1
|
de Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, Mills K, Mitsumoto H, Nodera H, Shefner J, Swash M. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 2007; 119:497-503. [PMID: 18164242 DOI: 10.1016/j.clinph.2007.09.143] [Citation(s) in RCA: 842] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 09/19/2007] [Accepted: 09/22/2007] [Indexed: 12/13/2022]
Abstract
A consensus meeting was held to determine the best use and interpretation of electrophysiological data in the diagnosis of ALS. The utility of needle EMG and nerve conduction studies was affirmed. It is recommended that electrophysiological evidence for chronic neurogenic change should be taken as equivalent to clinical information in the recognition of involvement of individual muscles in a limb. In addition, in the context of a suspected clinical diagnosis of ALS, fasciculation potentials should be taken as equivalent to fibrillation potentials and positive sharp waves in recognising denervation. The importance of searching for instability in fasciculation potentials and in motor unit potentials in ALS is stressed. These changes in the interpretation of electrophysiological data render obsolete the category Probable Laboratory-Supported ALS in the modified El Escorial diagnostic criteria for ALS. Methods for detection of upper motor neuron abnormality appear sensitive but require further study, particularly regarding their value when clinical signs of upper motor neuron lesion are uncertain.
Collapse
|
Review |
18 |
842 |
2
|
Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W, Shefner J. A revision of the El Escorial criteria - 2015. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:291-2. [PMID: 26121170 DOI: 10.3109/21678421.2015.1049183] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
Editorial |
10 |
337 |
3
|
Shefner JM, Al-Chalabi A, Baker MR, Cui LY, de Carvalho M, Eisen A, Grosskreutz J, Hardiman O, Henderson R, Matamala JM, Mitsumoto H, Paulus W, Simon N, Swash M, Talbot K, Turner MR, Ugawa Y, van den Berg LH, Verdugo R, Vucic S, Kaji R, Burke D, Kiernan MC. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol 2020; 131:1975-1978. [PMID: 32387049 DOI: 10.1016/j.clinph.2020.04.005] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 01/17/2023]
|
|
5 |
335 |
4
|
Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, Karam C, Caress JB, Owegi MA, Quick A, Wymer J, Goutman SA, Heitzman D, Heiman-Patterson T, Jackson CE, Quinn C, Rothstein JD, Kasarskis EJ, Katz J, Jenkins L, Ladha S, Miller TM, Scelsa SN, Vu TH, Fournier CN, Glass JD, Johnson KM, Swenson A, Goyal NA, Pattee GL, Andres PL, Babu S, Chase M, Dagostino D, Dickson SP, Ellison N, Hall M, Hendrix K, Kittle G, McGovern M, Ostrow J, Pothier L, Randall R, Shefner JM, Sherman AV, Tustison E, Vigneswaran P, Walker J, Yu H, Chan J, Wittes J, Cohen J, Klee J, Leslie K, Tanzi RE, Gilbert W, Yeramian PD, Schoenfeld D, Cudkowicz ME. Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis. N Engl J Med 2020; 383:919-930. [PMID: 32877582 PMCID: PMC9134321 DOI: 10.1056/nejmoa1916945] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sodium phenylbutyrate and taurursodiol have been found to reduce neuronal death in experimental models. The efficacy and safety of a combination of the two compounds in persons with amyotrophic lateral sclerosis (ALS) are not known. METHODS In this multicenter, randomized, double-blind trial, we enrolled participants with definite ALS who had had an onset of symptoms within the previous 18 months. Participants were randomly assigned in a 2:1 ratio to receive sodium phenylbutyrate-taurursodiol (3 g of sodium phenylbutyrate and 1 g of taurursodiol, administered once a day for 3 weeks and then twice a day) or placebo. The primary outcome was the rate of decline in the total score on the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) through 24 weeks. Secondary outcomes were the rates of decline in isometric muscle strength, plasma phosphorylated axonal neurofilament H subunit levels, and the slow vital capacity; the time to death, tracheostomy, or permanent ventilation; and the time to death, tracheostomy, permanent ventilation, or hospitalization. RESULTS A total of 177 persons with ALS were screened for eligibility, and 137 were randomly assigned to receive sodium phenylbutyrate-taurursodiol (89 participants) or placebo (48 participants). In a modified intention-to-treat analysis, the mean rate of change in the ALSFRS-R score was -1.24 points per month with the active drug and -1.66 points per month with placebo (difference, 0.42 points per month; 95% confidence interval, 0.03 to 0.81; P = 0.03). Secondary outcomes did not differ significantly between the two groups. Adverse events with the active drug were mainly gastrointestinal. CONCLUSIONS Sodium phenylbutyrate-taurursodiol resulted in slower functional decline than placebo as measured by the ALSFRS-R score over a period of 24 weeks. Secondary outcomes were not significantly different between the two groups. Longer and larger trials are necessary to evaluate the efficacy and safety of sodium phenylbutyrate-taurursodiol in persons with ALS. (Funded by Amylyx Pharmaceuticals and others; CENTAUR ClinicalTrials.gov number, NCT03127514.).
