1
|
Mäki-Marttunen V, Diez I, Cortes JM, Chialvo DR, Villarreal M. Disruption of transfer entropy and inter-hemispheric brain functional connectivity in patients with disorder of consciousness. Front Neuroinform 2013; 7:24. [PMID: 24312048 PMCID: PMC3826091 DOI: 10.3389/fninf.2013.00024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
Severe traumatic brain injury can lead to disorders of consciousness (DOC) characterized by deficit in conscious awareness and cognitive impairment including coma, vegetative state, minimally consciousness, and lock-in syndrome. Of crucial importance is to find objective markers that can account for the large-scale disturbances of brain function to help the diagnosis and prognosis of DOC patients and eventually the prediction of the coma outcome. Following recent studies suggesting that the functional organization of brain networks can be altered in comatose patients, this work analyzes brain functional connectivity (FC) networks obtained from resting-state functional magnetic resonance imaging (rs-fMRI). Two approaches are used to estimate the FC: the Partial Correlation (PC) and the Transfer Entropy (TE). Both the PC and the TE show significant statistical differences between the group of patients and control subjects; in brief, the inter-hemispheric PC and the intra-hemispheric TE account for such differences. Overall, these results suggest two possible rs-fMRI markers useful to design new strategies for the management and neuropsychological rehabilitation of DOC patients.
Collapse
|
Journal Article |
12 |
39 |
2
|
Gatica M, Cofré R, Mediano PAM, Rosas FE, Orio P, Diez I, Swinnen SP, Cortes JM. High-Order Interdependencies in the Aging Brain. Brain Connect 2021; 11:734-744. [PMID: 33858199 DOI: 10.1089/brain.2020.0982] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Brain interdependencies can be studied from either a structural/anatomical perspective ("structural connectivity") or by considering statistical interdependencies ("functional connectivity" [FC]). Interestingly, while structural connectivity is by definition pairwise (white-matter fibers project from one region to another), FC is not. However, most FC analyses only focus on pairwise statistics and they neglect higher order interactions. A promising tool to study high-order interdependencies is the recently proposed O-Information, which can quantify the intrinsic statistical synergy and the redundancy in groups of three or more interacting variables. Methods: We analyzed functional magnetic resonance imaging (fMRI) data obtained at rest from 164 healthy subjects with ages ranging in 10 to 80 years and used O-Information to investigate how high-order statistical interdependencies are affected by age. Results: Older participants (from 60 to 80 years old) exhibited a higher predominance of redundant dependencies compared with younger participants, an effect that seems to be pervasive as it is evident for all orders of interaction. In addition, while there is strong heterogeneity across brain regions, we found a "redundancy core" constituted by the prefrontal and motor cortices in which redundancy was evident at all the interaction orders studied. Discussion: High-order interdependencies in fMRI data reveal a dominant redundancy in functions such as working memory, executive, and motor functions. Our methodology can be used for a broad range of applications, and the corresponding code is freely available. Impact statement Past research has showcased multiple changes to the brain's structural and functional properties caused by aging. Here we expand prior work through recent advancements in multivariate information theory, which provide richer and more theoretically principled analyses than existing alternatives. We show that the brains of older participants contain more redundant information at multiple spatial scales-that is, activation in different brain regions is less diverse, compared with younger participants-and identify a "redundancy core" constituted by prefrontal and motor cortices, which might explained impaired performance in the old population in functions such as working memory and executive control.
