1
|
Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, Goldberg LR, Baird GL, Ventetuolo CE, Quesenberry PJ, Klinger JR. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 2016; 110:319-30. [PMID: 26980205 DOI: 10.1093/cvr/cvw054] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
AIMS Extracellular vesicles (EVs) from mice with monocrotaline (MCT)-induced pulmonary hypertension (PH) induce PH in healthy mice, and the exosomes (EXO) fraction of EVs from mesenchymal stem cells (MSCs) can blunt the development of hypoxic PH. We sought to determine whether the EXO fraction of EVs is responsible for modulating pulmonary vascular responses and whether differences in EXO-miR content explains the differential effects of EXOs from MSCs and mice with MCT-PH. METHODS AND RESULTS Plasma, lung EVs from MCT-PH, and control mice were divided into EXO (exosome), microvesicle (MV) fractions and injected into healthy mice. EVs from MSCs were divided into EXO, MV fractions and injected into MCT-treated mice. PH was assessed by right ventricle-to-left ventricle + septum (RV/LV + S) ratio and pulmonary arterial wall thickness-to-diameter (WT/D) ratio. miR microarray analyses were also performed on all EXO populations. EXOs but not MVs from MCT-injured mice increased RV/LV + S, WT/D ratios in healthy mice. MSC-EXOs prevented any increase in RV/LV + S, WT/D ratios when given at the time of MCT injection and reversed the increase in these ratios when given after MCT administration. EXOs from MCT-injured mice and patients with idiopathic pulmonary arterial hypertension (IPAH) contained increased levels of miRs-19b,-20a,-20b, and -145, whereas miRs isolated from MSC-EXOs had increased levels of anti-inflammatory, anti-proliferative miRs including miRs-34a,-122,-124, and -127. CONCLUSION These findings suggest that circulating or MSC-EXOs may modulate pulmonary hypertensive effects based on their miR cargo. The ability of MSC-EXOs to reverse MCT-PH offers a promising potential target for new PAH therapies.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
198 |
2
|
Aliotta JM, Pereira M, Johnson KW, de Paz N, Dooner MS, Puente N, Ayala C, Brilliant K, Berz D, Lee D, Ramratnam B, McMillan PN, Hixson DC, Josic D, Quesenberry PJ. Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Exp Hematol 2010; 38:233-45. [PMID: 20079801 DOI: 10.1016/j.exphem.2010.01.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Microvesicles have been shown to mediate intercellular communication. Previously, we have correlated entry of murine lung-derived microvesicles into murine bone marrow cells with expression of pulmonary epithelial cell-specific messenger RNA (mRNA) in these marrow cells. The present studies establish that entry of lung-derived microvesicles into marrow cells is a prerequisite for marrow expression of pulmonary epithelial cell-derived mRNA. MATERIALS AND METHODS Murine bone marrow cells cocultured with rat lung, but separated from them using a cell-impermeable membrane (0.4-microm pore size), were analyzed using species-specific primers (for rat or mouse). RESULTS These studies revealed that surfactant B and C mRNA produced by murine marrow cells were of both rat and mouse origin. Similar results were obtained using murine lung cocultured with rat bone marrow cells or when bone marrow cells were analyzed for the presence of species-specific albumin mRNA after coculture with rat or murine liver. These studies show that microvesicles both deliver mRNA to marrow cells and mediate marrow cell transcription of tissue-specific mRNA. The latter likely underlies the longer-term stable change in genetic phenotype that has been observed. We have also observed microRNA in lung-derived microvesicles, and studies with RNase-treated microvesicles indicate that microRNA negatively modulates pulmonary epithelial cell-specific mRNA levels in cocultured marrow cells. In addition, we have also observed tissue-specific expression of brain, heart, and liver mRNA in cocultured marrow cells, suggesting that microvesicle-mediated cellular phenotype change is a universal phenomena. CONCLUSION These studies suggest that cellular systems are more phenotypically labile than previously considered.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
158 |
3
|
Aliotta JM, Sanchez-Guijo FM, Dooner GJ, Johnson KW, Dooner MS, Greer KA, Greer D, Pimentel J, Kolankiewicz LM, Puente N, Faradyan S, Ferland P, Bearer EL, Passero MA, Adedi M, Colvin GA, Quesenberry PJ. Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 2007; 25:2245-56. [PMID: 17556595 PMCID: PMC3376082 DOI: 10.1634/stemcells.2007-0128] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Numerous animal studies have demonstrated that adult marrow-derived cells can contribute to the cellular component of the lung. Lung injury is a major variable in this process; however, the mechanism remains unknown. We hypothesize that injured lung is capable of inducing epigenetic modifications of marrow cells, influencing them to assume phenotypic characteristics of lung cells. We report that under certain conditions, radiation-injured lung induced expression of pulmonary epithelial cell-specific genes and prosurfactant B protein in cocultured whole bone marrow cells separated by a cell-impermeable membrane. Lung-conditioned media had a similar effect on cocultured whole bone marrow cells and was found to contain pulmonary epithelial cell-specific RNA-filled microvesicles that entered whole bone marrow cells in culture. Also, whole bone marrow cells cocultured with lung had a greater propensity to produce type II pneumocytes after transplantation into irradiated mice. These findings demonstrate alterations of marrow cell phenotype by lung-derived microvesicles and suggest a novel mechanism for marrow cell-directed repair of injured tissue.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
141 |
4
|
Quesenberry PJ, Aliotta JM. Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev 2010; 62:1141-8. [PMID: 20558219 DOI: 10.1016/j.addr.2010.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022]
Abstract
Cell phenotype alteration by cell-derived vesicles presents a new aspect for consideration of cell fate. Accumulating data indicates that vesicles from many cells interact with or enter different target cells from other tissues, altering their phenotype toward that of the cell releasing the vesicles. Cells may be changed by direct interactions, transfer of cell surface receptors or epigenetic reprogramming via transcriptional regulators. Induced epigenetic changes appear to be stable and result in significant functional effects. These data force a reconsideration of the cellular context in which transcription regulates the proliferative and differentiative fate of tissues and suggests a highly plastic cellular system, which might underlay a relatively stable tissue system. The capacity of marrow to convert to non-hematopoietic cells related to vesicle cross-communication may underlie the phenomena of stem cell plasticity. Additionally, vesicles have promise in the clinical arenas of disease biomarkers, tissue restoration and control of neoplastic cell growth.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