Collapse
|
Clinical Trial, Phase II |
5 |
334 |
5
|
Archibald SJ, Krarup C, Shefner J, Li ST, Madison RD. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol 1991; 306:685-96. [PMID: 2071700 DOI: 10.1002/cne.903060410] [Citation(s) in RCA: 294] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When a peripheral nerve is severed and left untreated, the most likely result is the formation of an endbulb neuroma; this tangled mass of disorganized nerve fibers blocks functional recovery following nerve injury. Although there are several different approaches for promoting nerve repair, which have been greatly refined over recent years, the clinical results of peripheral nerve repair remain very disappointing. In this paper we compare the results of a collagen nerve guide conduit to the more standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves in rats and nonhuman primates. In rats, we tested recovery from sciatic nerve transection and repair by 1) direct microsurgical suture, 2) 4 mm autograft, or 3) entubulation repair with collagen-based nerve guide conduits. Evoked muscle action potentials (MAP) were recorded from the gastrocnemius muscle at 4 and 12 weeks following sciatic nerve transection. At 4 weeks the repair group of direct suture demonstrated a significantly greater MAP, compared to the other surgical repair groups. However, at 12 weeks all four surgical repair groups displayed similar levels of recovery of the motor response. In six adult male Macaca fascicularis monkeys the median nerve was transected 2 cm above the wrist and repaired by either a 4 mm nerve autograft or a collagen-based nerve guide conduit leaving a 4 mm gap between nerve ends. Serial studies of motor and sensory fibers were performed by recording the evoked MAP from the abductor pollicis brevis muscle (APB) and the sensory action potential (SAP) evoked by stimulation of digital nerves (digit II), respectively, up to 760 days following surgery. Evoked muscle responses returned to normal baseline levels in all cases. Statistical analysis of the motor responses, as judged by the slope of the recovery curves, indicated a significantly more rapid rate of recovery for the nerve guide repair group. The final level of recovery of the MAP amplitudes was not significantly different between the groups. In contrast, the SAP amplitude only recovered to the low normal range and there were no statistically significant differences between the two groups in terms of sensory recovery rates. The rodent and primate studies suggest that in terms of recovery of physiological responses from target muscle and sensory nerves, entubulation repair of peripheral nerves with a collagen-based nerve guide conduit over a short nerve gap (4 mm) is as effective as a standard nerve autograft.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
34 |
294 |
6
|
Shefner JM, Cudkowicz ME, Schoenfeld D, Conrad T, Taft J, Chilton M, Urbinelli L, Qureshi M, Zhang H, Pestronk A, Caress J, Donofrio P, Sorenson E, Bradley W, Lomen-Hoerth C, Pioro E, Rezania K, Ross M, Pascuzzi R, Heiman-Patterson T, Tandan R, Mitsumoto H, Rothstein J, Smith-Palmer T, MacDonald D, Burke D. A clinical trial of creatine in ALS. Neurology 2005; 63:1656-61. [PMID: 15534251 DOI: 10.1212/01.wnl.0000142992.81995.f0] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction occurs early in the course of ALS, and the mitochondria may be an important site for therapeutic intervention. Creatine stabilizes the mitochondrial transition pore, and is important in mitochondrial ATP production. In a transgenic mouse model of ALS, administration of creatine prolongs survival and preserves motor function and motor neurons. METHODS The authors conducted a randomized double-blind, placebo controlled trial on 104 patients with ALS from 14 sites to evaluate the efficacy of creatine supplementation in ALS. The primary outcome measure was maximum voluntary isometric contraction of eight upper extremity muscles, with secondary outcomes including grip strength, ALS Functional Rating Scale-Revised, and motor unit number estimates. Patients were treated for 6 months, and evaluated monthly. RESULTS Creatine was tolerated well, but no benefit of creatine could be demonstrated in any outcome measure. CI analysis showed that the study, although powered to detect a 50% or greater change in rate of decline of muscle strength, actually made an effect size of greater than 23% unlikely. It was also demonstrated that motor unit number estimation was performed with acceptable reproducibility and tolerability, and may be a useful outcome measure in future clinical trials. CONCLUSION Any beneficial effect of creatine at 5 g per day in ALS must be small. Other agents should be considered in future studies of therapeutic agents to address mitochondrial dysfunction in ALS. In addition, motor unit number estimation may be a useful outcome measure for future clinical trials in ALS.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
231 |
7
|
Cudkowicz ME, Shefner JM, Schoenfeld DA, Zhang H, Andreasson KI, Rothstein JD, Drachman DB. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol 2006; 60:22-31. [PMID: 16802291 DOI: 10.1002/ana.20903] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine whether chronic treatment with celecoxib, a cyclooxygenase-2 inhibitor that has been shown to be beneficial in preclinical testing, is safe and effective in amyotrophic lateral sclerosis (ALS). METHODS A double-blind, placebo-controlled, clinical trial was conducted. Three hundred research subjects with ALS were randomized (2:1) to receive celecoxib (800 mg/day) or placebo for 12 months. The primary outcome measure was the rate of change in upper extremity motor function measured by the maximum voluntary isometric contraction strength. Secondary end points included safety, survival, change in cerebrospinal fluid prostaglandin E(2) levels, and changes in the rate of decline of leg and grip strength, vital capacity, ALS Functional Rating Scale-Revised, and motor unit number estimates. RESULTS Celecoxib did not slow the decline in muscle strength, vital capacity, motor unit number estimates, ALS Functional Rating Scale-Revised, or affect survival. Celecoxib was well tolerated and was not associated with an increased frequency of adverse events. Prostaglandin E(2) levels in cerebrospinal fluid were not elevated at baseline and did not decline with treatment. INTERPRETATION At the dosage studied, celecoxib did not have a beneficial effect on research subjects with ALS, and it was safe. A biological effect of celecoxib was not demonstrated in the cerebrospinal fluid. Further studies of celecoxib at a dosage of 800 mg/day in ALS are not warranted.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
