1
|
Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 1986; 320:134-9. [PMID: 3754034 DOI: 10.1038/320134a0] [Citation(s) in RCA: 1579] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have cloned and sequenced the complete complementary DNA of the oestrogen receptor (ER) present in the breast cancer cell line MCF-7. The expression of the ER cDNA in HeLa cells produces a protein that has the same relative molecular mass and binds oestradiol with the same affinity as the MCF-7 ER. There is extensive homology between the ER and the erb-A protein of the oncogenic avian erythroblastosis virus.
Collapse
|
|
39 |
1579 |
2
|
Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 1999; 27:4324-7. [PMID: 10536138 PMCID: PMC148712 DOI: 10.1093/nar/27.22.4324] [Citation(s) in RCA: 584] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conditional DNA excision between two LoxP sites can be achieved in the mouse using Cre-ER(T), a fusion protein between a mutated ligand binding domain of the human estrogen receptor (ER) and the Cre recombinase, the activity of which can be induced by 4-hydroxy-tamoxifen (OHT), but not natural ER ligands. We have recently characterized a new ligand-dependent recombinase, Cre-ER(T2), which was approximately 4-fold more efficiently induced by OHT than Cre-ER(T) in cultured cells. In order to compare the in vivo efficiency of these two ligand-inducible recombinases to generate temporally-controlled somatic mutations, we have engineered transgenic mice expressing a LoxP-flanked (floxed) transgene reporter and either Cre-ER(T) or Cre-ER(T2) under the control of the bovine keratin 5 promoter that is specifically active in the epidermis basal cell layer. No background recombinase activity could be detected, while recombination was induced in basal keratinocytes upon OHT administration. Interestingly, a dose-response study showed that Cre-ER(T2) was approximately 10-fold more sensitive to OHT induction than Cre-ER(T).
Collapse
|
research-article |
26 |
584 |
3
|
Krust A, Green S, Argos P, Kumar V, Walter P, Bornert JM, Chambon P. The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J 1986; 5:891-7. [PMID: 3755102 PMCID: PMC1166879 DOI: 10.1002/j.1460-2075.1986.tb04300.x] [Citation(s) in RCA: 502] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A chicken oviduct cDNA clone containing the complete open reading frame of the oestrogen receptor (ER) has been isolated and sequenced. The mol. wt of the predicted 589-amino acid protein is approximately 66 kd which is very close to that of the human ER. Comparison of the human and chicken amino acid sequences shows that 80% of their amino acids are identical. There are three highly conserved regions; the second and third of which probably represent the DNA- and hormone-binding domains of the receptor. The putative DNA-binding domain is characterised by its high cysteine and basic amino acid content, and the hormone-binding domain by its overall hydrophobicity. These two domains of homology are also present in the human glucocorticoid receptor (GR) and the product of the avian erythroblastosis virus (AEV) gene, v-erbA, indicating that c-erbA, the cellular counterpart of v-erbA, belongs to a multigene family of transcriptional regulatory proteins which bind steroid-related ligands. The first highly conserved ER region is not present in the truncated v-erbA gene, but shares some homology with the N-terminal end of the GR. The function of the v-erbA gene product is discussed in relation to its homology with the ER and GR sequences.