91 |
5
|
Quesenberry PJ, Aliotta JM. The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles. STEM CELL REVIEWS 2008; 4:137-47. [PMID: 18665337 PMCID: PMC4495665 DOI: 10.1007/s12015-008-9036-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2008] [Indexed: 01/05/2023]
Abstract
Marrow stem cell regulation represents a complex and flexible system. It has been assumed that the system was intrinsically hierarchical in nature, but recent data has indicated that at the progenitor/stem cell level the system may represent a continuum with reversible alterations in phenotype occurring as the stem cells transit cell cycle. Short and long-term engraftment, in vivo and in vitro differentiation, gene expression, and progenitor numbers have all been found to vary reversibly with cell cycle. In essence, the stem cells appear to show variable potential, probably based on transcription factor access, as they proceed through cell cycle. Another critical component of the stem cell regulation is the microenvironment, so-called niches. We propose that there are not just several unique niche cells, but a wide variety of niche cells which continually change phenotype to appropriately interact with the continuum of stem cell phenotypes. A third component of the regulatory system is microvesicle transfer of genetic information between cells. We have shown that marrow cells can express the genetic phenotype of pulmonary epithelial cells after microvesicle transfer from lung to marrow cells. Similar transfers of tissue specific mRNA occur between liver, brain, and heart to marrow cells. Thus, there would appear to be a continuous genetic modulation of cells through microvesicle transfer between cells. We propose that there is an interactive triangulated Venn diagram with continuously changing stem cells interacting with continuously changing areas of influence, both being modulated by transfer of genetic information by microvesicles.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
79 |
6
|
Quesenberry PJ, Dooner MS, Aliotta JM. Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp Hematol 2010; 38:581-92. [PMID: 20382199 PMCID: PMC2887723 DOI: 10.1016/j.exphem.2010.03.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 02/27/2010] [Accepted: 03/31/2010] [Indexed: 12/20/2022]
Abstract
The phenotype of marrow hematopoietic stem cells is determined by cell-cycle state and microvesicle entry into the stem cells. The stem cell population is continually changing based on cell-cycle transit and can only be defined on a population basis. Purification of marrow stem cells only addresses the heterogeneity of these populations. When whole marrow is studied, the long-term repopulating stem cells are in active cell cycle. However, with some variability, when highly purified stem cells are studied, the cells appear to be dormant. Thus, the study of purified stem cells is intrinsically misleading. Tissue-derived microvesicles enhanced by injury effect the phenotype of different cell classes. We propose that previously described stem cell plasticity is due to microvesicle modulation. We further propose a stem cell population model in which the individual cell phenotypes continually change, but the population phenotype is relatively stable. This, in turn, is modulated by microvesicle and microenvironmental influences.
Collapse
|
Review |
15 |
76 |
7
|
Klinger JR, Pereira M, Del Tatto M, Brodsky AS, Wu KQ, Dooner MS, Borgovan T, Wen S, Goldberg LR, Aliotta JM, Ventetuolo CE, Quesenberry PJ, Liang OD. Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. Am J Respir Cell Mol Biol 2020; 62:577-587. [PMID: 31721618 DOI: 10.1165/rcmb.2019-0154oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cell extracellular vesicles attenuate pulmonary hypertension, but their ability to reverse established disease in larger animal models and the duration and mechanism(s) of their effect are unknown. We sought to determine the efficacy and mechanism of mesenchymal stem cells' extracellular vesicles in attenuating pulmonary hypertension in rats with Sugen/hypoxia-induced pulmonary hypertension. Male rats were treated with mesenchymal stem cell extracellular vesicles or an equal volume of saline vehicle by tail vein injection before or after subcutaneous injection of Sugen 5416 and exposure to 3 weeks of hypoxia. Pulmonary hypertension was assessed by right ventricular systolic pressure, right ventricular weight to left ventricle + septum weight, and muscularization of peripheral pulmonary vessels. Immunohistochemistry was used to measure macrophage activation state and recruitment to lung. Mesenchymal stem cell extracellular vesicles injected before or after induction of pulmonary hypertension normalized right ventricular pressure and reduced right ventricular hypertrophy and muscularization of peripheral pulmonary vessels. The effect was consistent over a range of doses and dosing intervals and was associated with lower numbers of lung macrophages, a higher ratio of alternatively to classically activated macrophages (M2/M1 = 2.00 ± 0.14 vs. 1.09 ± 0.11; P < 0.01), and increased numbers of peripheral blood vessels (11.8 ± 0.66 vs. 6.9 ± 0.57 vessels per field; P < 0.001). Mesenchymal stem cell extracellular vesicles are effective at preventing and reversing pulmonary hypertension in Sugen/hypoxia pulmonary hypertension and may offer a new approach for the treatment of pulmonary arterial hypertension.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
64 |
8
|
Quesenberry PJ, Goldberg LR, Aliotta JM, Dooner MS, Pereira MG, Wen S, Camussi G. Cellular phenotype and extracellular vesicles: basic and clinical considerations. Stem Cells Dev 2014; 23:1429-36. [PMID: 24564699 PMCID: PMC4066231 DOI: 10.1089/scd.2013.0594] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/24/2014] [Indexed: 12/22/2022] Open
Abstract
Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung or liver can enter bone marrow cells (this is a prerequisite) and alter their fate toward that of the originating liver and lung tissue. Lung vesicles interacted with bone marrow cells result in the bone marrow cells expressing surfactants A-D, Clara cell protein, and aquaporin-5 mRNA. In a similar vein, liver-derived vesicles induce albumin mRNA in target marrow cells. The vesicles contain protein, mRNA, microRNA, and noncoding RNA and variably some DNA. This genetic package is delivered to cells and alters the phenotype. Further studies have shown that initially the altered phenotype is due to the transfer of mRNA and a transcriptional modulator, but long-term epigenetic changes are induced through transfer of a transcriptional factor, and the mRNA is rapidly degraded in the cell. Studies on the capacity of vesicles to restore injured tissue have been quite informative. Mesenchymal stem cell-derived vesicles are able to reverse the injury to the damaged liver and kidney. Other studies have shown that mesenchymal stem cell-derived vesicles can reverse radiation toxicity of bone marrow stem cells. Extracellular vesicles offer an intriguing strategy for treating a number of diseases characterized by tissue injury.
