mL/min/kg, and the volume of distribution was 0.6 ± 0.2 L/kg.
Collapse
|
Journal Article |
13 |
186 |
4
|
Estrada AA, Chan BK, Baker-Glenn C, Beresford A, Burdick DJ, Chambers M, Chen H, Dominguez SL, Dotson J, Drummond J, Flagella M, Fuji R, Gill A, Halladay J, Harris SF, Heffron TP, Kleinheinz T, Lee DW, Pichon CEL, Liu X, Lyssikatos JP, Medhurst AD, Moffat JG, Nash K, Scearce-Levie K, Sheng Z, Shore DG, Wong S, Zhang S, Zhang X, Zhu H, Sweeney ZK. Discovery of Highly Potent, Selective, and Brain-Penetrant Aminopyrazole Leucine-Rich Repeat Kinase 2 (LRRK2) Small Molecule Inhibitors. J Med Chem 2014; 57:921-36. [DOI: 10.1021/jm401654j] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
11 |
86 |
5
|
Liang J, Tsui V, Van Abbema A, Bao L, Barrett K, Beresini M, Berezhkovskiy L, Blair WS, Chang C, Driscoll J, Eigenbrot C, Ghilardi N, Gibbons P, Halladay J, Johnson A, Kohli PB, Lai Y, Liimatta M, Mantik P, Menghrajani K, Murray J, Sambrone A, Xiao Y, Shia S, Shin Y, Smith J, Sohn S, Stanley M, Ultsch M, Zhang B, Wu LC, Magnuson S. Lead identification of novel and selective TYK2 inhibitors. Eur J Med Chem 2013; 67:175-87. [PMID: 23867602 DOI: 10.1016/j.ejmech.2013.03.070] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022]
Abstract
A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as psoriasis and inflammatory bowel diseases (IBD), by selective targeting of TYK2. Hit triage, following a high-throughput screen for TYK2 inhibitors, revealed pyridine 1 as a promising starting point for lead identification. Initial expansion of 3 separate regions of the molecule led to eventual identification of cyclopropyl amide 46, a potent lead analog with good kinase selectivity, physicochemical properties, and pharmacokinetic profile. Analysis of the binding modes of the series in TYK2 and JAK2 crystal structures revealed key interactions leading to good TYK2 potency and design options for future optimization of selectivity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
72 |
6
|
Liang J, van Abbema A, Balazs M, Barrett K, Berezhkovsky L, Blair W, Chang C, Delarosa D, DeVoss J, Driscoll J, Eigenbrot C, Ghilardi N, Gibbons P, Halladay J, Johnson A, Kohli PB, Lai Y, Liu Y, Lyssikatos J, Mantik P, Menghrajani K, Murray J, Peng I, Sambrone A, Shia S, Shin Y, Smith J, Sohn S, Tsui V, Ultsch M, Wu LC, Xiao Y, Yang W, Young J, Zhang B, Zhu BY, Magnuson S. Lead optimization of a 4-aminopyridine benzamide scaffold to identify potent, selective, and orally bioavailable TYK2 inhibitors. J Med Chem 2013; 56:4521-36. [PMID: 23668484 DOI: 10.1021/jm400266t] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein we report our lead optimization effort to identify potent, selective, and orally bioavailable TYK2 inhibitors, starting with lead molecule 3. We used structure-based design to discover 2,6-dichloro-4-cyanophenyl and (1R,2R)-2-fluorocyclopropylamide modifications, each of which exhibited improved TYK2 potency and JAK1 and JAK2 selectivity relative to 3. Further optimization eventually led to compound 37 that showed good TYK2 enzyme and interleukin-12 (IL-12) cell potency, as well as acceptable cellular JAK1 and JAK2 selectivity and excellent oral exposure in mice. When tested in a mouse IL-12 PK/PD model, compound 37 showed statistically significant knockdown of cytokine interferon-γ (IFNγ), suggesting that selective inhibition of TYK2 kinase activity might be sufficient to block the IL-12 pathway in vivo.