Collapse
|
|
4 |
35 |
3
|
Bonifazi P, Erramuzpe A, Diez I, Gabilondo I, Boisgontier MP, Pauwels L, Stramaglia S, Swinnen SP, Cortes JM. Structure-function multi-scale connectomics reveals a major role of the fronto-striato-thalamic circuit in brain aging. Hum Brain Mapp 2018; 39:4663-4677. [PMID: 30004604 DOI: 10.1002/hbm.24312] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Physiological aging affects brain structure and function impacting morphology, connectivity, and performance. However, whether some brain connectivity metrics might reflect the age of an individual is still unclear. Here, we collected brain images from healthy participants (N = 155) ranging from 10 to 80 years to build functional (resting state) and structural (tractography) connectivity matrices, both data sets combined to obtain different connectivity features. We then calculated the brain connectome age-an age estimator resulting from a multi-scale methodology applied to the structure-function connectome, and compared it to the chronological age (ChA). Our results were twofold. First, we found that aging widely affects the connectivity of multiple structures, such as anterior cingulate and medial prefrontal cortices, basal ganglia, thalamus, insula, cingulum, hippocampus, parahippocampus, occipital cortex, fusiform, precuneus, and temporal pole. Second, we found that the connectivity between basal ganglia and thalamus to frontal areas, also known as the fronto-striato-thalamic (FST) circuit, makes the major contribution to age estimation. In conclusion, our results highlight the key role played by the FST circuit in the process of healthy aging. Notably, the same methodology can be generally applied to identify the structural-functional connectivity patterns correlating to other biomarkers than ChA.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
34 |
4
|
Cortes JM, Marinazzo D, Series P, Oram MW, Sejnowski TJ, van Rossum MCW. The effect of neural adaptation on population coding accuracy. J Comput Neurosci 2011; 32:387-402. [PMID: 21915690 PMCID: PMC3367001 DOI: 10.1007/s10827-011-0358-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/07/2011] [Accepted: 08/05/2011] [Indexed: 11/30/2022]
Abstract
Most neurons in the primary visual cortex initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. The functional consequences of adaptation are unclear. Typically a reduction of firing rate would reduce single neuron accuracy as less spikes are available for decoding, but it has been suggested that on the population level, adaptation increases coding accuracy. This question requires careful analysis as adaptation not only changes the firing rates of neurons, but also the neural variability and correlations between neurons, which affect coding accuracy as well. We calculate the coding accuracy using a computational model that implements two forms of adaptation: spike frequency adaptation and synaptic adaptation in the form of short-term synaptic plasticity. We find that the net effect of adaptation is subtle and heterogeneous. Depending on adaptation mechanism and test stimulus, adaptation can either increase or decrease coding accuracy. We discuss the neurophysiological and psychophysical implications of the findings and relate it to published experimental data.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
31 |
5
|
Torres JJ, Cortes JM, Marro J, Kappen HJ. Competition between synaptic depression and facilitation in attractor neural networks. Neural Comput 2007; 19:2739-55. [PMID: 17716010 DOI: 10.1162/neco.2007.19.10.2739] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We study the effect of competition between short-term synaptic depression and facilitation on the dynamic properties of attractor neural networks, using Monte Carlo simulation and a mean-field analysis. Depending on the balance of depression, facilitation, and the underlying noise, the network displays different behaviors, including associative memory and switching of activity between different attractors. We conclude that synaptic facilitation enhances the attractor instability in a way that (1) intensifies the system adaptability to external stimuli, which is in agreement with experiments, and (2) favors the retrieval of information with less error during short time intervals.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
29 |
6
|
He C, Chen H, Uddin LQ, Erramuzpe A, Bonifazi P, Guo X, Xiao J, Chen H, Huang X, Li L, Sheng W, Liao W, Cortes JM, Duan X. Structure-Function Connectomics Reveals Aberrant Developmental Trajectory Occurring at Preadolescence in the Autistic Brain. Cereb Cortex 2020; 30:5028-5037. [PMID: 32377684 PMCID: PMC7391416 DOI: 10.1093/cercor/bhaa098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022] Open
Abstract
Accumulating neuroimaging evidence shows that age estimation obtained from brain connectomics reflects the level of brain maturation along with neural development. It is well known that autism spectrum disorder (ASD) alters neurodevelopmental trajectories of brain connectomics, but the precise relationship between chronological age (ChA) and brain connectome age (BCA) during development in ASD has not been addressed. This study uses neuroimaging data collected from 50 individuals with ASD and 47 age- and gender-matched typically developing controls (TDCs; age range: 5-18 years). Both functional and structural connectomics were assessed using resting-state functional magnetic resonance imaging and diffusion tensor imaging data from the Autism Brain Imaging Data Exchange repository. For each participant, BCA was estimated from structure-function connectomics through linear support vector regression. We found that BCA matched well with ChA in TDC children and adolescents, but not in ASD. In particular, our findings revealed that individuals with ASD exhibited accelerated brain maturation in youth, followed by a delay of brain development starting at preadolescence. Our results highlight the critical role of BCA in understanding aberrant developmental trajectories in ASD and provide the new insights into the pathophysiological mechanisms of this disorder.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
22 |
7
|
Rasero J, Alonso-Montes C, Diez I, Olabarrieta-Landa L, Remaki L, Escudero I, Mateos B, Bonifazi P, Fernandez M, Arango-Lasprilla JC, Stramaglia S, Cortes JM. Group-Level Progressive Alterations in Brain Connectivity Patterns Revealed by Diffusion-Tensor Brain Networks across Severity Stages in Alzheimer's Disease. Front Aging Neurosci 2017; 9:215. [PMID: 28736521 PMCID: PMC5500648 DOI: 10.3389/fnagi.2017.00215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronically progressive neurodegenerative disease highly correlated to aging. Whether AD originates by targeting a localized brain area and propagates to the rest of the brain across disease-severity progression is a question with an unknown answer. Here, we aim to provide an answer to this question at the group-level by looking at differences in diffusion-tensor brain networks. In particular, making use of data from Alzheimer's Disease Neuroimaging Initiative (ADNI), four different groups were defined (all of them matched by age, sex and education level): G1 (N1 = 36, healthy control subjects, Control), G2 (N2 = 36, early mild cognitive impairment, EMCI), G3 (N3 = 36, late mild cognitive impairment, LMCI) and G4 (N4 = 36, AD). Diffusion-tensor brain networks were compared across three disease stages: stage I (Control vs. EMCI), stage II (Control vs. LMCI) and stage III (Control vs. AD). The group comparison was performed using the multivariate distance matrix regression analysis, a technique that was born in genomics and was recently proposed to handle brain functional networks, but here applied to diffusion-tensor data. The results were threefold: First, no significant differences were found in stage I. Second, significant differences were found in stage II in the connectivity pattern of a subnetwork strongly associated to memory function (including part of the hippocampus, amygdala, entorhinal cortex, fusiform gyrus, inferior and middle temporal gyrus, parahippocampal gyrus and temporal pole). Third, a widespread disconnection across the entire AD brain was found in stage III, affecting more strongly the same memory subnetwork appearing in stage II, plus the other new subnetworks, including the default mode network, medial visual network, frontoparietal regions and striatum. Our results are consistent with a scenario where progressive alterations of connectivity arise as the disease severity increases and provide the brain areas possibly involved in such a degenerative process. Further studies applying the same strategy to longitudinal data are needed to fully confirm this scenario.