Collapse
|
research-article |
11 |
62 |
9
|
Aliotta JM, Pereira M, Amaral A, Sorokina A, Igbinoba Z, Hasslinger A, El-Bizri R, Rounds SI, Quesenberry PJ, Klinger JR. Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline-treated mice. Cardiovasc Res 2013; 100:354-62. [PMID: 23867631 DOI: 10.1093/cvr/cvt184] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Circulating endothelium-derived extracellular vesicles (EV) levels are altered in pulmonary arterial hypertension (PAH) but whether they are biomarkers of cellular injury or participants in disease pathogenesis is unknown. Previously, we found that lung-derived EVs (LEVs) induce bone marrow-derived progenitor cells to express lung-specific mRNA and protein. In this study, we sought to determine whether LEV or plasma-derived EV (PEV) alter pulmonary vascular endothelial or marrow progenitor cell phenotype to induce pulmonary vascular remodelling. METHODS AND RESULTS LEV, PEV isolated from monocrotaline (MCT-EV)- or vehicle-treated mice (vehicle-EV) were injected into healthy mice. Right ventricular (RV) hypertrophy and pulmonary vascular remodelling were assessed by RV-to-body weight (RV/BW) and blood vessel wall thickness-to-diameter (WT/D) ratios. RV/BW, WT/D ratios were elevated in MCT- vs. vehicle-injected mice (1.99 ± 0.09 vs. 1.04 ± 0.09 mg/g; 0.159 ± 0.002 vs. 0.062 ± 0.009%). RV/BW, WT/D ratios were higher in mice injected with MCT-EV vs. mice injected with vehicle-EV (1.63 ± 0.09 vs. 1.08 ± 0.09 mg/g; 0.113 ± 0.02 vs. 0.056 ± 0.01%). Lineage-depleted bone marrow cells incubated with MCT-EV and marrow cells isolated from mice infused with MCT-EV had greater expression of endothelial progenitor cell mRNAs and mRNAs abnormally expressed in PAH than cells incubated with vehicle-EV or isolated from vehicle-EV infused mice. MCT-EV induced an apoptosis-resistant phenotype in murine pulmonary endothelial cells and lineage-depleted bone marrow cells incubated with MCT-EV induced pulmonary hypertension when injected into healthy mice. CONCLUSIONS EV from MCT-injured mice contribute to the development of MCT-induced pulmonary hypertension. This effect may be mediated directly by EV on the pulmonary vasculature or by differentiation of bone marrow cells to endothelial progenitor cells that induce pulmonary vascular remodelling.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
57 |
10
|
Sears EH, Aliotta JM, Klinger JR. Partial anomalous pulmonary venous return presenting with adult-onset pulmonary hypertension. Pulm Circ 2012; 2:250-5. [PMID: 22837866 PMCID: PMC3401879 DOI: 10.4103/2045-8932.97637] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Partial anomalous pulmonary venous return (PAPVR) is a rare cause of adult onset pulmonary arterial hypertension (PAH) that can present with a wide spectrum of severity from early childhood throughout adult life. We present two patients with PAH secondary to PAPVR who reflect this range of disease. The diagnosis and treatment of PAPVR and its role in pulmonary vascular disease is discussed. Cardiac and pulmonary physicians should be aware of this entity and its diagnosis and management options.