Collapse
|
Journal Article |
12 |
64 |
7
|
Rawson TE, Rüth M, Blackwood E, Burdick D, Corson L, Dotson J, Drummond J, Fields C, Georges GJ, Goller B, Halladay J, Hunsaker T, Kleinheinz T, Krell HW, Li J, Liang J, Limberg A, McNutt A, Moffat J, Phillips G, Ran Y, Safina B, Ultsch M, Walker L, Wiesmann C, Zhang B, Zhou A, Zhu BY, Rüger P, Cochran AG. A pentacyclic aurora kinase inhibitor (AKI-001) with high in vivo potency and oral bioavailability. J Med Chem 2008; 51:4465-75. [PMID: 18630890 DOI: 10.1021/jm800052b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aurora kinase inhibitors have attracted a great deal of interest as a new class of antimitotic agents. We report a novel class of Aurora inhibitors based on a pentacyclic scaffold. A prototype pentacyclic inhibitor 32 (AKI-001) derived from two early lead structures improves upon the best properties of each parent and compares favorably to a previously reported Aurora inhibitor, 39 (VX-680). The inhibitor exhibits low nanomolar potency against both Aurora A and Aurora B enzymes, excellent cellular potency (IC50 < 100 nM), and good oral bioavailability. Phenotypic cellular assays show that both Aurora A and Aurora B are inhibited at inhibitor concentrations sufficient to block proliferation. Importantly, the cellular activity translates to potent inhibition of tumor growth in vivo. An oral dose of 5 mg/kg QD is well tolerated and results in near stasis (92% TGI) in an HCT116 mouse xenograft model.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
44 |
8
|
Markova SM, De Marco T, Bendjilali N, Kobashigawa EA, Mefford J, Sodhi J, Le H, Zhang C, Halladay J, Rettie AE, Khojasteh C, McGlothlin D, Wu AHB, Hsueh WC, Witte JS, Schwartz JB, Kroetz DL. Association of CYP2C9*2 with bosentan-induced liver injury. Clin Pharmacol Ther 2013; 94:678-86. [PMID: 23863877 DOI: 10.1038/clpt.2013.143] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
Bosentan (Tracleer) is an endothelin receptor antagonist prescribed for the treatment of pulmonary arterial hypertension (PAH). Its use is limited by drug-induced liver injury (DILI). To identify genetic markers of DILI, association analyses were performed on 56 Caucasian PAH patients receiving bosentan. Twelve functional polymorphisms in five genes (ABCB11, ABCC2, CYP2C9, SLCO1B1, and SLCO1B3) implicated in bosentan pharmacokinetics were tested for associations with alanine aminotransferase (ALT), aspartate aminotransferase (AST), and DILI. After adjusting for body mass index, CYP2C9*2 was the only polymorphism associated with ALT, AST, and DILI (β = 2.16, P = 0.024; β = 1.92, P = 0.016; odds ratio 95% CI = 2.29-∞, P = 0.003, respectively). Bosentan metabolism by CYP2C9*2 in vitro was significantly reduced compared with CYP2C9*1 and was comparable to that by CYP2C9*3. These results suggest that CYP2C9*2 is a potential genetic marker for prediction of bosentan-induced liver injury and warrants investigation for the optimization of bosentan treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
44 |
9
|
Lopez N, Halladay J, Walter W, Craig EA. SSB, encoding a ribosome-associated chaperone, is coordinately regulated with ribosomal protein genes. J Bacteriol 1999; 181:3136-43. [PMID: 10322015 PMCID: PMC93769 DOI: 10.1128/jb.181.10.3136-3143.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding ribosomal proteins and other components of the translational apparatus are coregulated to efficiently adjust the protein synthetic capacity of the cell. Ssb, a Saccharomyces cerevisiae Hsp70 cytosolic molecular chaperone, is associated with the ribosome-nascent chain complex. To determine whether this chaperone is coregulated with ribosomal proteins, we studied the mRNA regulation of SSB under several environmental conditions. Ssb and the ribosomal protein rpL5 mRNAs were up-regulated upon carbon upshift and down-regulated upon amino acid limitation, unlike the mRNA of another cytosolic Hsp70, Ssa. Ribosomal protein and Ssb mRNAs, like many mRNAs, are down-regulated upon a rapid temperature upshift. The mRNA reduction of several ribosomal protein genes and Ssb was delayed by the presence of an allele, EXA3-1, of the gene encoding the heat shock factor (HSF). However, upon a heat shock the EXA3-1 mutation did not significantly alter the reduction in the mRNA levels of two genes encoding proteins unrelated to the translational apparatus. Analysis of gene fusions indicated that the transcribed region, but not the promoter of SSB, is sufficient for this HSF-dependent regulation. Our studies suggest that Ssb is regulated like a core component of the ribosome and that HSF is required for proper regulation of SSB and ribosomal mRNA after a temperature upshift.
