1
|
Racine L, Parmentier R, Niphadkar S, Chhun J, Martignoles JA, Delhommeau F, Laxman S, Paldi A. Metabolic adaptation pilots the differentiation of human hematopoietic cells. Life Sci Alliance 2024; 7:e202402747. [PMID: 38802246 PMCID: PMC11130395 DOI: 10.26508/lsa.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
A continuous supply of energy is an essential prerequisite for survival and represents the highest priority for the cell. We hypothesize that cell differentiation is a process of optimization of energy flow in a changing environment through phenotypic adaptation. The mechanistic basis of this hypothesis is provided by the established link between core energy metabolism and epigenetic covalent modifications of chromatin. This theory predicts that early metabolic perturbations impact subsequent differentiation. To test this, we induced transient metabolic perturbations in undifferentiated human hematopoietic cells using pharmacological inhibitors targeting key metabolic reactions. We recorded changes in chromatin structure and gene expression, as well as phenotypic alterations by single-cell ATAC and RNA sequencing, time-lapse microscopy, and flow cytometry. Our observations suggest that these metabolic perturbations are shortly followed by alterations in chromatin structure, leading to changes in gene expression. We also show that these transient fluctuations alter the differentiation potential of the cells.
Collapse
|
2
|
Ravalet N, Guermouche H, Hirsch P, Picou F, Foucault A, Gallay N, Martignoles JA, Beaud J, Suner L, Deswarte C, Lachot S, Rault E, Largeaud L, Gissot V, Béné MC, Gyan E, Delhommeau F, Herault O. Modulation of bone marrow and peripheral blood cytokine levels by age and clonal hematopoiesis in healthy individuals. Clin Immunol 2023; 255:109730. [PMID: 37562724 DOI: 10.1016/j.clim.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Aging is associated with bone marrow (BM) inflammaging and, in some individuals, with the onset of clonal hematopoiesis (CH) of indeterminate potential. In this study conducted on 94 strictly healthy volunteers (18 to 80 yo), we measured BM and peripheral blood (PB) plasma levels of 49 hematopoietic and inflammatory cytokines. With aging, 7 cytokines increased in BM (FLT3L, CXCL9, HGF, FGF-2, CCL27, IL-16, IL-18) and 8 decreased (G-CSF, TNF, IL-2, IL-15, IL-17A, CCL7, IL-4, IL-10). In PB, 10 cytokines increased with age (CXCL9, FLT3L, CCL27, CXCL10, HGF, CCL11, IL-16, IL-6, IL-1 beta, CCL2). CH was associated with higher BM levels of MIF and IL-1 beta, lower BM levels of IL-9 and IL-5 and higher PB levels of IL-15, VEGF-A, IL-2, CXCL8, CXCL1 and G-CSF. These reference values provide a useful tool to investigate anomalies related to inflammaging and potentially leading to the onset of age-related myeloid malignancies or inflammatory conditions.
Collapse
|
3
|
Faurel A, Heiblig M, Kosmider O, Cornillon J, Boudou L, Guyotat D, Martignoles JA, Jamilloux Y, Noyel P, Daguenet E, Faure AC, Sujobert P, Flandrin-Gresta P. Recurrent Mutations of the Active Adenylation Domain of UBA1 in Atypical Form of VEXAS Syndrome. Hemasphere 2023; 7:e868. [PMID: 36999004 PMCID: PMC10043588 DOI: 10.1097/hs9.0000000000000868] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
|
4
|
Tan S, Kermasson L, Hilcenko C, Kargas V, Traynor D, Boukerrou AZ, Escudero-Urquijo N, Faille A, Bertrand A, Rossmann M, Goyenechea B, Jin L, Moreil J, Alibeu O, Beaupain B, Bôle-Feysot C, Fumagalli S, Kaltenbach S, Martignoles JA, Masson C, Nitschké P, Parisot M, Pouliet A, Radford-Weiss I, Tores F, de Villartay JP, Zarhrate M, Koh AL, Phua KB, Reversade B, Bond PJ, Bellanné-Chantelot C, Callebaut I, Delhommeau F, Donadieu J, Warren AJ, Revy P. Publisher Correction: Somatic genetic rescue of a germline ribosome assembly defect. Nat Commun 2022; 13:3574. [PMID: 35732670 PMCID: PMC9217931 DOI: 10.1038/s41467-022-31316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
5
|
Parinet V, Chapiro E, Bidet A, Gaillard B, Maarek O, Simon L, Lefebvre C, Defasque S, Mozziconacci MJ, Quinquenel A, Decamp M, Lifermann F, Ali-Ammar N, Maillon A, Baron M, Martin M, Struski S, Penther D, Micol JB, Auger N, Bilhou-Nabera C, Martignoles JA, Tondeur S, Nguyen-Khac F, Hirsch P, Roos-Weil D. Myeloid malignancies with translocation t(4;12)(q11-13;p13): molecular landscape, clonal hierarchy and clinical outcomes. J Cell Mol Med 2021; 25:9557-9566. [PMID: 34492730 PMCID: PMC8505829 DOI: 10.1111/jcmm.16895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Translocation t(4;12)(q11‐13;p13) is a recurrent but very rare chromosomal aberration in acute myeloid leukaemia (AML) resulting in the non‐constant expression of a CHIC2/ETV6 fusion transcript. We report clinico‐biological features, molecular characteristics and outcomes of 21 cases of t(4;12) including 19 AML and two myelodysplastic syndromes (MDS). Median age at the time of t(4;12) was 78 years (range, 56–88). Multilineage dysplasia was described in 10 of 19 (53%) AML cases and CD7 and/or CD56 expression in 90%. FISH analyses identified ETV6 and CHIC2 region rearrangements in respectively 18 of 18 and 15 of 17 studied cases. The t(4;12) was the sole cytogenetic abnormality in 48% of cases. The most frequent associated mutated genes were ASXL1 (n = 8/16, 50%), IDH1/2 (n = 7/16, 44%), SRSF2 (n = 5/16, 31%) and RUNX1 (n = 4/16, 25%). Interestingly, concurrent FISH and molecular analyses showed that t(4;12) can be, but not always, a founding oncogenic event. Median OS was 7.8 months for the entire cohort. In the 16 of 21 patients (76%) who received antitumoral treatment, overall response and first complete remission rates were 37% and 31%, respectively. Median progression‐free survival in responders was 13.7 months. Finally, t(4;12) cases harboured many characteristics of AML with myelodysplasia‐related changes (multilineage dysplasia, MDS‐related cytogenetic abnormalities, frequent ASXL1 mutations) and a poor prognosis.