Collapse
|
Comparative Study |
39 |
502 |
4
|
Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M. Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci U S A 1985; 82:7889-93. [PMID: 3865204 PMCID: PMC390875 DOI: 10.1073/pnas.82.23.7889] [Citation(s) in RCA: 398] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Poly(A)+ RNA isolated from the human breast cancer cell line MCF-7 was fractionated by sucrose gradient centrifugation and fractions enriched in estrogen receptor (ER) mRNA were used to prepare randomly primed cDNA libraries in the lambda gt10 and lambda gt11 vectors. Clones corresponding to ER sequence were isolated from both libraries after screening with either ER monoclonal antibodies (lambda gt11) or synthetic oligonucleotide probes designed from two peptide sequences of purified ER (lambda gt10). Five cDNA clones were isolated by antibody screening and five were isolated after screening with synthetic oligonucleotides. The two largest ER cDNA clones, lambda OR3 (1.3 kilobase pairs) and lambda OR8 (2.1 kilobase pairs), isolated by using antibodies and oligonucleotides, respectively, were able to enrich selectively for ER mRNA by hybrid-selection. Furthermore, lambda OR8 contains the DNA sequence expected from the two ER peptides and crosshybridizes with each of the other ER cDNA clones. These results demonstrate that the clones isolated correspond to the ER mRNA sequence. Use of lambda OR8 as a hybridization probe revealed a single poly(A)+ RNA band of approximately equal to 6.2 kilobase pairs in the ER-containing human breast cancer cell lines MCF-7 and T47D. In contrast, no hybridization was seen in the human ER-negative cell line HeLa. The same probe hybridizes to a chicken gene that is expressed in oviduct tissue as a 7.5-kilobase-pair poly(A)+ RNA.
Collapse
|
research-article |
40 |
398 |
5
|
Ali S, Metzger D, Bornert JM, Chambon P. Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J 1993; 12:1153-60. [PMID: 8458328 PMCID: PMC413317 DOI: 10.1002/j.1460-2075.1993.tb05756.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a transient co-transfection system, we show that the human oestrogen receptor (hER) becomes phosphorylated in the presence of oestradiol (E2) as well as in the presence of the anti-oestrogens 4-hydroxy-tamoxifen (OHT) and ICI 164, 384 (ICI), although at lower efficiencies than with E2. There are multiple sites of phosphorylation in hER; using deletion and point mutants one of these sites has been mapped in the N-terminal A/B region at serine 118. Mutation of this serine to alanine caused, in a number of cell types, a significant reduction in transcriptional activation by hER from reporter genes containing an oestrogen response element (ERE), but did not affect the DNA binding properties or nuclear localization of hER. Thus phosphorylation of serine 118 is important for the action of the transcription activation function 1 (AF-1) located in the A/B region of the oestrogen receptor.
Collapse
|
|
32 |
315 |
6
|
Imai T, Takakuwa R, Marchand S, Dentz E, Bornert JM, Messaddeq N, Wendling O, Mark M, Desvergne B, Wahli W, Chambon P, Metzger D. Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci U S A 2004; 101:4543-7. [PMID: 15070754 PMCID: PMC384783 DOI: 10.1073/pnas.0400356101] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARgamma) mediates the activity of the insulin-sensitizing thiazolidinediones and plays an important role in adipocyte differentiation and fat accretion. The analysis of PPARgamma functions in mature adipocytes is precluded by lethality of PPARgamma(-/-) fetuses and tetraploid-rescued pups. Therefore we have selectively ablated PPARgamma in adipocytes of adult mice by using the tamoxifen-dependent Cre-ER(T2) recombination system. We show that mature PPARgamma-null white and brown adipocytes die within a few days and are replaced by newly formed PPARgamma-positive adipocytes, demonstrating that PPARgamma is essential for the in vivo survival of mature adipocytes, in addition to its well established requirement for their differentiation. Our data suggest that potent PPARgamma antagonists could be used to acutely reduce obesity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
313 |
7
|
Schuler M, Ali F, Chambon C, Duteil D, Bornert JM, Tardivel A, Desvergne B, Wahli W, Chambon P, Metzger D. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 2006; 4:407-14. [PMID: 17084713 DOI: 10.1016/j.cmet.2006.10.003] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 08/20/2006] [Accepted: 10/03/2006] [Indexed: 01/06/2023]
Abstract
Mice in which peroxisome proliferator-activated receptor beta (PPARbeta) is selectively ablated in skeletal muscle myocytes were generated to elucidate the role played by PPARbeta signaling in these myocytes. These somatic mutant mice exhibited a muscle fiber-type switching toward lower oxidative capacity that preceded the development of obesity and diabetes, thus demonstrating that PPARbeta is instrumental in myocytes to the maintenance of oxidative fibers and that fiber-type switching is likely to be the cause and not the consequence of these metabolic disorders. We also show that PPARbeta stimulates in myocytes the expression of PGC1alpha, a coactivator of various transcription factors, known to play an important role in slow muscle fiber formation. Moreover, as the PGC1alpha promoter contains a PPAR response element, the effect of PPARbeta on the formation and/or maintenance of slow muscle fibers can be ascribed, at least in part, to a stimulation of PGC1alpha expression at the transcriptional level.