220 |
8
|
Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 2006; 60:32-44. [PMID: 16802299 DOI: 10.1002/ana.20901] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE We explored the potential of embryonic stem cell-derived motor neurons to functionally replace those cells destroyed in paralyzed adult rats. METHODS We administered a phosphodiesterase type 4 inhibitor and dibutyryl cyclic adenosine monophosphate to overcome myelin-mediated repulsion and provided glial cell-derived neurotrophic factor within the sciatic nerve to attract transplanted embryonic stem cell-derived axons toward skeletal muscle targets. RESULTS We found that these strategies significantly increased the success of transplanted axons extending out of the spinal cord into ventral roots. Furthermore, transplant-derived axons reached muscle, formed neuromuscular junctions, were physiologically active, and mediated partial recovery from paralysis. INTERPRETATION We conclude that restoration of functional motor units by embryonic stem cells is possible and represents a potential therapeutic strategy for patients with paralysis. To our knowledge, this is the first report of the anatomical and functional replacement of a motor neuron circuit within the adult mammalian host.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
216 |
9
|
Darras BT, Chiriboga CA, Iannaccone ST, Swoboda KJ, Montes J, Mignon L, Xia S, Bennett CF, Bishop KM, Shefner JM, Green AM, Sun P, Bhan I, Gheuens S, Schneider E, Farwell W, De Vivo DC. Nusinersen in later-onset spinal muscular atrophy: Long-term results from the phase 1/2 studies. Neurology 2019; 92:e2492-e2506. [PMID: 31019106 PMCID: PMC6541434 DOI: 10.1212/wnl.0000000000007527] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
Objective To report results of intrathecal nusinersen in children with later-onset spinal muscular atrophy (SMA). Methods Analyses included children from a phase 1b/2a study (ISIS-396443-CS2; NCT01703988) who first received nusinersen during that study and were eligible to continue treatment in the extension study (ISIS-396443-CS12; NCT02052791). The phase 1b/2a study was a 253-day, ascending dose (3, 6, 9, 12 mg), multiple-dose, open-label, multicenter study that enrolled children with SMA aged 2–15 years. The extension study was a 715-day, single-dose level (12 mg) study. Time between studies varied by participant (196–413 days). Assessments included the Hammersmith Functional Motor Scale–Expanded (HFMSE), Upper Limb Module (ULM), 6-Minute Walk Test (6MWT), compound muscle action potential (CMAP), and quantitative multipoint incremental motor unit number estimation. Safety also was assessed. Results Twenty-eight children were included (SMA type II, n = 11; SMA type III, n = 17). Mean HFMSE scores, ULM scores, and 6MWT distances improved by the day 1,150 visit (HFMSE: SMA type II, +10.8 points; SMA type III, +1.8 points; ULM: SMA type II, +4.0 points; 6MWT: SMA type III, +92.0 meters). Mean CMAP values remained relatively stable. No children discontinued treatment due to adverse events. Conclusions Nusinersen treatment over ∼3 years resulted in motor function improvements and disease activity stabilization not observed in natural history cohorts. These results document the long-term benefit of nusinersen in later-onset SMA, including SMA type III. Clinicaltrials.gov identifier NCT01703988 (ISIS-396443-CS2); NCT02052791 (ISIS-396443-CS12). Classification of evidence This study provides Class IV evidence that nusinersen improves motor function in children with later-onset SMA.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
202 |
10
|
Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH, Dharmadasa T, Wicks P, Reilly C, Turner MR. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 2021; 17:104-118. [PMID: 33340024 PMCID: PMC7747476 DOI: 10.1038/s41582-020-00434-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Individuals who are diagnosed with amyotrophic lateral sclerosis (ALS) today face the same historically intransigent problem that has existed since the initial description of the disease in the 1860s - a lack of effective therapies. In part, the development of new treatments has been hampered by an imperfect understanding of the biological processes that trigger ALS and promote disease progression. Advances in our understanding of these biological processes, including the causative genetic mutations, and of the influence of environmental factors have deepened our appreciation of disease pathophysiology. The consequent identification of pathogenic targets means that the introduction of effective therapies is becoming a realistic prospect. Progress in precision medicine, including genetically targeted therapies, will undoubtedly change the natural history of ALS. The evolution of clinical trial designs combined with improved methods for patient stratification will facilitate the translation of novel therapies into the clinic. In addition, the refinement of emerging biomarkers of therapeutic benefits is critical to the streamlining of care for individuals. In this Review, we synthesize these developments in ALS and discuss the further developments and refinements needed to accelerate the introduction of effective therapeutic approaches.