Collapse
|
research-article |
8 |
22 |
8
|
De la Fuente IM, Cortes JM, Pelta DA, Veguillas J. Attractor metabolic networks. PLoS One 2013; 8:e58284. [PMID: 23554883 PMCID: PMC3598861 DOI: 10.1371/journal.pone.0058284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. METHODOLOGY/PRINCIPAL FINDINGS In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. CONCLUSIONS/SIGNIFICANCE We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network, in which this dynamic behavior is observed.
Collapse
|
research-article |
12 |
22 |
9
|
Rasero J, Pellicoro M, Angelini L, Cortes JM, Marinazzo D, Stramaglia S. Consensus clustering approach to group brain connectivity matrices. Netw Neurosci 2017; 1:242-253. [PMID: 29601048 PMCID: PMC5846804 DOI: 10.1162/netn_a_00017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A novel approach rooted on the notion of consensus clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (a) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (b) cluster the distance matrix for each node; (c) build the consensus network from the corresponding partitions; and (d) extract groups of subjects by finding the communities of the consensus network thus obtained. Different from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pretraining step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real datasets show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix.
Collapse
|
research-article |
8 |
21 |
10
|
Diez I, Drijkoningen D, Stramaglia S, Bonifazi P, Marinazzo D, Gooijers J, Swinnen SP, Cortes JM. Enhanced prefrontal functional-structural networks to support postural control deficits after traumatic brain injury in a pediatric population. Netw Neurosci 2017; 1:116-142. [PMID: 29911675 PMCID: PMC5988395 DOI: 10.1162/netn_a_00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/28/2017] [Indexed: 11/04/2022] Open
Abstract
Traumatic brain injury (TBI) affects structural connectivity, triggering the reorganization of structural-functional circuits in a manner that remains poorly understood. We focus here on brain network reorganization in relation to postural control deficits after TBI. We enrolled young participants who had suffered moderate to severe TBI, comparing them to young, typically developing control participants. TBI patients (but not controls) recruited prefrontal regions to interact with two separated networks: (1) a subcortical network, including parts of the motor network, basal ganglia, cerebellum, hippocampus, amygdala, posterior cingulate gyrus, and precuneus; and (2) a task-positive network, involving regions of the dorsal attention system, together with dorsolateral and ventrolateral prefrontal regions. We also found that the increased prefrontal connectivity in TBI patients was correlated with some postural control indices, such as the amount of body sway, whereby patients with worse balance increased their connectivity in frontal regions more strongly. The increased prefrontal connectivity found in TBI patients may provide the structural scaffolding for stronger cognitive control of certain behavioral functions, consistent with the observations that various motor tasks are performed less automatically following TBI and that more cognitive control is associated with such actions.
Collapse
|
Journal Article |
8 |
20 |
11
|
Alonso-Montes C, Diez I, Remaki L, Escudero I, Mateos B, Rosseel Y, Marinazzo D, Stramaglia S, Cortes JM. Lagged and instantaneous dynamical influences related to brain structural connectivity. Front Psychol 2015; 6:1024. [PMID: 26257682 PMCID: PMC4508482 DOI: 10.3389/fpsyg.2015.01024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Indeed, different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI) provides a structural connectivity (SC) coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI) accounts for the variations in the blood-oxygenation-level-dependent T2* signal, providing functional connectivity (FC). Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience. To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas) to be compared with FC connectivity matrices obtained by three different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM), linear correlations (C) and partial correlations (PC). We also considered the possibility of using lagged correlations in time series; in particular, we compared a lagged version of eSEM and Granger causality (GC). Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C, nor PC) provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function.