Collapse
|
research-article |
26 |
36 |
10
|
Jacobs RT, Lunde CS, Freund YR, Hernandez V, Li X, Xia Y, Carter DS, Berry PW, Halladay J, Rock F, Stefanakis R, Easom E, Plattner JJ, Ford L, Johnston KL, Cook DAN, Clare R, Cassidy A, Myhill L, Tyrer H, Gamble J, Guimaraes AF, Steven A, Lenz F, Ehrens A, Frohberger SJ, Koschel M, Hoerauf A, Hübner MP, McNamara CW, Bakowski MA, Turner JD, Taylor MJ, Ward SA. Boron-Pleuromutilins as Anti- Wolbachia Agents with Potential for Treatment of Onchocerciasis and Lymphatic Filariasis. J Med Chem 2019; 62:2521-2540. [PMID: 30730745 PMCID: PMC6421521 DOI: 10.1021/acs.jmedchem.8b01854] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/07/2023]
Abstract
A series of pleuromutilins modified by introduction of a boron-containing heterocycle on C(14) of the polycyclic core are described. These analogs were found to be potent anti- Wolbachia antibiotics and, as such, may be useful in the treatment of filarial infections caused by Onchocerca volvulus, resulting in Onchocerciasis or river blindness, or Wuchereria bancrofti and Brugia malayi and related parasitic nematodes resulting in lymphatic filariasis. These two important neglected tropical diseases disproportionately impact patients in the developing world. The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole (15, AN11251) was shown to have good in vitro anti- Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma. The lead was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.
Collapse
|
research-article |
6 |
32 |
11
|
Craig E, Ziegelhoffer T, Nelson J, Laloraya S, Halladay J. Complex multigene family of functionally distinct Hsp70s of yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1995; 60:441-9. [PMID: 8824418 DOI: 10.1101/sqb.1995.060.01.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
Review |
30 |
32 |
12
|
Blackwood E, Epler J, Yen I, Flagella M, O'Brien T, Evangelista M, Schmidt S, Xiao Y, Choi J, Kowanetz K, Ramiscal J, Wong K, Jakubiak D, Yee S, Cain G, Gazzard L, Williams K, Halladay J, Jackson PK, Malek S. Combination drug scheduling defines a "window of opportunity" for chemopotentiation of gemcitabine by an orally bioavailable, selective ChK1 inhibitor, GNE-900. Mol Cancer Ther 2013; 12:1968-80. [PMID: 23873850 DOI: 10.1158/1535-7163.mct-12-1218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Checkpoint kinase 1 (ChK1) is a serine/threonine kinase that functions as a central mediator of the intra-S and G2-M cell-cycle checkpoints. Following DNA damage or replication stress, ChK1-mediated phosphorylation of downstream effectors delays cell-cycle progression so that the damaged genome can be repaired. As a therapeutic strategy, inhibition of ChK1 should potentiate the antitumor effect of chemotherapeutic agents by inactivating the postreplication checkpoint, causing premature entry into mitosis with damaged DNA resulting in mitotic catastrophe. Here, we describe the characterization of GNE-900, an ATP-competitive, selective, and orally bioavailable ChK1 inhibitor. In combination with chemotherapeutic agents, GNE-900 sustains ATR/ATM signaling, enhances DNA damage, and induces apoptotic cell death. The kinetics of checkpoint abrogation seems to be more rapid