2
|
Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M, Hunt J, Wolf B, Jones B, Madrigal J, Horton J, Spiegel M, Carroll J, Gukasyan J, Williams T, Sauer L, Wells C, Hardy A, Linares P, Lim C, Ma L, Adame C, Garon EB. A Phase II Study of Pembrolizumab in EGFR-Mutant, PD-L1+, Tyrosine Kinase Inhibitor Naïve Patients With Advanced NSCLC. J Thorac Oncol 2018; 13:1138-1145. [PMID: 29874546 DOI: 10.1016/j.jtho.2018.03.035] [Citation(s) in RCA: 425] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/25/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite the significant antitumor activity of pembrolizumab in NSCLC, clinical benefit has been less frequently observed in patients whose tumors harbor EGFR mutations compared to EGFR wild-type patients. Our single-center experience on the KEYNOTE-001 trial suggested that pembrolizumab-treated EGFR-mutant patients, who were tyrosine kinase inhibitor (TKI) naïve, had superior clinical outcomes to those previously treated with a TKI. As TKI naïve EGFR-mutants have generally been excluded from pembrolizumab studies, data to guide treatment decisions in this patient population is lacking, particularly in patients with programmed death ligand 1 (PD-L1) expression ≥50%. METHODS We conducted a phase II trial (NCT02879994) of pembrolizumab in TKI naive patients with EGFR mutation-positive, advanced NSCLC and PD-L1-positive (≥1%, 22C3 antibody) tumors. Pembrolizumab was administered 200 mg every 3 weeks. The primary endpoint was objective response rate. Secondary endpoints included safety of pembrolizumab, additional pembrolizumab efficacy endpoints, and efficacy and safety of an EGFR TKI after pembrolizumab. RESULTS Enrollment was ceased due to lack of efficacy after 11 of 25 planned patients were treated. Eighty-two percent of trial patients were treatment naïve, 64% had sensitizing EGFR mutations, and 73% had PD-L1 expression ≥50%. Only 1 patient had an objective response (9%), but repeat analysis of this patient's tumor definitively showed the original report of an EGFR mutation to be erroneous. Observed treatment-related adverse events were similar to prior experience with pembrolizumab, but two deaths within 6 months of enrollment, including one attributed to pneumonitis, were of concern. CONCLUSIONS Pembrolizumab's lack of efficacy in TKI naïve, PD-L1+, EGFR-mutant patients with advanced NSCLC, including those with PD-L1 expression ≥50%, suggests that it is not an appropriate therapeutic choice in this setting.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
425 |
16
|
Abi B, Albahri T, Al-Kilani S, Allspach D, Alonzi LP, Anastasi A, Anisenkov A, Azfar F, Badgley K, Baeßler S, Bailey I, Baranov VA, Barlas-Yucel E, Barrett T, Barzi E, Basti A, Bedeschi F, Behnke A, Berz M, Bhattacharya M, Binney HP, Bjorkquist R, Bloom P, Bono J, Bottalico E, Bowcock T, Boyden D, Cantatore G, Carey RM, Carroll J, Casey BCK, Cauz D, Ceravolo S, Chakraborty R, Chang SP, Chapelain A, Chappa S, Charity S, Chislett R, Choi J, Chu Z, Chupp TE, Convery ME, Conway A, Corradi G, Corrodi S, Cotrozzi L, Crnkovic JD, Dabagov S, De Lurgio PM, Debevec PT, Di Falco S, Di Meo P, Di Sciascio G, Di Stefano R, Drendel B, Driutti A, Duginov VN, Eads M, Eggert N, Epps A, Esquivel J, Farooq M, Fatemi R, Ferrari C, Fertl M, Fiedler A, Fienberg AT, Fioretti A, Flay D, Foster SB, Friedsam H, Frlež E, Froemming NS, Fry J, Fu C, Gabbanini C, Galati MD, Ganguly S, Garcia A, Gastler DE, George J, Gibbons LK, Gioiosa A, Giovanetti KL, Girotti P, Gohn W, Gorringe T, Grange J, Grant S, Gray F, Haciomeroglu S, Hahn D, Halewood-Leagas