Collapse
|
|
19 |
283 |
8
|
Wendling O, Bornert JM, Chambon P, Metzger D. Efficient temporally-controlled targeted mutagenesis in smooth muscle cells of the adult mouse. Genesis 2009; 47:14-8. [PMID: 18942088 DOI: 10.1002/dvg.20448] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To generate temporally-controlled targeted somatic mutations selectively and efficiently in smooth muscles, we have established a transgenic SMA-Cre-ER(T2) mouse line in which the expression of the Tamoxifen-dependent Cre-ER(T2) recombinase is under the control of a large genomic DNA segment of the mouse smooth muscle alpha actin (SMA) gene, contained in a Bacterial artificial chromosome (Bac). In this transgenic mouse line, Cre-ER(T2)-mediated recombination of LoxP-flanked target DNA is strictly Tamoxifen-dependent, and efficient in both vascular and visceral smooth muscle cells. Moreover, with the exception of few cardiomyocytes, LoxP-flanked DNA excision is restricted to smooth muscle cells. Thus, SMA-Cre-ER(T2) mice should be of great value to analyze gene function in smooth muscles, and to establish new animal models of human smooth muscle disorders.
Collapse
|
Journal Article |
16 |
193 |
9
|
Metzger D, Ali S, Bornert JM, Chambon P. Characterization of the amino-terminal transcriptional activation function of the human estrogen receptor in animal and yeast cells. J Biol Chem 1995; 270:9535-42. [PMID: 7721882 DOI: 10.1074/jbc.270.16.9535] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously reported that the transcriptional activation function AF-1, located in the A/B region of the human estrogen receptor, exhibits cell-type and promoter context specificity in both animal cells and yeast. To further characterize AF-1, we have constructed a number of deletion mutants spanning the A/B region in the context of either the whole human estrogen receptor or the A/B region linked to the GAL4 DNA binding domain, and tested their transcriptional activity in chicken embryo fibroblasts and in yeast cells, two cell types in which AF-1 efficiently activates transcription on its own. Additionally, we utilized HeLa cells in which AF-1 is poorly active but can synergize with the transcriptional activation function AF-2 located in the hormone binding domain. We show that in animal cells the "independent" activity of AF-1 is embodied in a rather hydrophobic proline-rich 99-amino acid activating domain (amino acids 51-149), whereas amino acids 51-93 and 102-149 can independently synergize with AF-2. Interestingly, in yeast, three discrete activating domains (amino acids 1-62, 80-113, and 118-149) are almost as active on their own as the whole A/B region, indicating that multiple activating domains can operate independently in yeast. Our study also demonstrates that, within the context of the whole human estrogen receptor, the same AF-1 activating domains are "induced" by either estradiol or 4-hydroxytamoxifen.