in p53-mutant cells, resulting in premature mitotic entry and/or accelerated cell death. Importantly, we show that GNE-900 has little single-agent activity in the absence of chemotherapy and does not grossly potentiate the cytotoxicity of gemcitabine in normal bone marrow cells. In vivo scheduling studies show that optimal administration of the ChK1 inhibitor requires a defined lag between gemcitabine and GNE-900 administration. On the refined combination treatment schedule, gemcitabine's antitumor activity against chemotolerant xenografts is significantly enhanced and dose-dependent exacerbation of DNA damage correlates with extent of tumor growth inhibition. In summary, we show that in vivo potentiation of gemcitabine activity is mechanism based, with optimal efficacy observed when S-phase arrest and release is followed by checkpoint abrogation with a ChK1 inhibitor.
Collapse
|
Journal Article |
12 |
31 |
13
|
Takahashi RH, Choo EF, Ma S, Wong S, Halladay J, Deng Y, Rooney I, Gates M, Hop CECA, Khojasteh SC, Dresser MJ, Musib L. Absorption, Metabolism, Excretion, and the Contribution of Intestinal Metabolism to the Oral Disposition of [14C]Cobimetinib, a MEK Inhibitor, in Humans. Drug Metab Dispos 2016; 44:28-39. [PMID: 26451002 DOI: 10.1124/dmd.115.066282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022] Open
Abstract
The pharmacokinetics, metabolism, and excretion of cobimetinib, a MEK inhibitor, were characterized in healthy male subjects (n = 6) following a single 20 mg (200 μCi) oral dose. Unchanged cobimetinib and M16 (glycine conjugate of hydrolyzed cobimetinib) were the major circulating species, accounting for 20.5% and 18.3% of the drug-related material in plasma up to 48 hours postdose, respectively. Other circulating metabolites were minor, accounting for less than 10% of drug-related material in plasma. The total recovery of the administered radioactivity was 94.3% (±1.6%, S.D.) with 76.5% (±2.3%) in feces and 17.8% (±2.5%) in urine. Metabolite profiling indicated that cobimetinib had been extensively metabolized with only 1.6% and 6.6% of the dose remaining as unchanged drug in urine and feces, respectively. In vitro phenotyping experiments indicated that CYP3A4 was predominantly responsible for metabolizing cobimetinib. From this study, we concluded that cobimetinib had been well absorbed (fraction absorbed, Fa = 0.88). Given this good absorption and the previously determined low hepatic clearance, the systemic exposures were lower than expected (bioavailability, F = 0.28). We hypothesized that intestinal metabolism had strongly attenuated the oral bioavailability of cobimetinib. Supporting this hypothesis, the fraction escaping gut wall elimination (Fg) was estimated to be 0.37 based on F and Fa from this study and the fraction escaping hepatic elimination (Fh) from the absolute bioavailability study (F = Fa × Fh × Fg). Physiologically based pharmacokinetics modeling also showed that intestinal clearance had to be included to adequately describe the oral profile. These collective data suggested that cobimetinib was well absorbed following oral administration and extensively metabolized with intestinal first-pass metabolism contributing to its disposition.