Collapse
|
Case Reports |
13 |
53 |
11
|
Aliotta JM, Keaney P, Passero M, Dooner MS, Pimentel J, Greer D, Demers D, Foster B, Peterson A, Dooner G, Theise ND, Abedi M, Colvin GA, Quesenberry PJ. Bone marrow production of lung cells: the impact of G-CSF, cardiotoxin, graded doses of irradiation, and subpopulation phenotype. Exp Hematol 2006; 34:230-41. [PMID: 16459191 PMCID: PMC1986763 DOI: 10.1016/j.exphem.2005.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 09/23/2005] [Accepted: 11/07/2005] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Previous studies have demonstrated the production of various types of lung cells from marrow cells under diverse experimental conditions. Our aim was to identify some of the variables that influence conversion in the lung. METHODS In separate experiments, mice received various doses of total-body irradiation followed by transplantation with whole bone marrow or various subpopulations of marrow cells (Lin(-/+), c-kit(-/+), Sca-1(-/+)) from GFP(+) (C57BL/6-TgN[ACTbEGFP]1Osb) mice. Some were given intramuscular cardiotoxin and/or mobilized with granulocyte colony-stimulating factor (G-CSF). RESULTS The production of pulmonary epithelial cells from engrafted bone marrow was established utilizing green fluorescent protein (GFP) antibody labeling to rule out autofluorescence and deconvolution microscopy to establish the colocaliztion of GFP and cytokeratin and the absence of CD45 in lung samples after transplantation. More donor-derived lung cells (GFP(+)/CD45(-)) were seen with increasing doses of radiation (5.43% of all lung cells, 1200 cGy). In the 900-cGy group, 61.43% of GFP(+)/CD45(-) cells were also cytokeratin(+). Mobilization further increased GFP(+)/CD45(-) cells to 7.88% in radiation-injured mice. Up to 1.67% of lung cells were GFP(+)/CD45(-) in radiation-injured mice transplanted with Lin(-), c-kit(+), or Sca-1(+) marrow cells. Lin(+), c-kit(-), and Sca-1(-) subpopulations did not significantly engraft the lung. CONCLUSIONS We have established that marrow cells are capable of producing pulmonary epithelial cells and identified radiation dose and G-CSF mobilization as variables influencing the production of lung cells from marrow cells. Furthermore, the putative lung cell-producing marrow cell has the phenotype of a hematopoietic stem cell.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
51 |
12
|
Li M, Aliotta JM, Asara JM, Tucker L, Quesenberry P, Lally M, Ramratnam B. Quantitative proteomic analysis of exosomes from HIV-1-infected lymphocytic cells. Proteomics 2012; 12:2203-11. [PMID: 22807456 DOI: 10.1002/pmic.201100376] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HIV-1 infection causes profound effects both inside and outside of cells through multiple mechanisms, including those mediated by exosomes. Using the technique of stable isotope labeling by amino acids in cell culture, we compared protein expression patterns in the exosomal compartment of HIV-1-infected and -uninfected lymphocytic H9 cells. Of 770 proteins identified in two independent sets of exosomal samples, 14 proteins were found to be differentially expressed in the exosomal fraction of HIV-1-infected cells versus -uninfected controls. Gene Ontology survey and DAVID analysis revealed that identified proteins were enriched for functional categories such as binding. Of these 14 proteins, three immunomodulatory molecules were reproducibly identified in both replicates and included ADP-ribosyl cyclase 1 (CD38), L-lactate dehydrogenase B chain (LDHB), and Annexin A5 (ANXA5). In addition to previously reported HIV-1 associations with CD38 and LDHB, new interactions were identified and validated for ANXA5, CD38, and LDHB, which were found to bind to HIV-1 p24 and Tat. In summary, our studies reveal that exosomes released from HIV-1-infected cells are composed of a unique and quantitatively different protein signature and harbor regulatory molecules that impact the processes of cellular apoptosis (ANXA5 and LDHB) and proliferation (CD38).
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
41 |
13
|
Aliotta JM, Lee D, Puente N, Faradyan S, Sears EH, Amaral A, Goldberg L, Dooner MS, Pereira M, Quesenberry PJ. Progenitor/stem cell fate determination: interactive dynamics of cell cycle and microvesicles. Stem Cells Dev 2012; 21:1627-38. [PMID: 22214238 DOI: 10.1089/scd.2011.0550] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have shown that hematopoietic stem/progenitor cell phenotype and differentiative potential change throughout cell cycle. Lung-derived microvesicles (LDMVs) also change marrow cell phenotype by inducing them to express pulmonary epithelial cell-specific mRNA and protein. These changes are accentuated when microvesicles isolated from injured lung. We wish to determine if microvesicle-treated stem/progenitor cell phenotype is linked to cell cycle and to the injury status of the lung providing microvesicles. Lineage depleted, Sca-1+ (Lin-/Sca-1+) marrow isolated from mice were cultured with interleukin 3 (IL-3), IL-6, IL-11, and stem cell factor (cytokine-cultured cells), removed at hours zero (cell cycle phase G0/G1), 24 (late G1/early S), and 48 (late S/early G2/M), and cocultured with lung tissue, lung conditioned media (LCM), or LDMV from irradiated or nonirradiated mice. Alternatively, Lin-/Sca-1+ cells not exposed to exogenous cytokines were separated into G0/G1 and S/G2/M cell cycle phase populations by fluorescence-activated cell sorting (FACS) and used in coculture. Separately, LDMV from irradiated and nonirradiated mice were analyzed for the presence of adhesion proteins. Peak pulmonary epithelial cell-specific mRNA expression was seen in G0/G1 cytokine-cultured cells cocultured with irradiated lung and in late G1/early S cells cocultured with nonirradiated lung. The same pattern was seen in cytokine-cultured Lin-/Sca-1 cells cocultured with LCM and LDMV and when FACS-separated Lin-/Sca-1 cells unexposed to exogenous cytokines were used in coculture. Cells and LDMV expressed adhesion proteins whose levels differed based on cycle status (cells) or radiation injury (LDMV), suggesting a mechanism for microvesicle entry. These data demonstrate that microvesicle modification of progenitor/stem cells is influenced by cell cycle and the treatment of the originator lung tissue.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
39 |
14
|