Collapse
|
|
30 |
159 |
10
|
Indra AK, Dupé V, Bornert JM, Messaddeq N, Yaniv M, Mark M, Chambon P, Metzger D. Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development 2005; 132:4533-44. [PMID: 16192310 DOI: 10.1242/dev.02019] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animal SWI2/SNF2 protein complexes containing either the brahma (BRM) or brahma-related gene 1 (BRG1) ATPase are involved in nucleosome remodelling and may control the accessibility of sequence-specific transcription factors to DNA. In vitro studies have indicated that BRM and BRG1 could regulate the expression of distinct sets of genes. However, as mice lacking BRM are viable and fertile, BRG1 might efficiently compensate for BRM loss. By contrast, as Brg1-null fibroblasts are viable but Brg1-null embryos die during the peri-implantation stage, BRG1 might exert cell-specific functions. To further investigate the in vivo role of BRG1, we selectively ablated Brg1 in keratinocytes of the forming mouse epidermis. We show that BRG1 is selectively required for epithelial-mesenchymal interactions in limb patterning, and during keratinocyte terminal differentiation, in which BRM can partially substitute for BRG1. By contrast, neither BRM nor BRG1 are essential for the proliferation and early differentiation of keratinocytes, which may require other ATP-dependent nucleosome-remodelling complexes. Finally, we demonstrate that cell-specific targeted somatic mutations can be created at various times during the development of mouse embryos cell-specifically expressing the tamoxifen-activatable Cre-ER(T2) recombinase.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
93 |
11
|
Metzger D, Losson R, Bornert JM, Lemoine Y, Chambon P. Promoter specificity of the two transcriptional activation functions of the human oestrogen receptor in yeast. Nucleic Acids Res 1992; 20:2813-7. [PMID: 1614867 PMCID: PMC336926 DOI: 10.1093/nar/20.11.2813] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously demonstrated that the human oestrogen receptor (hER) contains two transcriptional activation functions located in the N-terminal region (TAF-1) and in the hormone binding domain (TAF-2), which can act both independently and synergistically in a promoter- and cell-specific manner in animal cells. We have also demonstrated that hER can activate transcription from chimaeric oestrogen-responsive GAL1 promoters in yeast, and shown that transcriptional activation was due to TAF-1, whereas TAF-2 showed little, if any, transcriptional activity on these promoters. By using a more complex promoter derived from the URA3 gene, we now show that TAF-2 is also active in yeast, and that the activities of TAF-1 and TAF-2 are promoter-context-specific in yeast. We also confirm that the agonistic activity of 4-hydroxytamoxifen (OHT) can be ascribed to the activity of TAF-1.
Collapse
|
research-article |
33 |
77 |
12
|
Golonzhka O, Liang X, Messaddeq N, Bornert JM, Campbell AL, Metzger D, Chambon P, Ganguli-Indra G, Leid M, Indra AK. Dual role of COUP-TF-interacting protein 2 in epidermal homeostasis and permeability barrier formation. J Invest Dermatol 2008; 129:1459-70. [PMID: 19092943 DOI: 10.1038/jid.2008.392] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
COUP-TF-interacting protein 2 (CTIP2; also known as Bcl11b) is a transcription factor that plays key roles in the development of the central nervous and immune systems. CTIP2 is also highly expressed in the developing epidermis, and at lower levels in the dermis and in adult skin. Analyses of mice harboring a germline deletion of CTIP2 revealed that the protein plays critical roles in skin during development, particularly in keratinocyte proliferation and late differentiation events, as well as in the development of the epidermal permeability barrier. At the core of all of these actions is a relatively large network of genes, described herein, that is regulated directly or indirectly by CTIP2. The analysis of conditionally null mice, in which expression of CTIP2 was ablated specifically in epidermal keratinocytes, suggests that CTIP2 functions in both cell and non-cell autonomous contexts to exert regulatory influence over multiple phases of skin development, including barrier establishment. Considered together, our results suggest that CTIP2 functions as a top-level regulator of skin morphogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
