1
|
White JB, Walcott GP, Wayland JL, Smith WM, Ideker RE. Predicting the relative efficacy of shock waveforms for transthoracic defibrillation in dogs. Ann Emerg Med 1999; 34:309-20. [PMID: 10459086 DOI: 10.1016/s0196-0644(99)70124-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
STUDY OBJECTIVE Previous work has shown that a passive membrane model using a parallel resistor-capacitor circuit is capable of predicting optimal waveforms for transvenous defibrillation. This study tested the ability of that model to predict optimal waveforms for transthoracic defibrillation. METHODS This study was divided into 3 parts, each of which determined transthoracic defibrillation thresholds (DFTs) in 6 dogs for several different waveform shapes and durations. For each part, strength-duration relationships were determined from both experimental and model data and then compared with test model predictions. Part 1 DFTs were determined at various durations for 3 different monophasic waveforms-the ascending ramp, descending ramp, and square waveform. Part 2 DFTs were determined for 3 biphasic waveforms. Phase 1 was a 30-ms ascending ramp, and phase 2 was an ascending ramp, a descending ramp, or a square waveform. Part 3 DFTs were determined for 3 biphasic waveforms with very short second-phase durations. Phase 1 was a 30-ms ascending ramp, and phase 2 was a descending ramp. RESULTS For part 1, the model was able to predict the relative defibrillation efficacy of the 3 monophasic waveforms ( P < .05). For parts 2 and 3, the model was able to predict the biphasic waveforms with the lowest DFTs. These predictions were based on the criterion that the model response at the end of the second phase should return to or slightly pass the model response value at the beginning of the first phase. CONCLUSION The resistor-capacitor model successfully predicted the relative defibrillation efficacy of several different waveforms delivered transthoracically.
Collapse
|
Comparative Study |
26 |
18 |
2
|
Delisle BP, Stumpf JL, Wayland JL, Johnson SR, Ono M, Hall D, Burgess DE, Schroder EA. Circadian clocks regulate cardiac arrhythmia susceptibility, repolarization, and ion channels. Curr Opin Pharmacol 2021; 57:13-20. [PMID: 33181392 PMCID: PMC8240636 DOI: 10.1016/j.coph.2020.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Daily changes in the incidence of sudden cardiac death (SCD) reveal an interaction between environmental rhythms and internal circadian rhythms. Circadian rhythms are physiological rhythms that alter physiology to anticipate daily changes in the environment. They reflect coordinated activity of cellular circadian clocks that exist throughout the body. This review provides an overview of the state of the field by summarizing the results of several different transgenic mouse models that disrupt the function of circadian clocks throughout the body, in cardiomyocytes, or in adult cardiomyocytes. These studies identify important roles for circadian clocks in regulating heart rate, ventricular repolarization, arrhythmogenesis, and the functional expression of cardiac ion channels. They highlight a new dimension in the regulation of cardiac excitability and represent initial forays into understanding the complexities of how time impacts the functional regulation of ion channels, cardiac excitability, and time of day changes in the incidence of SCD.
Collapse
|
Review |
4 |
10 |
3
|
Schroder EA, Wayland JL, Samuels KM, Shah SF, Burgess DE, Seward T, Elayi CS, Esser KA, Delisle BP. Cardiomyocyte Deletion of Bmal1 Exacerbates QT- and RR-Interval Prolongation in Scn5a +/ΔKPQ Mice. Front Physiol 2021; 12:681011. [PMID: 34248669 PMCID: PMC8265216 DOI: 10.3389/fphys.2021.681011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms are generated by cell autonomous circadian clocks that perform a ubiquitous cellular time-keeping function and cell type-specific functions important for normal physiology. Studies show inducing the deletion of the core circadian clock transcription factor Bmal1 in adult mouse cardiomyocytes disrupts cardiac circadian clock function, cardiac ion channel expression, slows heart rate, and prolongs the QT-interval at slow heart rates. This study determined how inducing the deletion of Bmal1 in adult cardiomyocytes impacted the in vivo electrophysiological phenotype of a knock-in mouse model for the arrhythmogenic long QT syndrome (Scn5a +/ΔKPQ ). Electrocardiographic telemetry showed inducing the deletion of Bmal1 in the cardiomyocytes of mice with or without the ΔKPQ-Scn5a mutation increased the QT-interval at RR-intervals that were ≥130 ms. Inducing the deletion of Bmal1 in the cardiomyocytes of mice with or without the ΔKPQ-Scn5a mutation also increased the day/night rhythm-adjusted mean in the RR-interval, but it did not change the period, phase or amplitude. Compared to mice without the ΔKPQ-Scn5a mutation, mice with the ΔKPQ-Scn5a mutation had reduced heart rate variability (HRV) during the peak of the day/night rhythm in the RR-interval. Inducing the deletion of Bmal1 in cardiomyocytes did not affect HRV in mice without the ΔKPQ-Scn5a mutation, but it did increase HRV in mice with the ΔKPQ-Scn5a mutation. The data demonstrate that deleting Bmal1 in cardiomyocytes exacerbates QT- and RR-interval prolongation in mice with the ΔKPQ-Scn5a mutation.