Aliotta JM, Pereira M, Li M, Amaral A, Sorokina A, Dooner MS, Sears EH, Brilliant K, Ramratnam B, Hixson DC, Quesenberry PJ. Stable cell fate changes in marrow cells induced by lung-derived microvesicles. J Extracell Vesicles 2012; 1:18163. [PMID: 24009878 PMCID: PMC3760634 DOI: 10.3402/jev.v1i0.18163] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Interest has been generated in the capacity of cellular-derived microvesicles to alter the fate of different target cells. Lung, liver, heart and brain-derived vesicles can alter the genetic phenotype of murine marrow cells; however, the stability of such changes and the mechanism of these changes remain unclear. In the present work, we show that lung-derived microvesicles (LDMV) alter the transcriptome and proteome of target marrow cells initially by mRNA and regulator(s) of transcription transfer, but that long term phenotype change is due solely to transfer of a transcriptional regulator with target cell. METHODS/RESULTS IN VIVO STUDIES Whole bone marrow cells (WBM) were co-cultured with LDMV (both isolated from male C57BL/6 mice) or cultured alone (control). One week later, cultured WBM was transplanted into lethally-irradiated female C57BL/6 mice. Recipient mice were sacrificed 6 weeks later and WBM, spleens and livers were examined for the presence of lung-specific gene expression, including surfactants A, B, C and D, aquaporin-5, and clara cell specific protein, via real-time RT-PCR. Immunohistochemistry was also performed on lungs to determine the number of transplanted marrow-derived (Y chromosome+) type II pneumocytes (prosurfactant C+). Mice transplanted with LDMV co-cultured WBM expressed pulmonary epithelial cell genes in the cells of their bone marrow, livers and spleens and over fivefold more transplanted marrow-derived Y+/prosurfactant C+cells could be found in their lungs (vs. control mice). IN VITRO STUDIES WBM (from mice or rats) was cultured with or without LDMV (from mice or rats) for 1 week then washed and cultured alone. WBM was harvested at 2-week intervals for real-time RT-PCR analysis, using species-specific surfactant primers, and for Western Blot analysis. Proteomic and microRNA microarray analyses were also performed on cells. LDMV co-cultured WBM maintained expression of pulmonary epithelial cell genes and proteins for up to 12 weeks in culture. Surfactant produced at later time points was specific only to the species of the marrow cell in culture indicating de novo mRNA transcription. These findings, in addition to the altered protein and microRNA profiles of LDMV co-cultured WBM, support a stable transcriptional mechanism for these changes. CONCLUSIONS These data indicate that microvesicle alteration of cell fate is robust and long-term and represents an important new aspect of cellular biology.
Collapse
|
Journal Article |
13 |
39 |
15
|
Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K. The stem cell continuum: cell cycle, injury, and phenotype lability. Ann N Y Acad Sci 2007; 1106:20-9. [PMID: 17360803 DOI: 10.1196/annals.1392.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The phenotype of the hematopoietic stem cell is intrinsically labile and impacted by cell cycle and the effects of tissue injury. In published studies we have shown that there are changes in short- and long-term engraftment, progenitor numbers, gene expression, and differentiation potential with cytokine-induced cell cycle transit. Critical points here are that these changes are reversible and not unidirectional weighing, heavily against a hierarchical model of stem cell regulation. Furthermore, a number of studies have now established that stem cells separated by lineage depletion and selection for Sca-1 or c-kit or low rhodamine and Hoechst staining are in fact a cycling population. Last, studies on Hoechst separated "cycling" stem cells indicates that the observed phenotype shifts relate to phase of cell cycle and are not due to in vitro exposure to cytokines. These data suggest a continuum model of stem cell regulation and further indicate that this model holds for in vivo situations. Observations that marrow cells can convert to various tissue cells under different injury conditions continue to be published despite a small, but influential, number of negative studies. Our studies and those of others indicate that conversions of marrow-derived cells to different tissue cells, such as skeletal muscle and lung, is critically dependent upon multiple variables, the most important of which is the presence of tissue injury. Variables which affect conversion of marrow cells to nonhematopoietic cells after in vivo transplantation include the nature and timing of the injury; marrow mobilization; the marrow cell type infused; the timing of cell infusion and the number of cells infused; the cell cycle state of the marrow cells, and other functional alterations in the marrow cells the treatment of the host mouse separate from specific injury; the mode of cell delivery; and possibly the presence of microvesicles from injured tissue. At least some of the highlighted negative reports on stem cell plasticity appear to be due to a failure to address these variables. Recently, we have observed that irradiated lung releases microvesicles which can enter marrow cells and lead to the marrow cells expressing lung-specific mRNA and protein. This could provide an underlying mechanism for many of the plasticity phenomena. Altogether, marrow appears to represent a highly flexible ever-changing cell system with the capacity to respond to products of injured cells and top repair a broad range of tissues.
Collapse
|
Review |
18 |
38 |
16
|
Aliotta JM, Passero M, Meharg J, Klinger J, Dooner MS, Pimentel J, Quesenberry PJ. Stem cells and pulmonary metamorphosis: New concepts in repair and regeneration. J Cell Physiol 2005; 204:725-41. [PMID: 15744751 DOI: 10.1002/jcp.20318] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adult stem cells are likely to have much more versatile differentiation capabilities than once believed. Numerous studies have appeared over the past decade demonstrating the ability of adult stem cells to differentiate into a variety of cells from non-hematopoietic organs, including the lung. The goal of this review is to provide an overview of the growth factors which are thought to be involved in lung development and disease, describe the cells within the lung that are believed to replace cells that have been injured, review the studies that have demonstrated the transformation of bone marrow-derived stem cells into lung cells, and describe potential clinical applications with respect to human pulmonary disease.
