Abacousnac J, Grier DG. Dexterous holographic trapping of dark-seeking particles with Zernike holograms.
OPTICS EXPRESS 2022;
30:23568-23578. [PMID:
36225033 DOI:
10.1364/oe.458544]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/27/2022] [Indexed: 06/16/2023]
Abstract
The intensity distribution of a holographically-projected optical trap can be tailored to the physical properties of the particles it is intended to trap. Dynamic optimization is especially desirable for manipulating dark-seeking particles that are repelled by conventional optical tweezers, and even more so when dark-seeking particles coexist in the same system as light-seeking particles. We address the need for dexterous manipulation of dark-seeking particles by introducing a class of "dark" traps created from the superposition of two out-of-phase Gaussian modes with different waist diameters. Interference in the difference-of-Gaussians (DoG) trap creates a dark central core that is completely surrounded by light and therefore can trap dark-seeking particles rigidly in three dimensions. DoG traps can be combined with conventional optical tweezers and other types of traps for use in heterogeneous samples. The ideal hologram for a DoG trap being purely real-valued, we introduce a general method based on the Zernike phase-contrast principle to project real-valued holograms with the phase-only diffractive optical elements used in standard holographic optical trapping systems. We demonstrate the capabilities of DoG traps (and Zernike holograms) through experimental studies on high-index, low-index and absorbing colloidal particles dispersed in fluid media.
Collapse