Collapse
|
research-article |
4 |
7 |
4
|
Zhou X, Smith WM, Justice RK, Wayland JL, Ideker RE. Transmembrane potential changes caused by monophasic and biphasic shocks. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1798-807. [PMID: 9815088 DOI: 10.1152/ajpheart.1998.275.5.h1798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transmembrane potential change (DeltaVm) during shocks was recorded by a double-barrel microelectrode in 12 isolated guinea pig papillary muscles. After 10 S1 stimuli, square-wave S2 shocks of both polarities were given consisting of 10-ms monophasic and 10/10-ms and 5/5-ms biphasic waveforms that created potential gradients from 1.1 +/- 0.3 to 11.9 +/- 0.4 V/cm. S2 shocks were applied with 30, 60- to 70-, and 90- to 130-ms S1-S2 coupling intervals so that they occurred during the plateau, late portion of the plateau, and phase 3 of the action potential, respectively. Some shocks were given across as well as along the fiber orientation. The shocks caused hyperpolarization with one polarity and depolarization with the opposite polarity. The ratio of the magnitude of hyperpolarization to that of depolarization at the three S1-S2 coupling intervals was 1.5 +/- 0.3, 1.1 +/- 0.2, and 0.5 +/- 0.2, respectively. DeltaVm during the shock was significantly greater for the monophasic than for the two biphasic shocks. The prolongation of total repolarizing time (TRT) was significantly greater for monophasic (119.8 +/- 19.1%) and 10/10-ms biphasic (120.5 +/- 18.2%) than for 5/5-ms biphasic (113.0 +/- 12.9%) waveforms. The dispersion of the normalized TRT between instances of hyperpolarization and depolarization caused by the two shock polarities was 7.4 +/- 7.1% for monophasic, 3.0 +/- 4.1% for 10/10-ms biphasic, and 2.8 +/- 3.1% for 5/5-ms biphasic shocks (P < 0.05 for monophasic vs. biphasic). Shock fields along fibers produced a larger DeltaVm and prolongation of TRT than those across fibers. We conclude that 1) a change in shock polarity causes an asymmetrical change in membrane polarization depending on shock timing; 2) the 5/5-ms biphasic waveform causes the smallest DeltaVm, prolongs repolarization the least, and causes the smallest polarity-dependent dispersion; and 3) the changes in transmembrane potential and repolarization are influenced by fiber orientation.
Collapse
|
|
27 |
3 |
5
|
Alarcon PC, Damen MSMA, Ulanowicz CJ, Sawada K, Oates JR, Toth A, Wayland JL, Chung H, Stankiewicz TE, Moreno-Fernandez ME, Szabo S, Zacharias WJ, Divanovic S. Obesity amplifies influenza virus-driven disease severity in male and female mice. Mucosal Immunol 2023; 16:843-858. [PMID: 37730122 PMCID: PMC10842771 DOI: 10.1016/j.mucimm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Influenza virus-induced respiratory pneumonia remains a major public health concern. Obesity, metabolic diseases, and female sex are viewed as independent risk factors for worsened influenza virus-induced lung disease severity. However, lack of experimental models of severe obesity in female mice limits discovery-based studies. Here, via utility of thermoneutral housing (30 °C) and high-fat diet (HFD) feeding, we induced severe obesity and metabolic disease in female C57BL/6 mice and compared their responses to severely obese male C57BL/6 counterparts during influenza virus infection. We show that lean male and female mice have similar lung edema, inflammation, and immune cell infiltration during influenza virus infection. At standard housing conditions, HFD-fed male, but not female, mice exhibit severe obesity, metabolic disease, and exacerbated influenza disease severity. However, combining thermoneutral housing and HFD feeding in female mice induces severe obesity and metabolic disease, which is sufficient to amplify influenza virus-driven disease severity to a level comparable to severely obese male counterparts. Lastly, increased total body weights of male and female mice at time of infection correlated with worsened influenza virus-driven disease severity metrics. Together, our findings confirm the impact of obesity and metabolic disease as key risk factors to influenza disease severity and present a novel mouse experimental model suitable for future mechanistic interrogation of sex, obesity, and metabolic disease traits in influenza virus-driven disease severity.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
1 |
6
|
Bhown AS, Wayland JL, Lynn JD, Bennett JC. Conversion of the beckman liquid phase sequencer to a gas-liquid phase sequencer. Anal Biochem 1988; 175:39-51. [PMID: 3245577 DOI: 10.1016/0003-2697(88)90358-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As an effective aid to extend the microsequencing capabilities the Beckman protein/peptide sequenator Series 890C has been successfully converted to a gas-liquid system, in which coupling buffer 25% trimethylamine was employed as a gas, and heptafluorobutyric acid as a liquid. The system has been found to be efficient for microsequencing (less than 100 pmol). The details of mechanical, plumbing, and other minor changes are described in this paper along with the results of sequencing proteins and peptides, directly and from blots.