Collapse
|
Clinical Trial |
9 |
31 |
14
|
Xia Y, Zhou Y, Carter DS, McNeil MB, Choi W, Halladay J, Berry PW, Mao W, Hernandez V, O'Malley T, Korkegian A, Sunde B, Flint L, Woolhiser LK, Scherman MS, Gruppo V, Hastings C, Robertson GT, Ioerger TR, Sacchettini J, Tonge PJ, Lenaerts AJ, Parish T, Alley M. Discovery of a cofactor-independent inhibitor of Mycobacterium tuberculosis InhA. Life Sci Alliance 2018; 1:e201800025. [PMID: 30456352 PMCID: PMC6238539 DOI: 10.26508/lsa.201800025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
AN12855 is a novel cofactor-independent inhibitor of Mycobacterium tuberculosis InhA. AN12855 has potent activity against M. tuberculosis, good oral bioavailability, and comparable efficacy to isoniazid in infection models. New antitubercular agents are needed to combat the spread of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis. The frontline antitubercular drug isoniazid (INH) targets the mycobacterial enoyl-ACP reductase, InhA. Resistance to INH is predominantly through mutations affecting the prodrug-activating enzyme KatG. Here, we report the identification of the diazaborines as a new class of direct InhA inhibitors. The lead compound, AN12855, exhibited in vitro bactericidal activity against replicating bacteria and was active against several drug-resistant clinical isolates. Biophysical and structural investigations revealed that AN12855 binds to and inhibits the substrate-binding site of InhA in a cofactor-independent manner. AN12855 showed good drug exposure after i.v. and oral delivery, with 53% oral bioavailability. Delivered orally, AN12855 exhibited dose-dependent efficacy in both an acute and chronic murine model of tuberculosis infection that was comparable with INH. Combined, AN12855 is a promising candidate for the development of new antitubercular agents.
Collapse
|
Journal Article |
7 |
22 |
15
|
Castanedo GM, Wang S, Robarge KD, Blackwood E, Burdick D, Chang C, Dijkgraaf GJ, Gould S, Gunzner J, Guichert O, Halladay J, Khojasteh C, Lee L, Marsters JC, Murray L, Peterson D, Plise E, Salphati L, de Sauvage FJ, Wong S, Sutherlin DP. Second generation 2-pyridyl biphenyl amide inhibitors of the hedgehog pathway. Bioorg Med Chem Lett 2010; 20:6748-53. [DOI: 10.1016/j.bmcl.2010.08.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 11/17/2022]
|
|
15 |
13 |
16
|
Gazzard L, Williams K, Chen H, Axford L, Blackwood E, Burton B, Chapman K, Crackett P, Drobnick J, Ellwood C, Epler J, Flagella M, Gancia E, Gill M, Goodacre S, Halladay J, Hewitt J, Hunt H, Kintz S, Lyssikatos J, Macleod C, Major S, Médard G, Narukulla R, Ramiscal J, Schmidt S, Seward E, Wiesmann C, Wu P, Yee S, Yen I, Malek S. Mitigation of Acetylcholine Esterase Activity in the 1,7-Diazacarbazole Series of Inhibitors of Checkpoint Kinase 1. J Med Chem 2015; 58:5053-74. [PMID: 25988399 DOI: 10.1021/acs.jmedchem.5b00464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development. A campaign of analogue synthesis established SAR delineating ChK1 and AChE activities and allowing identification of new leads with improved profiles. In silico docking using a model of AChE permitted rationalization of the observed SAR. Compounds 19 (GNE-900) and 30 (GNE-145) were identified as selective, orally bioavailable ChK1 inhibitors offering excellent in vitro potency with significantly reduced AChE activity. In combination with gemcitabine, these compounds demonstrate an in vivo pharmacodynamic effect and are efficacious in a mouse p53 mutant xenograft model.