Collapse
|
Review |
4 |
174 |
11
|
Kaufmann P, Thompson JLP, Levy G, Buchsbaum R, Shefner J, Krivickas LS, Katz J, Rollins Y, Barohn RJ, Jackson CE, Tiryaki E, Lomen-Hoerth C, Armon C, Tandan R, Rudnicki SA, Rezania K, Sufit R, Pestronk A, Novella SP, Heiman-Patterson T, Kasarskis EJ, Pioro EP, Montes J, Arbing R, Vecchio D, Barsdorf A, Mitsumoto H, Levin B. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol 2009; 66:235-44. [PMID: 19743457 DOI: 10.1002/ana.21743] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a devastating, and currently incurable, neuromuscular disease in which oxidative stress and mitochondrial impairment are contributing to neuronal loss. Coenzyme Q10 (CoQ10), an antioxidant and mitochondrial cofactor, has shown promise in ALS transgenic mice, and in clinical trials for neurodegenerative diseases other than ALS. Our aims were to choose between two high doses of CoQ10 for ALS, and to determine if it merits testing in a Phase III clinical trial. METHODS We designed and implemented a multicenter trial with an adaptive, two-stage, bias-adjusted, randomized, placebo-controlled, double-blind, Phase II design (n = 185). The primary outcome in both stages was a decline in the ALS Functional Rating Scale-revised (ALSFRSr) score over 9 months. Stage 1 (dose selection, 35 participants per group) compared CoQ10 doses of 1,800 and 2,700 mg/day. Stage 2 (futility test, 75 patients per group) compared the dose selected in Stage 1 against placebo. RESULTS Stage 1 selected the 2,700 mg dose. In Stage 2, the pre-specified primary null hypothesis that this dose is superior to placebo was not rejected. It was rejected, however, in an accompanying prespecified sensitivity test, and further supplementary analyses. Prespecified secondary analyses showed no significant differences between CoQ10 at 2,700 mg/day and placebo. There were no safety concerns. INTERPRETATION CoQ10 at 2,700 mg daily for 9 months shows insufficient promise to warrant Phase III testing. Given this outcome, the adaptive Phase II design incorporating a dose selection and a futility test avoided the need for a much larger conventional Phase III trial.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
172 |
12
|
Cudkowicz ME, Shefner JM, Schoenfeld DA, Brown RH, Johnson H, Qureshi M, Jacobs M, Rothstein JD, Appel SH, Pascuzzi RM, Heiman-Patterson TD, Donofrio PD, David WS, Russell JA, Tandan R, Pioro EP, Felice KJ, Rosenfeld J, Mandler RN, Sachs GM, Bradley WG, Raynor EM, Baquis GD, Belsh JM, Novella S, Goldstein J, Hulihan J. A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology 2003; 61:456-64. [PMID: 12939417 DOI: 10.1212/wnl.61.4.456] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine if long-term topiramate therapy is safe and slows disease progression in patients with ALS. METHODS A double-blind, placebo-controlled, multicenter randomized clinical trial was conducted. Participants with ALS (n = 296) were randomized (2:1) to receive topiramate (maximum tolerated dose up to 800 mg/day) or placebo for 12 months. The primary outcome measure was the rate of change in upper extremity motor function as measured by the maximum voluntary isometric contraction (MVIC) strength of eight arm muscle groups. Secondary endpoints included safety and the rate of decline of forced vital capacity (FVC), grip strength, ALS functional rating scale (ALSFRS), and survival. RESULTS Patients treated with topiramate showed a faster decrease in arm strength (33.3%) during 12 months (0.0997 vs 0.0748 unit decline/month, p = 0.012). Topiramate did not significantly alter the decline in FVC and ALSFRS or affect survival. Topiramate was associated with an increased frequency of anorexia, depression, diarrhea, ecchymosis, nausea, kidney calculus, paresthesia, taste perversion, thinking abnormalities, weight loss, and abnormal blood clotting (pulmonary embolism and deep venous thrombosis). CONCLUSIONS At the dose studied, topiramate did not have a beneficial effect for patients with ALS. High-dose topiramate treatment was associated with a faster rate of decline in muscle strength as measured by MVIC and with an increased risk for several adverse events in patients with ALS. Given the lack of efficacy and large number of adverse effects, further studies of topiramate at a dose of 800 mg or maximum tolerated dose up to 800 mg/day are not warranted.