62 |
13
|
Macchi M, Bornert JM, Davidson I, Kanno M, Rosales R, Vigneron M, Xiao JH, Fromental C, Chambon P. The SV40 TC-II(kappa B) enhanson binds ubiquitous and cell type specifically inducible nuclear proteins from lymphoid and non-lymphoid cell lines. EMBO J 1989; 8:4215-27. [PMID: 2556265 PMCID: PMC401618 DOI: 10.1002/j.1460-2075.1989.tb08607.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have characterized the complexes resulting from the specific binding in vitro of proteins present in nuclear extracts of several lymphoid and non-lymphoid cell lines to the TC-I and TC-II sequences of the simian virus 40 (SV40) enhancer. No proteins could be detected, binding selectively to the TC-I sequence, but two proteins TC-IIA and TC-IIB were identified interacting specifically with both the TC-II/kappa B enhanson, 5'-GGAAAGTCCCC-3' (important for the activity of the SV40 enhancer in vivo), and with the related H-2Kb enhanson, 5'-TGGGGATTCCCCA-3'. The binding of these two proteins to mutated TC-II enhansons correlates with the effect of these mutations in vivo, suggesting that both proteins may be important for SV40 enhancer activity. The TC-IIA binding activity was present in nuclear extracts of mature lymphoid B cells and was increased in pre-B cell nuclear extracts by lipopolysaccharide (LPS) and cycloheximide treatment. Furthermore, complex formation between the TC-IIA protein and the TC-II enhanson was efficiently competed by the kappa B motif from the kappa chain enhancer, indicating that TC-IIA is the NF-kappa B factor or a closely related protein. However, in contrast to previous reports, a TC-IIA/NF-kappa B-like protein whose properties could not be distinguished from those of the TC-IIA protein present in lymphoid B cells, was found in nuclear extracts of several untreated non-lymphoid cell lines, notably of HeLa cells, but not of undifferentiated F9 embryonal carcinoma (EC) cells [F9(ND)]. The TC-IIA binding activity which was moderately increased in HeLa cell nuclear extracts by 12-O-tetradecanoylphorbol-13-acetate (TPA) and/or cycloheximide treatment could be induced in nuclear extracts of F9(ND) cells by cycloheximide, but not by TPA. Moreover, the TC-IIA binding activity could be induced in cytosolic fractions from F9(ND) cells by treatment with deoxycholate, indicating that these cells contain an inhibitor protein similar to the previously described NF-kappa B inhibitor, I kappa B. The second TC-II enhanson binding protein, TC-IIB, which could be clearly distinguished from the TC-IIA/NF-kappa B-like protein, by a number of differential properties, resembles the previously described KBF1/H2TF1 protein as it binds with a higher affinity to the H-2Kb enhanson than to the TC-II/kappa B enhanson, and its pattern of methylation interference on the H-2Kb and TC-II/kappa B enhansons is identical to that reported for the KBF1/H2TF1 protein.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
36 |
43 |
14
|
Indra AK, Li M, Brocard J, Warot X, Bornert JM, Gérard C, Messaddeq N, Chambon P, Metzger D. Targeted somatic mutagenesis in mouse epidermis. HORMONE RESEARCH 2002; 54:296-300. [PMID: 11595821 DOI: 10.1159/000053275] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene targeting in the mouse is a powerful tool to study mammalian gene function. The possibility to efficiently introduce somatic mutations in a given gene, at a chosen time and/or in a given cell type will further improve such studies, and will facilitate the generation of animal models for human diseases. To create targeted somatic mutations in the epidermis, we established transgenic mice expressing the bacteriophage P1 Cre recombinase or the tamoxifen-dependent Cre-ER(T2) recombinase under the control of the human keratin 14 (K14) promoter. We show that LoxP flanked (floxed) DNA segments were efficiently excised in epidermal keratinocytes of K14-Cre transgenic mice. Furthermore, Tamoxifen administration to adult K14-Cre-ER(T2) mice efficiently induced recombination in the basal keratinocytes, whereas no background recombination was detected in the absence of ligand treatment. These two transgenic lines should be very useful to analyse the functional role of a number of genes expressed in keratinocytes.