Collapse
|
Journal Article |
10 |
12 |
17
|
Poulin P, Dambach DM, Hartley DH, Ford K, Theil FP, Harstad E, Halladay J, Choo E, Boggs J, Liederer BM, Dean B, Diaz D. An Algorithm for Evaluating Potential Tissue Drug Distribution in Toxicology Studies from Readily Available Pharmacokinetic Parameters. J Pharm Sci 2013; 102:3816-29. [DOI: 10.1002/jps.23670] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 01/10/2023]
|
|
12 |
11 |
18
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
10 |
11 |
19
|
Shin YG, Meijering H, van Heuveln FH, Wieling J, Halladay J, Sahasranaman S, Hop CE. Validation of a method for the determination of thiocyanate in human plasma by UV/VIS spectrophotometry and application to a Phase I clinical trial of GDC-0425. Transl Clin Pharmacol 2015. [DOI: 10.12793/tcp.2015.23.2.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
|
10 |
4 |
20
|
Marik J, Rich S, Deshmukh G, Zhang D, Tinianow J, Cai J, Wong S, Bobba S, DeMent K, Liu N, Halladay J, Sanabria-Bohórquez S, Cheruzel L, Khojasteh C. GTP1 metabolic stability assessment: A study of the tau PET tracer [ 18F]GTP1. Nucl Med Biol 2023; 124-125:108386. [PMID: 37699300 DOI: 10.1016/j.nucmedbio.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Tau PET imaging using the tau specific PET tracer [18F]GTP1 has been and is part of therapeutic trials in Alzheimer's disease to monitor the accumulation of tau aggregates in the brain. Herein, we examined the metabolic processes of GTP1 and assessed the influence of smoking on its metabolism through in vitro assays. The tracer metabolic profile was assessed by incubating GTP1 with human liver microsomes (HLM) and human hepatocytes. Since smoking strongly stimulates the CYP1A2 enzyme activity, we incubated GTP1 with recombinant CYP1A2 to evaluate the role of the enzyme in tracer metabolism. It was found that GTP1 could form up to eleven oxidative metabolites with higher polarity than the parent. Only a small amount (2.6 % at 60 min) of a defluorinated metabolite was detected in HLM and human hepatocytes incubations highlighting the stability of GTP1 with respect to enzymatic defluorination. Moreover, the major GTP1 metabolites were not the product of CYP1A2 activity suggesting that smoking may not impact in vivo tracer metabolism and subsequently GTP1 brain kinetics.
Collapse
|
|
2 |
|
21
|
Halladay J. Update on scoliosis. THE CANADIAN NURSE 1984; 80:44-5. [PMID: 6565513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
|
41 |
|
22
|
Halladay J, Sunderland M, Newton NC, Lynch SJ, Chapman C, Stapinski L, Andrews JL, Birrell L, Teesson M, Slade T. Do school-based prevention programs impact co-occurring alcohol use and psychological distress during adolescence? Psychol Med 2024; 54:1-11. [PMID: 39710506 PMCID: PMC11779555 DOI: 10.1017/s0033291724002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Adolescence is a critical period for preventing substance use and mental health concerns, often targeted through separate school-based programs. However, co-occurrence is common and is related to worse outcomes. This study explores prevention effects of leading school-based prevention programs on co-occurring alcohol use and psychological distress. METHODS Data from two Australian cluster randomized trials involving 8576 students in 97 schools were harmonized for analysis. Students received either health education (control) or one of five prevention programs (e.g. Climate Schools, PreVenture) with assessments at baseline and 6, 12, 24, and 30 or 36 months (from ages ~13-16). Multilevel multinomial regressions were used to predict the relative risk ratios (RRs) of students reporting co-occurring early alcohol use and psychological distress, alcohol use only, distress only, or neither (reference) across programs. RESULTS The combined Climate Schools: Alcohol and Cannabis and Climate Schools: Mental Health courses (CSC) as well as the PreVenture program reduced the risk of adolescents reporting co-occurring alcohol use and psychological distress (36 months RRCSC = 0.37; RRPreVenture = 0.22). Other evaluated programs (excluding Climate Schools: Mental Health) only appeared effective for reducing the risk of alcohol use that occurred without distress. CONCLUSIONS Evidence-based programs exist that reduce the risk of early alcohol use with and without co-occurring psychological distress, though preventing psychological distress alone requires further exploration. Prevention programs appear to have different effects depending on whether alcohol use and distress present on their own or together, thus suggesting the need for tailored prevention strategies.