Collapse
|
Clinical Trial |
22 |
162 |
13
|
Cudkowicz ME, Titus S, Kearney M, Yu H, Sherman A, Schoenfeld D, Hayden D, Shui A, Brooks B, Conwit R, Felsenstein D, Greenblatt DJ, Keroack M, Kissel JT, Miller R, Rosenfeld J, Rothstein JD, Simpson E, Tolkoff-Rubin N, Zinman L, Shefner JM. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2014; 13:1083-1091. [PMID: 25297012 DOI: 10.1016/s1474-4422(14)70222-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Glutamate excitotoxicity might contribute to the pathophysiology of amyotrophic lateral sclerosis. In animal models, decreased excitatory aminoacid transporter 2 (EAAT2) overexpression delays disease onset and prolongs survival, and ceftriaxone increases EAAT2 activity. We aimed to assess the safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis in a combined phase 1, 2, and 3 clinical trial. METHODS This three-stage randomised, double-blind, placebo-controlled study was done at 59 clinical sites in the USA and Canada between Sept 4, 2006, and July 30, 2012. Eligible adult patients had amyotrophic lateral sclerosis, a vital capacity of more than 60% of that predicted for age and height, and symptom duration of less than 3 years. In stages 1 (pharmacokinetics) and 2 (safety), participants were randomly allocated (2:1) to ceftriaxone (2 g or 4 g per day) or placebo. In stage 3 (efficacy), participants assigned to ceftriaxone in stage 2 received 4 g ceftriaxone, participants assigned to placebo in stage 2 received placebo, and new participants were randomly assigned (2:1) to 4 g ceftriaxone or placebo. Participants, family members, and site staff were masked to treatment assignment. Randomisation was done by a computerised randomisation sequence with permuted blocks of 3. Participants received 2 g ceftriaxone or placebo twice daily through a central venous catheter administered at home by a trained caregiver. To minimise biliary side-effects, participants assigned to ceftriaxone also received 300 mg ursodeoxycholic acid twice daily and those assigned to placebo received matched placebo capsules. The coprimary efficacy outcomes were survival and functional decline, measured as the slope of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00349622. FINDINGS Stage 3 included 66 participants from stages 1 and 2 and 448 new participants. In total, 340 participants were randomly allocated to ceftriaxone and 173 to placebo. During stages 1 and 2, mean ALSFRS-R declined more slowly in participants who received 4 g ceftriaxone than in those on placebo (difference 0·51 units per month, 95% CI 0·02 to 1·00; p=0·0416), but in stage 3 functional decline between the treatment groups did not differ (0·09, -0·06 to 0·24; p=0·2370). No significant differences in survival between the groups were recorded in stage 3 (HR 0·90, 95% CI 0·71 to 1·15; p=0·4146). Gastrointestinal adverse events and hepatobiliary adverse events were more common in the ceftriaxone group than in the placebo group (gastrointestinal, 245 of 340 [72%] ceftriaxone vs 97 of 173 [56%] placebo, p=0·0004; hepatobiliary, 211 [62%] vs 19 [11%], p<0·0001). Significantly more participants who received ceftriaxone had serious hepatobiliary serious adverse events (41 participants [12%]) than did those who received placebo (0 participants). INTERPRETATION Despite promising stage 2 data, stage 3 of this trial of ceftriaxone in amyotrophic lateral sclerosis did not show clinical efficacy. The adaptive design allowed for seamless transition from one phase to another, and central venous catheter use in the home setting was shown to be feasible. FUNDING National Institute of Neurological Disorders and Stroke.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
156 |
14
|
Aggarwal SP, Zinman L, Simpson E, McKinley J, Jackson KE, Pinto H, Kaufman P, Conwit RA, Schoenfeld D, Shefner J, Cudkowicz M. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010; 9:481-8. [PMID: 20363190 DOI: 10.1016/s1474-4422(10)70068-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In a pilot study, lithium treatment slowed progression of amyotrophic lateral sclerosis (ALS). We aimed to confirm or disprove these findings by assessing the safety and efficacy of lithium in combination with riluzole in patients with ALS. METHODS We did a double-blind, placebo-controlled trial with a time-to-event design. Between January and June, 2009, patients with ALS who were taking a stable dose of riluzole for at least 30 days were randomly assigned (1:1) by a centralised computer to receive either lithium or placebo. Patients, caregivers, investigators, and all site study staff with the exception of site pharmacists were masked to treatment assignment. The primary endpoint was the time to an event, defined as a decrease of at least six points on the revised ALS functional rating scale score or death. Interim analyses were planned for when 84 patients had been allocated treatment, 6 months later or after 55 events, and after 100 events. Analysis was by intention to treat. The stopping boundary for futility at the first interim analysis was a p value of at least 0.68. We used a log-rank test to compare the distributions of the time to an event between the lithium and placebo groups. This trial is registered with ClinicalTrials.gov, NCT00818389. FINDINGS At the first interim analysis, 22 of 40 patients in the lithium group had an event compared with 20 of 44 patients in the placebo group (log rank p=0.51). The