Collapse
|
|
37 |
1 |
7
|
Wayland JL, Doll JR, Lawson MJ, Stankiewicz TE, Oates JR, Sawada K, Damen MSMA, Alarcon PC, Haslam DB, Trout AT, DeFranco EA, Klepper CM, Woo JG, Moreno-Fernandez ME, Mouzaki M, Divanovic S. Thermoneutral Housing Enables Studies of Vertical Transmission of Obesogenic Diet-Driven Metabolic Diseases. Nutrients 2023; 15:4958. [PMID: 38068816 PMCID: PMC10708424 DOI: 10.3390/nu15234958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Vertical transmission of obesity is a critical contributor to the unabated obesity pandemic and the associated surge in metabolic diseases. Existing experimental models insufficiently recapitulate "human-like" obesity phenotypes, limiting the discovery of how severe obesity in pregnancy instructs vertical transmission of obesity. Here, via utility of thermoneutral housing and obesogenic diet feeding coupled to syngeneic mating of WT obese female and lean male mice on a C57BL/6 background, we present a tractable, more "human-like" approach to specifically investigate how maternal obesity contributes to offspring health. Using this model, we found that maternal obesity decreased neonatal survival, increased offspring adiposity, and accelerated offspring predisposition to obesity and metabolic disease. We also show that severe maternal obesity was sufficient to skew offspring microbiome and create a proinflammatory gestational environment that correlated with inflammatory changes in the offspring in utero and adulthood. Analysis of a human birth cohort study of mothers with and without obesity and their infants was consistent with mouse study findings of maternal inflammation and offspring weight gain propensity. Together, our results show that dietary induction of obesity in female mice coupled to thermoneutral housing can be used for future mechanistic interrogations of obesity and metabolic disease in pregnancy and vertical transmission of pathogenic traits.
Collapse
|
research-article |
2 |
|
8
|
Wayland JL, Stemen EL, Doll JR, Divanovic S. Protocol for cytokine and uterine immune cell characterization in a mouse model of LPS-induced preterm birth. STAR Protoc 2023; 4:102643. [PMID: 37858473 PMCID: PMC10594632 DOI: 10.1016/j.xpro.2023.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Inflammation-driven preterm birth (PTB) is modeled in mice using lipopolysaccharide (LPS) challenge. Here, we present a protocol for cytokine and uterine immune cell characterization in a mouse model of LPS-induced PTB. We describe steps for LPS challenge, in vivo cytokine capture assay, and isolation of uterine immune cells for flow cytometry. These techniques allow examination of systemic inflammation in vivo and immune cell characterization at the maternal-fetal interface, facilitating exploration of inflammatory dynamics in mouse models of PTB susceptibility. For complete details on the use and execution of this protocol, please refer to Doll et al.1.
Collapse
|
research-article |
2 |
|
9
|
Doll JR, Moreno-Fernandez ME, Stankiewicz TE, Wayland JL, Wilburn A, Weinhaus B, Chougnet CA, Giordano D, Cappelletti M, Presicce P, Kallapur SG, Salomonis N, Tilburgs T, Divanovic S. BAFF and APRIL counterregulate susceptibility to inflammation-induced preterm birth. Cell Rep 2023; 42:112352. [PMID: 37027297 PMCID: PMC10551044 DOI: 10.1016/j.celrep.2023.112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
10
|
Alarcon PC, Ulanowicz CJ, Damen MSMA, Eom J, Sawada K, Chung H, Alahakoon T, Oates JR, Wayland JL, Stankiewicz TE, Moreno-Fernandez ME, Zacharias WJ, Salomonis N, Divanovic S. Obesity Uncovers the Presence of Inflammatory Lung Macrophage Subsets With an Adipose Tissue Transcriptomic Signature in Influenza Virus Infection. J Infect Dis 2025; 231:e317-e327. [PMID: 39494998 PMCID: PMC11841630 DOI: 10.1093/infdis/jiae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024] Open
Abstract
Obesity is an independent risk factor for increased disease severity during influenza A virus (IAV) infection. White adipose tissue (WAT) inflammation promotes disease pathogenesis in obesity. Whether obesity modifies lung and WAT immune cells to amplify influenza severity is unknown. We show that obesity establishes a proinflammatory transcriptome in lung immune cells that is augmented during IAV infection and that IAV infection changes WAT immune cell milieu in obesity. Notably, a decrease in WAT macrophages (ATM) inversely correlates with an increase in infiltrating lung macrophages in obese IAV-infected mice. Further analyses of lung immune cell uncovered a macrophage subset that shares a transcriptomic signature with inflammatory ATMs. Importantly, adoptive transfer of ATMs from obese mice into lean IAV infected mice promotes host immune cell infiltration to the lungs. These findings suggest that, in an obese state, ATMs may exacerbate the inflammatory milieu important in pathologic responses to IAV infection.
Collapse
|
research-article |
1 |
|