Collapse
|
|
20 |
36 |
17
|
Fritzell JA, Mao Q, Gundavarapu S, Pasquariello T, Aliotta JM, Ayala A, Padbury JF, De Paepe ME. Fate and effects of adult bone marrow cells in lungs of normoxic and hyperoxic newborn mice. Am J Respir Cell Mol Biol 2008; 40:575-87. [PMID: 18988921 DOI: 10.1165/rcmb.2008-0176oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cell-based therapy in adult lung injury models is associated with highly variable donor cell engraftment and epithelial reconstitution. The role of marrow-derived cell therapy in neonatal lung injury is largely unknown. In this study, we determined the fate and effects of adult bone marrow cells in a model of neonatal lung injury. Wild-type mice placed in a normoxic or hyperoxic (95% O(2)) environment received bone marrow cells from animals expressing green fluorescent protein (GFP) at Postnatal Day (P)5. Controls received vehicle buffer. Lungs were analyzed between Post-Transplantation (TPX) Day 2 and Week 8. The volume of GFP-immunoreactive donor cells, monitored by stereologic volumetry, remained constant between Post-TPX Weeks 1 and 8 and was similar in normoxic and hyperoxia-exposed recipients. Virtually all marrow-derived cells showed colocalization of GFP and the pan-macrophage marker, F4/80, by double immunofluorescence studies. Epithelial transdifferentiation was not seen. Marrow cell administration had adverse effects on somatic growth and alveolarization in normoxic mice, while no effects were discerned in hyperoxia-exposed recipients. Reexposure of marrow-treated animals to hyperoxia at P66 resulted in significant expansion of the donor-derived macrophage population. In conclusion, intranasal administration of unfractionated bone marrow cells to newborn mice does not achieve epithelial reconstitution, but establishes persistent alveolar macrophage chimerism. The predominantly adverse effects of marrow treatment in newborn lungs are likely due to macrophage-associated paracrine effects. While this model and route of cell therapy may not achieve epithelial reconstitution, the role of selected stem cell populations and/or alternate routes of administration for cell-based therapy in injured newborn lungs deserve further investigation.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
27 |
18
|
Goldberg LR, Dooner MS, Johnson KW, Papa EF, Pereira MG, Del Tatto M, Adler DM, Aliotta JM, Quesenberry PJ. The murine long-term multi-lineage renewal marrow stem cell is a cycling cell. Leukemia 2013; 28:813-22. [PMID: 23989430 DOI: 10.1038/leu.2013.252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/08/2013] [Indexed: 12/20/2022]
Abstract
Prevailing wisdom holds that hematopoietic stem cells (HSCs) are predominantly quiescent. Although HSC cycle status has long been the subject of scrutiny, virtually all marrow stem cell research has been based on studies of highly purified HSCs. Here we explored the cell cycle status of marrow stem cells in un-separated whole bone marrow (WBM). We show that a large number of long-term multi-lineage engraftable stem cells within WBM are in S/G2/M phase. Using bromodeoxyuridine, we show rapid transit through the cell cycle of a previously defined relatively dormant purified stem cell, the long-term HSC (LT-HSC; Lineage(-)/c-kit(+)/Sca-1(+)/Flk-2(-)). Actively cycling marrow stem cells have continually changing phenotype with cell cycle transit, likely rendering them difficult to purify to homogeneity. Indeed, as WBM contains actively cycling stem cells, and highly purified stem cells engraft predominantly while quiescent, it follows that the population of cycling marrow stem cells within WBM are lost during purification. Our studies indicate that both the discarded lineage-positive and lineage-negative marrow cells in a stem cell separation contain cycling stem cells. We propose that future work should encompass this larger population of cycling stem cells that is poorly represented in current studies solely focused on purified stem cell populations.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
27 |
19
|
Sears LE, Zhou B, Aliotta JM, Morgan RD, Kong H. BaeI, another unusual BcgI-like restriction endonuclease. Nucleic Acids Res 1996; 24:3590-2. [PMID: 8836187 PMCID: PMC146138 DOI: 10.1093/nar/24.18.3590] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BcgI and BcgI-like restriction endonucleases have a very distinct characteristic which causes them to differ from the other classified restriction enzymes; they all cleave double-stranded DNA specifically on both sides of the recognition sequence to excise a short DNA fragment including the recognition sites. Here we report a new BcgI-like restriction endonuclease, BaeI, isolated from Bacillus sphaericus. Like BcgI, BaeI also cleaves double-stranded DNA on both strands upstream and downstream of its recognition sequence (10/15)ACNNNNGTAYC(12/7). There are two dominant polypeptides in the final preparation of BaeI with molecular masses of approximately 80 and 55 kDa. Both are slightly larger than the two BcgI subunits. BaeI requires both Mg2+ and AdoMet to cleave DNA. Accompanying bilateral cleavage activity, the heteromeric BaeI also has an N6-adenine methyltransferase activity which modifies the symmetrically located adenines within its recognition sequence.