hazard ratio of reaching the primary endpoint was 1.13 (95% CI 0.61-2.07). The study was stopped at the first interim analysis because criterion for futility was met (p=0.78). The difference in mean decline in the ALS functional rating scale score between the lithium group and the placebo group was 0.15 (95% CI -0.43 to 0.73, p=0.61). There were no major safety concerns. Falls (p=0.04) and back pain (p=0.05) were more common in the lithium group than in the placebo group. INTERPRETATION We found no evidence that lithium in combination with riluzole slows progression of ALS more than riluzole alone. The time-to-event endpoint and use of prespecified interim analyses enabled a clear result to be obtained rapidly. This design should be considered for future trials testing the therapeutic efficacy of drugs that are easily accessible to people with ALS. FUNDING National Institute of Neurological Disorders and Stroke, ALS Association, and ALS Society of Canada.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
154 |
15
|
Shefner JM, Reaume AG, Flood DG, Scott RW, Kowall NW, Ferrante RJ, Siwek DF, Upton-Rice M, Brown RH. Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 1999; 53:1239-46. [PMID: 10522879 DOI: 10.1212/wnl.53.6.1239] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the motor neuron dysfunction in two models by performing physiologic and morphometric studies. BACKGROUND Mutations in the gene encoding cytosolic superoxide dismutase 1 (SOD1) account for 25% of familial ALS (FALS). Transgenes with these mutations produce a pattern of lower motor neuron degeneration similar to that seen in patients with FALS. In contrast, mice lacking SOD1 develop subtle motor symptoms by approximately 6 months of age. METHODS Physiologic measurements, including motor conduction and motor unit estimation, were analyzed in normal mice, mice bearing the human transgene for FALS (mFALS mice), and knockout mice deficient in SOD1 (SOD1-KO). In addition, morphometric analysis was performed on the spinal cords of SOD1-KO and normal mice. RESULTS In mFALS mice, the motor unit number in the distal hind limb declined before behavioral abnormalities appeared, and motor unit size increased. Compound motor action potential amplitude and distal motor latency remained normal until later in the disease. In SOD1-KO mice, motor unit numbers were reduced early but declined slowly with age. In contrast with the mFALS mice, SOD1-KO mice demonstrated only a modest increase in motor unit size. Morphometric analysis of the spinal cords from normal and SOD1-KO mice showed no significant differences in the number and size of motor neurons. CONCLUSIONS The physiologic abnormalities in mFALS mice resemble those in human ALS. SOD1-deficient mice exhibit a qualitatively different pattern of motor unit remodeling that suggests that axonal sprouting and reinnervation of denervated muscle fibers are functionally impaired in the absence of SOD1.
Collapse
|
|
26 |
148 |
16
|
Cudkowicz M, Bozik ME, Ingersoll EW, Miller R, Mitsumoto H, Shefner J, Moore DH, Schoenfeld D, Mather JL, Archibald D, Sullivan M, Amburgey C, Moritz J, Gribkoff VK. The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nat Med 2011; 17:1652-6. [DOI: 10.1038/nm.2579] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 10/20/2011] [Indexed: 12/11/2022]
|
|
14 |
145 |
17
|
Abstract
Motor unit number estimation (MUNE) was introduced in 1971 as a way of providing an objective and meaningful estimate of axon loss in diseases affecting the motor system. Over the last 30 years, different methods of MUNE have been proposed, with each having specific strengths and limitations. The goal of this paper is to review the available methods, and to present data generated using MUNE in a variety of disease entities. The incremental, multiple point stimulation, spike-triggered averaging, F-wave, and statistical methods of MUNE are reviewed, along with data obtained using these methods in patients with neuropathy, motor neuron disorders, and muscle disease. All methods reviewed have theoretical concerns associated with them. However, with the exception of the spike-triggered averaging method, all give results in normal subjects that are quite similar. MUNE has been of great value in assessing progression of motor neuron disease, and has also shown promise in the assessment of generalized neuropathy. Despite the lack of a perfect method for performing MUNE, it has great clinical value in the assessment of progressive motor axon loss. Further refinements in the method will likely increase its utility in the future.
Collapse
|
|
24 |
136 |
18
|
Ferrante KL, Shefner J, Zhang H, Betensky R, O'Brien M, Yu H, Fantasia M, Taft J, Beal MF, Traynor B, Newhall K, Donofrio P, Caress J, Ashburn C, Freiberg B, O'Neill C, Paladenech C, Walker T, Pestronk A, Abrams B, Florence J, Renna R, Schierbecker J, Malkus B, Cudkowicz M. Tolerance of high-dose (3,000 mg/day) coenzyme Q10 in ALS. Neurology 2005; 65:1834-6. [PMID: 16344537 DOI: 10.1212/01.wnl.0000187070.35365.d7] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An open-label dose-escalation trial was performed to assess the safety and tolerability of high doses of coenzyme Q10 (CoQ10) in ALS. CoQ10, a cofactor in mitochondrial electron transfer, may improve the mitochondrial dysfunction in ALS. In this study, CoQ10 was safe and well tolerated in 31 subjects treated with doses as high as 3,000 mg/day for 8 months.