Collapse
|
|
23 |
40 |
15
|
Parisotto M, Grelet E, El Bizri R, Dai Y, Terzic J, Eckert D, Gargowitsch L, Bornert JM, Metzger D. PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J Exp Med 2018; 215:1749-1763. [PMID: 29743291 PMCID: PMC5987915 DOI: 10.1084/jem.20171207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 02/03/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic ablation of the tumor suppressor PTEN in prostatic epithelial cells (PECs) induces cell senescence. However, unlike oncogene-induced senescence, no hyperproliferation phase and no signs of DNA damage response (DDR) were observed in PTEN-deficient PECs; PTEN loss-induced senescence (PICS) was reported to be a novel type of cellular senescence. Our study reveals that PTEN ablation in prostatic luminal epithelial cells of adult mice stimulates PEC proliferation, followed by a progressive growth arrest with characteristics of cell senescence. Importantly, we also show that proliferating PTEN-deficient PECs undergo replication stress and mount a DDR leading to p53 stabilization, which is however delayed by Mdm2-mediated p53 down-regulation. Thus, even though PTEN-deficiency induces cellular senescence that restrains tumor progression, as it involves replication stress, strategies promoting PTEN loss-induced senescence are at risk for cancer prevention and therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
24 |
16
|
Abu El Maaty MA, Grelet E, Keime C, Rerra AI, Gantzer J, Emprou C, Terzic J, Lutzing R, Bornert JM, Laverny G, Metzger D. Single-cell analyses unravel cell type-specific responses to a vitamin D analog in prostatic precancerous lesions. SCIENCE ADVANCES 2021; 7:7/31/eabg5982. [PMID: 34330705 PMCID: PMC8324049 DOI: 10.1126/sciadv.abg5982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Epidemiological data have linked vitamin D deficiency to the onset and severity of various cancers, including prostate cancer, and although in vitro studies have demonstrated anticancer activities for vitamin D, clinical trials provided conflicting results. To determine the impact of vitamin D signaling on prostatic precancerous lesions, we treated genetically engineered Pten(i)pe-/- mice harboring prostatic intraepithelial neoplasia (PIN) with Gemini-72, a vitamin D analog with reported anticancer activities. We show that this analog induces apoptosis in senescent PINs, normalizes extracellular matrix remodeling by stromal fibroblasts, and reduces the prostatic infiltration of immunosuppressive myeloid-derived suppressor cells. Moreover, single-cell RNA-sequencing analysis demonstrates that while a subset of luminal cells expressing Krt8, Krt4, and Tacstd2 (termed luminal-C cells) is lost by such a treatment, antiapoptotic pathways are induced in persistent luminal-C cells. Therefore, our findings delineate the distinct responses of PINs and the microenvironment to Gemini-72, and shed light on mechanisms that limit treatment's efficacy.
Collapse
|
research-article |
4 |
16 |
17
|
Mori M, Gargowitsch L, Bornert JM, Garnier JM, Mark M, Chambon P, Metzger D. Temporally controlled targeted somatic mutagenesis in mouse eye pigment epithelium. Genesis 2012; 50:828-32. [PMID: 22730183 DOI: 10.1002/dvg.22044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 11/07/2022]
Abstract
To generate temporally controlled site-specific somatic mutations in the mouse eye pigment epithelium, we generated a TRP1-Cre-ER(T2) transgenic mouse line that expresses the tamoxifen-dependent Cre-ER(T2) recombinase under the control of the tyrosinase-related protein 1 (TRP1) promoter. Cre-ER(T2) transcripts were readily detected in the retinal pigment epithelium (RPE), and tamoxifen treatment of adult TRP1-Cre-ER(T2) transgenic mice induced efficient excision of floxed DNA in patches of RPE cells, in numerous epithelial cells of the iris and ciliary body, and in very few cells of the neural retina. Importantly, no excision was detected in any cells in the absence of tamoxifen treatment. Thus, the TRP1-Cre-ER(T2) mouse line provides a powerful tool to study in vivo gene functions in the mouse eye pigment epithelium.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
5 |
18
|
Gannon F, Jeltsch JM, Bloch J, Krust A, Garnier JM, Bornert JM, Gilna P. Characterization of the expression of conalbumin and ovalbumin sequences cloned into the PstI site of pBR322. Ann N Y Acad Sci 1986; 469:18-30. [PMID: 3524396 DOI: 10.1111/j.1749-6632.1986.tb26481.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
|
39 |
|