Collapse
|
research-article |
29 |
26 |
20
|
Dooner MS, Aliotta JM, Pimentel J, Dooner GJ, Abedi M, Colvin G, Liu Q, Weier HU, Johnson KW, Quesenberry PJ. Conversion Potential of Marrow Cells into Lung Cells Fluctuates with Cytokine-Induced Cell Cycle. Stem Cells Dev 2008; 17:207-19. [DOI: 10.1089/scd.2007.0195] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
17 |
25 |
21
|
Aliotta JM, Pereira M, Sears EH, Dooner MS, Wen S, Goldberg LR, Quesenberry PJ. Lung-derived exosome uptake into and epigenetic modulation of marrow progenitor/stem and differentiated cells. J Extracell Vesicles 2015; 4:26166. [PMID: 26385657 PMCID: PMC4575417 DOI: 10.3402/jev.v4.26166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/26/2023] Open
Abstract
Background Our group has previously demonstrated that murine whole bone marrow cells (WBM) that internalize lung-derived extracellular vesicles (LDEVs) in culture express pulmonary epithelial cell–specific genes for up to 12 weeks. In addition, the lungs of lethally irradiated mice transplanted with lung vesicle–modulated marrow have 5 times more WBM-derived type II pneumocytes compared to mice transplanted with unmanipulated WBM. These findings indicate that extracellular vesicle modification may be an important consideration in the development of marrow cell–based cellular therapies. Current studies were performed to determine the specific marrow cell types that LDEV stably modify. Methods Murine WBM-derived stem/progenitor cells (Lin-/Sca-1+) and differentiated erythroid cells (Ter119+), granulocytes (Gr-1+) and B cells (CD19+) were cultured with carboxyfluorescein N-succinimidyl ester (CFSE)-labelled LDEV. LDEV+ cells (CFSE+) and LDEV− cells (CFSE−) were separated by flow cytometry and visualized by fluorescence microscopy, analyzed by RT-PCR or placed into long-term secondary culture. In addition, murine Lin-/Sca-1+ cells were cultured with CFSE-labelled LDEV isolated from rats, and RT-PCR analysis was performed on LDEV+ and – cells using species-specific primers for surfactant (rat/mouse hybrid co-cultures). Results Stem/progenitor cells and all of the differentiated cell types studied internalized LDEV in culture, but heterogeneously. Expression of a panel of pulmonary epithelial cell genes was higher in LDEV+cells compared to LDEV − cells and elevated expression of these genes persisted in long-term culture. Rat/mouse hybrid co-cultures revealed only mouse-specific surfactant B and C expression in LDEV+ Lin-/Sca-1+cells after 4 weeks of culture, indicating stable de novo gene expression. Conclusions LDEV can be internalized by differentiated and more primitive cells residing in the bone marrow in culture and can induce stable de novo pulmonary epithelial cell gene expression in these cells for several weeks after internalization. The gene expression represents a transcriptional activation of the target marrow cells. These studies serve as the basis for determining marrow cell types that can be used for cell-based therapies for processes that injure the pulmonary epithelial surfaces.
Collapse
|
Journal Article |
10 |
19 |
22
|
Liang OD, So EY, Egan PC, Goldberg LR, Aliotta JM, Wu KQ, Dubielecka PM, Ventetuolo CE, Reginato AM, Quesenberry PJ, Klinger JR. Endothelial to haematopoietic transition contributes to pulmonary arterial hypertension. Cardiovasc Res 2017; 113:1560-1573. [PMID: 29016733 PMCID: PMC5852529 DOI: 10.1093/cvr/cvx161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/16/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
AIMS The pathogenic mechanisms of pulmonary arterial hypertension (PAH) remain unclear, but involve dysfunctional endothelial cells (ECs), dysregulated immunity and inflammation in the lung. We hypothesize that a developmental process called endothelial to haematopoietic transition (EHT) contributes to the pathogenesis of pulmonary hypertension (PH). We sought to determine the role of EHT in mouse models of PH, to characterize specific cell types involved in this process, and to identify potential therapeutic targets to prevent disease progression. METHODS AND RESULTS When transgenic mice with fluorescence protein ZsGreen-labelled ECs were treated with Sugen/hypoxia (Su/Hx) combination to induce PH, the percentage of ZsGreen+ haematopoietic cells in the peripheral blood, primarily of myeloid lineage, significantly increased. This occurrence coincided with the depletion of bone marrow (BM) ZsGreen+ c-kit+ CD45- endothelial progenitor cells (EPCs), which could be detected accumulating in the lung upon PH-induction. Quantitative RT-PCR based gene array analysis showed that key transcription factors driving haematopoiesis were expressed in these EPCs. When transplanted into lethally irradiated recipient mice, the BM-derived EPCs exhibited long-term engraftment and haematopoietic differentiation capability, indicating these EPCs are haemogenic in nature. Specific inhibition of the critical haematopoietic transcription factor Runx1 blocked the EHT process in vivo, prevented egress of the BM EPCs and ultimately attenuated PH progression in Su/Hx- as well as in monocrotaline-induced PH in mice. Thus, myeloid-skewed EHT promotes the development of PH and inhibition of this process prevents disease progression in mouse models of PH. Furthermore, high levels of Runx1 expression were found in circulating CD34+ CD133+ EPCs isolated from peripheral blood of patients with PH, supporting the clinical relevance of our proposed mechanism of EHT. CONCLUSION EHT contributes to the pathogenesis of PAH. The transcription factor Runx1 may be a novel therapeutic target for the treatment of PAH.