Collapse
|
research-article |
1 |
|
23
|
Halladay J, Glantz C, Hardy D. Clinical utility of placental cultures. Am J Obstet Gynecol 1997. [DOI: 10.1016/s0002-9378(97)80149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
|
28 |
|
24
|
Halladay J, Visontay R, Slade T, Devine EK, Smout S, Andrews JL, Champion KE, Teesson M, Sunderland M. Across the multiverse: exploring a diverse set of specifications related to cross-sectional and prospective associations between adolescent alcohol use and emotional problems. Psychol Med 2024; 54:1-15. [PMID: 39679551 PMCID: PMC11769910 DOI: 10.1017/s0033291724002502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND The relationship between adolescent alcohol use and emotional problems remains unclear and contradictory. These inconsistencies may in part be due to differences in the measurement and operationalization of alcohol use and emotional problems across studies, as well as confounder selection and missing data decisions. This study explores the associations between common specifications of adolescent alcohol use and emotional problems in a large sample of adolescents. METHODS A multiverse analysis (also known as specification curve analysis or vibration of effects) was done with 7680 unique model specifications in a large longitudinal sample of 6639 Australian adolescents (aged ~14.7-15.7, 2021-2022). RESULTS While alcohol use and emotional problems nearly universally co-occurred in minimally adjusted cross-sectional models (98-99%), the operationalization of emotional problems, temporality of prospective relationships, and choice of confounders substantially impacted findings. Emotional problems appeared to predict later alcohol use more-so than the reverse, depression-focused measures yielded more consistent associations with alcohol use than anxiety-focused measures, and certain confounders (i.e. conduct, ADHD, smoking) explained most of the associations between adolescent alcohol use and emotional problems. Missing data decisions and whether outcomes were modelled continuously v. dichotomously had minimal impact on findings. CONCLUSIONS While adolescent alcohol use and emotional problems commonly co-occur, inconsistencies in the magnitude, direction, and significance of effects are closely tied to researcher decisions that are often made arbitrarily.
Collapse
|
research-article |
1 |
|
25
|
Halladay J, Ogrodnik M, Farag Alla J, Sunderland M, Gardner LA, Georgiades K. Playing for more than winning: Exploring sports participation, physical activity, and belongingness and their relationship with patterns of adolescent substance use and mental health. Drug Alcohol Depend 2024; 254:111039. [PMID: 38043225 DOI: 10.1016/j.drugalcdep.2023.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Promoting adolescent sports participation and physical activity may be effective low-barrier prevention strategies for co-occurring adolescent substance use (SU) and mental health symptoms (MH). The objectives of this study were to: 1) explore associations between profiles of SU/MH and sports participation; and 2) determine whether physical activity and belongingness account for these associations. METHODS Data came from a representative sample of 11,994 grade 9-12 Ontarian students (ages ~14-18) previously grouped into five SU/MH profiles based on patterns of use and symptoms. A series of multinomial logistic regressions, adjusted for socio-demographics and school clustering, were used to predict the risks of students belonging to SU/MH profiles based on: 1) school sports participation (>=weekly), 2) sports and physical activity (>=60minutes; 0-7 days), and 3) sports, physical activity, and school belongingness. RESULTS Greater school sports participation, physical activity, and belongingness were each associated with reduced risks of belonging to most profiles with elevations in SU and/or MH symptoms relative to the low SU/MH profile (Relative Risk Ratios: sports=0.62-0.87, physical activity=0.78-0.98, belonging=0.75-0.83). Frequency of physical activity accounted for ~32-60% of the associations between sports and SU/MH profiles, while school belongingness accounted for the remaining associations. Physical activity and belongingness remained independently associated with SU/MH profiles. CONCLUSIONS Findings suggest possible indirect associations between school sports participation and SU/MH profiles through physical activity and school belongingness, which may be promising prevention targets that have independent associations over and above sports. School sports participation may be one of a number of ways to achieve these goals.
Collapse
|
|
1 |
|