T, Hampai D, Han F, Hazen E, Hempstead J, Henry S, Herrod AT, et alAbi B, Albahri T, Al-Kilani S, Allspach D, Alonzi LP, Anastasi A, Anisenkov A, Azfar F, Badgley K, Baeßler S, Bailey I, Baranov VA, Barlas-Yucel E, Barrett T, Barzi E, Basti A, Bedeschi F, Behnke A, Berz M, Bhattacharya M, Binney HP, Bjorkquist R, Bloom P, Bono J, Bottalico E, Bowcock T, Boyden D, Cantatore G, Carey RM, Carroll J, Casey BCK, Cauz D, Ceravolo S, Chakraborty R, Chang SP, Chapelain A, Chappa S, Charity S, Chislett R, Choi J, Chu Z, Chupp TE, Convery ME, Conway A, Corradi G, Corrodi S, Cotrozzi L, Crnkovic JD, Dabagov S, De Lurgio PM, Debevec PT, Di Falco S, Di Meo P, Di Sciascio G, Di Stefano R, Drendel B, Driutti A, Duginov VN, Eads M, Eggert N, Epps A, Esquivel J, Farooq M, Fatemi R, Ferrari C, Fertl M, Fiedler A, Fienberg AT, Fioretti A, Flay D, Foster SB, Friedsam H, Frlež E, Froemming NS, Fry J, Fu C, Gabbanini C, Galati MD, Ganguly S, Garcia A, Gastler DE, George J, Gibbons LK, Gioiosa A, Giovanetti KL, Girotti P, Gohn W, Gorringe T, Grange J, Grant S, Gray F, Haciomeroglu S, Hahn D, Halewood-Leagas T, Hampai D, Han F, Hazen E, Hempstead J, Henry S, Herrod AT, Hertzog DW, Hesketh G, Hibbert A, Hodge Z, Holzbauer JL, Hong KW, Hong R, Iacovacci M, Incagli M, Johnstone C, Johnstone JA, Kammel P, Kargiantoulakis M, Karuza M, Kaspar J, Kawall D, Kelton L, Keshavarzi A, Kessler D, Khaw KS, Khechadoorian Z, Khomutov NV, Kiburg B, Kiburg M, Kim O, Kim SC, Kim YI, King B, Kinnaird N, Korostelev M, Kourbanis I, Kraegeloh E, Krylov VA, Kuchibhotla A, Kuchinskiy NA, Labe KR, LaBounty J, Lancaster M, Lee MJ, Lee S, Leo S, Li B, Li D, Li L, Logashenko I, Lorente Campos A, Lucà A, Lukicov G, Luo G, Lusiani A, Lyon AL, MacCoy B, Madrak R, Makino K, Marignetti F, Mastroianni S, Maxfield S, McEvoy M, Merritt W, Mikhailichenko AA, Miller JP, Miozzi S, Morgan JP, Morse WM, Mott J, Motuk E, Nath A, Newton D, Nguyen H, Oberling M, Osofsky R, Ostiguy JF, Park S, Pauletta G, Piacentino GM, Pilato RN, Pitts KT, Plaster B, Počanić D, Pohlman N, Polly CC, Popovic M, Price J, Quinn B, Raha N, Ramachandran S, Ramberg E, Rider NT, Ritchie JL, Roberts BL, Rubin DL, Santi L, Sathyan D, Schellman H, Schlesier C, Schreckenberger A, Semertzidis YK, Shatunov YM, Shemyakin D, Shenk M, Sim D, Smith MW, Smith A, Soha AK, Sorbara M, Stöckinger D, Stapleton J, Still D, Stoughton C, Stratakis D, Strohman C, Stuttard T, Swanson HE, Sweetmore G, Sweigart DA, Syphers MJ, Tarazona DA, Teubner T, Tewsley-Booth AE, Thomson K, Tishchenko V, Tran NH, Turner W, Valetov E, Vasilkova D, Venanzoni G, Volnykh VP, Walton T, Warren M, Weisskopf A, Welty-Rieger L, Whitley M, Winter P, Wolski A, Wormald M, Wu W, Yoshikawa C. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. PHYSICAL REVIEW LETTERS 2021; 126:141801. [PMID: 33891447 DOI: 10.1103/physrevlett.126.141801] [Show More Authors] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
We present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g-2 Experiment for the positive muon magnetic anomaly a_{μ}≡(g_{μ}-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ω_{a} between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω[over ˜]_{p}^{'} in a spherical water sample at 34.7 °C. The ratio ω_{a}/ω[over ˜]_{p}^{'}, together with known fundamental constants, determines a_{μ}(FNAL)=116 592 040(54)×10^{-11} (0.46 ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both μ^{+} and μ^{-}, the new experimental average of a_{μ}(Exp)=116 592 061(41)×10^{-11} (0.35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.
Collapse
|
|
4 |
114 |