Collapse
|
research-article |
8 |
18 |
23
|
Del Tatto M, Ng T, Aliotta JM, Colvin GA, Dooner MS, Berz D, Dooner GJ, Papa EF, Hixson DC, Ramratnam B, Aswad BI, Sears EH, Reagan J, Quesenberry PJ. Marrow cell genetic phenotype change induced by human lung cancer cells. Exp Hematol 2011; 39:1072-80. [PMID: 21864488 DOI: 10.1016/j.exphem.2011.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/02/2011] [Accepted: 08/11/2011] [Indexed: 01/05/2023]
Abstract
Microvesicles have been shown to mediate varieties of intercellular communication. Work in murine species has shown that lung-derived microvesicles can deliver mRNA, transcription factors, and microRNA to marrow cells and alter their phenotype. The present studies evaluated the capacity of excised human lung cancer cells to change the genetic phenotype of human marrow cells. We present the first studies on microvesicle production by excised cancers from human lung and the capacity of these microvesicles to alter the genetic phenotype of normal human marrow cells. We studied 12 cancers involving the lung and assessed nine lung-specific mRNA species (aquaporin, surfactant families, and clara cell-specific protein) in marrow cells exposed to tissue in co-culture, cultured in conditioned media, or exposed to isolated lung cancer-derived microvesicles. We assessed two or seven days of co-culture and marrow which was unseparated, separated by ficoll density gradient centrifugation or ammonium chloride lysis. Under these varying conditions, each cancer derived from lung mediated marrow expression of between one and seven lung-specific genes. Microvesicles were identified in the pellet of ultracentrifuged conditioned media and shown to enter marrow cells and induce lung-specific mRNA expression in marrow. A lung melanoma and a sarcoma also induced lung-specific mRNA in marrow cells. These data indicate that lung cancer cells may alter the genetic phenotype of normal cells and suggest that such perturbations might play a role in tumor progression, tumor recurrence, or metastases. They also suggest that the tissue environment may alter cancer cell gene expression.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
17 |
24
|
Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, Cheng Y, Goldberg L, Ventetuolo CE, Liang O, Klinger JR, Quesenberry PJ. Bone Marrow Endothelial Progenitor Cells Are the Cellular Mediators of Pulmonary Hypertension in the Murine Monocrotaline Injury Model. Stem Cells Transl Med 2017; 6:1595-1606. [PMID: 28474513 PMCID: PMC5689760 DOI: 10.1002/sctm.16-0386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
The role of bone marrow (BM) cells in modulating pulmonary hypertensive responses is not well understood. Determine if BM‐derived endothelial progenitor cells (EPCs) induce pulmonary hypertension (PH) and if this is attenuated by mesenchymal stem cell (MSC)‐derived extracellular vesicles (EVs). Three BM populations were studied: (a) BM from vehicle and monocrotaline (MCT)‐treated mice (PH induction), (b) BM from vehicle‐, MCT‐treated mice that received MSC‐EV infusion after vehicle, MCT treatment (PH reversal, in vivo), (c) BM from vehicle‐, MCT‐treated mice cultured with MSC‐EVs (PH reversal, in vitro). BM was separated into EPCs (sca‐1+/c‐kit+/VEGFR2+) and non‐EPCs (sca‐1‐/c‐kit‐/VEGFR2‐) and transplanted into healthy mice. Right ventricular (RV) hypertrophy was assessed by RV‐to‐left ventricle+septum (RV/LV+S) ratio and pulmonary vascular remodeling by blood vessel wall thickness‐to‐diameter (WT/D) ratio. EPCs but not non‐EPCs from mice with MCT‐induced PH (MCT‐PH) increased RV/LV+S, WT/D ratios in healthy mice (PH induction). EPCs from MCT‐PH mice treated with MSC‐EVs did not increase RV/LV+S, WT/D ratios in healthy mice (PH reversal, in vivo). Similarly, EPCs from MCT‐PH mice treated with MSC‐EVs pre‐transplantation did not increase RV/LV+S, WT/D ratios in healthy mice (PH reversal, in vitro). MSC‐EV infusion reversed increases in BM‐EPCs and increased lung tissue expression of EPC genes and their receptors/ligands in MCT‐PH mice. These findings suggest that the pulmonary hypertensive effects of BM are mediated by EPCs and those MSC‐EVs attenuate these effects. These findings provide new insights into the pathogenesis of PH and offer a potential target for development of novel PH therapies. Stem Cells Translational Medicine2017;6:1595–1606
Collapse
|
Research Support, N.I.H., Extramural |
8 |
17 |
25
|
Li M, Aliotta JM, Asara JM, Wu Q, Dooner MS, Tucker LD, Wells A, Quesenberry PJ, Ramratnam B. Intercellular transfer of proteins as identified by stable isotope labeling of amino acids in cell culture. J Biol Chem 2010; 285:6285-97. [PMID: 20026604 PMCID: PMC2825424 DOI: 10.1074/jbc.m109.057943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/15/2009] [Indexed: 12/24/2022] Open
Abstract
We tracked the extracellular fate of proteins of pulmonary origin using the technique of stable isotope labeling of amino acids in cell culture (SILAC) in cell-impermeable Transwell culture systems. We find that irradiation to murine lung and lung-derived cells induces their release of proteins that are capable of entering neighboring cells, including primary murine bone marrow cells as well as prostate cancer and hematopoietic cell lines. The functional classification of transferred proteins was broad and included transcription factors, mediators of basic cellular processes and components of the nucleosome remodeling and deacetylase complex, including metastasis associated protein 3 and retinoblastoma-binding protein 7. In further analysis we find that retinoblastoma-binding protein 7 is a transcriptional activator of E-cadherin and that its intercellular transfer leads to decreased gene expression of downstream targets such as N-cadherin and vimentin. SILAC-generated data sets offer a valuable tool to identify and validate potential paracrine networks that may impact relevant biologic processes associated with phenotypic and genotypic signatures of health and disease.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
17 |