Collapse
|
|
20 |
119 |
19
|
Rutkove SB, Caress JB, Cartwright MS, Burns TM, Warder J, David WS, Goyal N, Maragakis NJ, Clawson L, Benatar M, Usher S, Sharma KR, Gautam S, Narayanaswami P, Raynor EM, Watson ML, Shefner JM. Electrical impedance myography as a biomarker to assess ALS progression. ACTA ACUST UNITED AC 2012; 13:439-45. [PMID: 22670883 DOI: 10.3109/17482968.2012.688837] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrical impedance myography (EIM), a non-invasive, electrophysiological technique, has preliminarily shown value as an ALS biomarker. Here we perform a multicenter study to further assess EIM's potential for tracking ALS. ALS patients were enrolled across eight sites. Each subject underwent EIM, handheld dynamometry (HHD), and the ALS Functional Rating Scale-revised (ALSFRS-R) regularly. Techniques were compared by assessing the coefficient of variation (CoV) in the rate of decline and each technique's correlation to survival. Results showed that in the 60 patients followed for one year, EIM phase measured from the most rapidly progressing muscle in each patient had a CoV in the rate of decline of 0.62, compared to HHD (0.82) and the ALSFRS-R (0.74). Restricting the measurements to the first six months gave a CoV of 0.55 for EIM, 0.93 for HHD, and 0.84 for ALSFRS-R. For both time-periods, all three measures correlated with survival. Based on these data, a six-month clinical trial designed to detect a 20% treatment effect with 80% power using EIM would require only 95 patients/arm compared to the ALSFRS-R, which would require 220 subjects/arm. In conclusion, EIM can serve as a useful ALS biomarker that offers the prospect of greatly accelerating phase 2 clinical trials.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
119 |
20
|
Turner MR, Bowser R, Bruijn L, Dupuis L, Ludolph A, McGrath M, Manfredi G, Maragakis N, Miller RG, Pullman SL, Rutkove SB, Shaw PJ, Shefner J, Fischbeck KH. Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 Suppl 1:19-32. [PMID: 23678877 DOI: 10.3109/21678421.2013.778554] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The last 30 years have seen a major advance in the understanding of the clinical and pathological heterogeneity of amyotrophic lateral sclerosis (ALS), and its overlap with frontotemporal dementia. Multiple, seemingly disparate biochemical pathways converge on a common clinical syndrome characterized by progressive loss of upper and lower motor neurons. Pathogenic themes in ALS include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammation, altered energy metabolism, and most recently RNA mis-processing. The transgenic rodent, overexpressing mutant superoxide dismutase-1, is now only one of several models of ALS pathogenesis. The nematode, fruit fly and zebrafish all offer fresh insight, and the development of induced pluripotent stem cell-derived motor neurons holds promise for the screening of candidate therapeutics. The lack of useful biomarkers in ALS contributes to diagnostic delay, and the inability to stratify patients by prognosis may be an important factor in the failure of therapeutic trials. Biomarkers sensitive to disease activity might lessen reliance on clinical measures and survival as trial endpoints and reduce study length. Emerging proteomic markers of neuronal loss and glial activity in cerebrospinal fluid, a cortical signature derived from advanced structural and functional MRI, and the development of more sensitive measurements of lower motor neuron physiology are leading a new phase of biomarker-driven therapeutic discovery.
Collapse
|
Review |
12 |
119 |
21
|
Kamel F, Umbach DM, Munsat TL, Shefner JM, Hu H, Sandler DP. Lead exposure and amyotrophic lateral sclerosis. Epidemiology 2002; 13:311-9. [PMID: 11964933 DOI: 10.1097/00001648-200205000-00012] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous interview-based studies have suggested that exposure to neurotoxicants including metals might be related to ALS. METHODS We evaluated the relation of lead exposure to ALS, using both biological measures and interviews, in a case-control study conducted in New England from 1993 to 1996. Cases (N = 109) were recruited at two hospitals in Boston, MA. Population controls (N = 256) identified by random-digit dialing were frequency-matched to cases by age, sex, and region of residence within New England. RESULTS Risk of ALS was associated with self-reported occupational exposure to lead (odds ratio [OR] = 1.9; 95% confidence interval [CI] = 1.1-3.3), with a dose response for lifetime days of lead exposure. Blood and bone lead levels were measured in most cases (N = 107) and in a subset of controls (N = 41). Risk of ALS was associated with elevations in both blood and bone lead levels. ORs were 1.9 (95% CI = 1.4-2.6) for each microg/dl increase in blood lead, 3.6 (95% CI = 0.6-20.6) for each unit increase in log-transformed patella lead, and 2.3 (95% CI = 0.4-14.5) for each unit increase in log-transformed tibia lead. CONCLUSIONS These results are consistent with previous reports and suggest a potential role for lead exposure in the etiology of ALS.