Collapse
|
6
|
Martignoles JA, Delhommeau F, Hirsch P. Genetic Hierarchy of Acute Myeloid Leukemia: From Clonal Hematopoiesis to Molecular Residual Disease. Int J Mol Sci 2018; 19:E3850. [PMID: 30513905 PMCID: PMC6321602 DOI: 10.3390/ijms19123850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the field of cancer genome analysis revolutionized the picture we have of acute myeloid leukemia (AML). Pan-genomic studies, using either single nucleotide polymorphism arrays or whole genome/exome next generation sequencing, uncovered alterations in dozens of new genes or pathways, intimately connected with the development of leukemia. From a simple two-hit model in the late nineties, we are now building clonal stories that involve multiple unexpected cellular functions, leading to full-blown AML. In this review, we will address several seminal concepts that result from these new findings. We will describe the genetic landscape of AML, the association and order of events that define multiple sub-entities, both in terms of pathogenesis and in terms of clinical practice. Finally, we will discuss the use of this knowledge in the settings of new strategies for the evaluation of measurable residual diseases (MRD), using clone-specific multiple molecular targets.
Collapse
|
7
|
Reboursiere E, Le Bras F, Herbaux C, Gyan E, Clavert A, Morschhauser F, Malak S, Sibon D, Broussais F, Braun T, Fornecker LM, Garidi R, Tricot S, Houot R, Joly B, Abarah W, Choufi B, Pham AD, Gac AC, Fruchart C, Marin E, Safar V, Parcelier A, Maisonneuve H, Bachy E, Cartron G, Jaccard A, Tournilhac O, Rossi C, Schirmer L, Martignoles JA, Gaulard P, Tilly H, Damaj G. Bendamustine for the treatment of relapsed or refractory peripheral T cell lymphomas: A French retrospective multicenter study. Oncotarget 2018; 7:85573-85583. [PMID: 27458168 PMCID: PMC5356759 DOI: 10.18632/oncotarget.10764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/10/2016] [Indexed: 12/15/2022] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a group of diseases with poor outcome and few therapeutic options. We aimed to assess the efficacy of bendamustine in real life cohort of patients. Between November 2009 and March 2015, 138 PTCL patients were treated with bendamustine in 27 centers. Population median age was 64 (28-89) years with male/female ratio of 1.4. There were mainly angio-immunoblastic (AITL = 71), PTCL-not otherwise specified (PTCL-NOS = 40) and anaplastic large cell lymphoma (ALCL = 8). The majority of patients (96%) had disseminated disease and extranodal localizations (77%). Median number of chemotherapy lines prior to bendamustine was 2 (1-8). Median duration of response (DoR) after the last chemotherapy prior to bendamustine was 4.3 months (1-70) and 50% of patients had refractory disease. Median number of administered bendamustine cycles was 2 (1-8) and 72 patients (52%) received less than 3 mostly because of disease progression. Median dose was 90 (50-150) mg/m². Overall response rate (ORR) was 32.6% with complete response (CR) rate of 24.6% and median DoR was 3.3 months (1-39). AITL patients were more sensitive than PTCL-NOS patients (ORR: 45.1 versus 20%, p = 0.01). Median PFS and OS were 3.1 (0.2-46.3) and 4.4 (0.2-55.4) months. On multivariate analysis, refractory disease (p = 0.001) and extranodal localization (p = 0.028) adversely influenced ORR. Grade 3-4 thrombocytopenia, neutropenia and infections were reported in 22, 17 and 23% of cases respectively. Bendamustine as single agent could be considered as a therapeutic option for relapsed or refractory PTCL, particularly in chemosensitive or AITL patients. Combinations of bendamustine with other drugs warrant further evaluation.
Collapse
|