Collapse
|
Evaluation Study |
23 |
116 |
22
|
Shefner JM, Watson ML, Simionescu L, Caress JB, Burns TM, Maragakis NJ, Benatar M, David WS, Sharma KR, Rutkove SB. Multipoint incremental motor unit number estimation as an outcome measure in ALS. Neurology 2011; 77:235-41. [PMID: 21676915 DOI: 10.1212/wnl.0b013e318225aabf] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Improved outcome measures are necessary to reduce sample size and increase power in amyotrophic lateral sclerosis (ALS) clinical trials. Motor unit number estimation (MUNE) is a potentially attractive tool. MUNE methods previously employed in multicenter trials exhibited excessive variability and were prone to artifact. OBJECTIVE To evaluate a modification of standard incremental MUNE in a multicenter natural history study of subjects with ALS. METHODS Fifty healthy subjects were evaluated twice and 71 subjects with ALS were studied repeatedly for up to 500 days. Side and nerve studied was based on clinical examination findings. Nerves were stimulated at 3 specified locations and 3 increments were obtained at each location. Average single motor unit action potential (SMUP) amplitude was calculated by adding the amplitude of the third increment at each location and dividing by 9; SMUP was divided into maximum CMAP amplitude to determine the MUNE. RESULTS Test-retest variability was 9% in normal subjects. Average MUNE for normal subjects was 225 (±87), and was 41.9 (±39) among subjects with ALS at baseline. Subjects with ALS showed clear decrements over time, with an overage rate of decline of approximately 9% per month. SMUP amplitude increased with time in a fashion consistent with the known pathophysiology of ALS. CONCLUSION Multipoint incremental MUNE has a number of attributes that make it attractive as an outcome measure in ALS and other diseases characterized by motor unit loss. It can be rapidly performed on any EMG machine and has repeatability and rates of decline that favorably compare to other previously described methods.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
114 |
23
|
Paganoni S, Hendrix S, Dickson SP, Knowlton N, Macklin EA, Berry JD, Elliott MA, Maiser S, Karam C, Caress JB, Owegi MA, Quick A, Wymer J, Goutman SA, Heitzman D, Heiman-Patterson TD, Jackson CE, Quinn C, Rothstein JD, Kasarskis EJ, Katz J, Jenkins L, Ladha S, Miller TM, Scelsa SN, Vu TH, Fournier CN, Glass JD, Johnson KM, Swenson A, Goyal NA, Pattee GL, Andres PL, Babu S, Chase M, Dagostino D, Hall M, Kittle G, Eydinov M, McGovern M, Ostrow J, Pothier L, Randall R, Shefner JM, Sherman AV, St Pierre ME, Tustison E, Vigneswaran P, Walker J, Yu H, Chan J, Wittes J, Yu ZF, Cohen J, Klee J, Leslie K, Tanzi RE, Gilbert W, Yeramian PD, Schoenfeld D, Cudkowicz ME. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve 2020; 63:31-39. [PMID: 33063909 PMCID: PMC7820979 DOI: 10.1002/mus.27091] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
An orally administered, fixed‐dose coformulation of sodium phenylbutyrate‐taurursodiol (PB‐TURSO) significantly slowed functional decline in a randomized, placebo‐controlled, phase 2 trial in ALS (CENTAUR). Herein we report results of a long‐term survival analysis of participants in CENTAUR. In CENTAUR, adults with ALS were randomized 2:1 to PB‐TURSO or placebo. Participants completing the 6‐month (24‐week) randomized phase were eligible to receive PB‐TURSO in the open‐label extension. An all‐cause mortality analysis (35‐month maximum follow‐up post‐randomization) incorporated all randomized participants. Participants and site investigators were blinded to treatment assignments through the duration of follow‐up of this analysis. Vital status was obtained for 135 of 137 participants originally randomized in CENTAUR. Median overall survival was 25.0 months among participants originally randomized to PB‐TURSO and 18.5 months among those originally randomized to placebo (hazard ratio, 0.56; 95% confidence interval, 0.34‐0.92; P = .023). Initiation of PB‐TURSO treatment at baseline resulted in a 6.5‐month longer median survival as compared with placebo. Combined with results from CENTAUR, these results suggest that PB‐TURSO has both functional and survival benefits in ALS.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
113 |
24
|
Simon NG, Turner MR, Vucic S, Al-Chalabi A, Shefner J, Lomen-Hoerth C, Kiernan MC. Quantifying disease progression in amyotrophic lateral sclerosis. Ann Neurol 2014; 76:643-57. [PMID: 25223628 PMCID: PMC4305209 DOI: 10.1002/ana.24273] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) exhibits characteristic variability of onset and rate of disease progression, with inherent clinical heterogeneity making disease quantitation difficult. Recent advances in understanding pathogenic mechanisms linked to the development of ALS impose an increasing need to develop strategies to predict and more objectively measure disease progression. This review explores phenotypic and genetic determinants of disease progression in ALS, and examines established and evolving biomarkers that may contribute to robust measurement in longitudinal clinical studies. With targeted neuroprotective strategies on the horizon, developing efficiencies in clinical trial design may facilitate timely entry of novel treatments into the clinic.
Collapse
|
Review |
11 |
112 |
25
|
Pascuzzi RM, Shefner J, Chappell AS, Bjerke JS, Tamura R, Chaudhry V, Clawson L, Haas L, Rothstein JD. A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 11:266-71. [DOI: 10.3109/17482960903307805] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
16 |
100 |