Collapse
|
Journal Article |
10 |
16 |
12
|
beim Graben P, Jimenez-Marin A, Diez I, Cortes JM, Desroches M, Rodrigues S. Metastable Resting State Brain Dynamics. Front Comput Neurosci 2019; 13:62. [PMID: 31551744 PMCID: PMC6743347 DOI: 10.3389/fncom.2019.00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022] Open
Abstract
Metastability refers to the fact that the state of a dynamical system spends a large amount of time in a restricted region of its available phase space before a transition takes place, bringing the system into another state from where it might recur into the previous one. beim Graben and Hutt (2013) suggested to use the recurrence plot (RP) technique introduced by Eckmann et al. (1987) for the segmentation of system's trajectories into metastable states using recurrence grammars. Here, we apply this recurrence structure analysis (RSA) for the first time to resting-state brain dynamics obtained from functional magnetic resonance imaging (fMRI). Brain regions are defined according to the brain hierarchical atlas (BHA) developed by Diez et al. (2015), and as a consequence, regions present high-connectivity in both structure (obtained from diffusion tensor imaging) and function (from the blood-level dependent-oxygenation-BOLD-signal). Remarkably, regions observed by Diez et al. were completely time-invariant. Here, in order to compare this static picture with the metastable systems dynamics obtained from the RSA segmentation, we determine the number of metastable states as a measure of complexity for all subjects and for region numbers varying from 3 to 100. We find RSA convergence toward an optimal segmentation of 40 metastable states for normalized BOLD signals, averaged over BHA modules. Next, we build a bistable dynamics at population level by pooling 30 subjects after Hausdorff clustering. In link with this finding, we reflect on the different modeling frameworks that can allow for such scenarios: heteroclinic dynamics, dynamics with riddled basins of attraction, multiple-timescale dynamics. Finally, we characterize the metastable states both functionally and structurally, using templates for resting state networks (RSNs) and the automated anatomical labeling (AAL) atlas, respectively.
Collapse
|
research-article |
6 |
16 |
13
|
Kusters JMAM, Cortes JM, van Meerwijk WPM, Ypey DL, Theuvenet APR, Gielen CCAM. Hysteresis and bistability in a realistic cell model for calcium oscillations and action potential firing. PHYSICAL REVIEW LETTERS 2007; 98:098107. [PMID: 17359204 DOI: 10.1103/physrevlett.98.098107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Indexed: 05/14/2023]
Abstract
Many cells reveal oscillatory behavior. Some cells reveal action-potential firing resulting from Hodgkin-Huxley (HH) type dynamics of ion channels in the cell membrane. Another type of oscillation relates to periodic inositol triphospate (IP3)-mediated calcium transients in the cytosol. In this study we present a bifurcation analysis of a cell with an excitable membrane and an IP3-mediated intracellular calcium oscillator. With IP3 concentration as a control parameter the model reveals a complex, rich spectrum of both stable and unstable solutions with hysteresis corresponding to experimental data. Our results reveal the emergence of complex behavior due to interactions between subcomponents with a relatively simple dynamical behavior.
Collapse
|
|
18 |
14 |
14
|
Rasero J, Aerts H, Ontivero Ortega M, Cortes JM, Stramaglia S, Marinazzo D. Predicting functional networks from region connectivity profiles in task-based versus resting-state fMRI data. PLoS One 2018; 13:e0207385. [PMID: 30419063 PMCID: PMC6231684 DOI: 10.1371/journal.pone.0207385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022] Open
Abstract
Intrinsic Connectivity Networks, patterns of correlated activity emerging from “resting-state” BOLD time series, are increasingly being associated with cognitive, clinical, and behavioral aspects, and compared with patterns of activity elicited by specific tasks. We study the reconfiguration of brain networks between task and resting-state conditions by a machine learning approach, to highlight the Intrinsic Connectivity Networks (ICNs) which are more affected by the change of network configurations in task vs. rest. To this end, we use a large cohort of publicly available data in both resting and task-based fMRI paradigms. By applying a battery of different supervised classifiers relying only on task-based measurements, we show that the highest accuracy to predict ICNs is reached with a simple neural network of one hidden layer. In addition, when testing the fitted model on resting state measurements, such architecture yields a performance close to 90% for areas connected to the task performed, which mainly involve the visual and sensorimotor cortex, whilst a relevant decrease of the performance is observed in the other ICNs. On one hand, our results confirm the correspondence of ICNs in both paradigms (task and resting) thus opening a window for future clinical applications to subjects whose participation in a required task cannot be guaranteed. On the other hand it is shown that brain areas not involved in the task display different connectivity patterns in the two paradigms.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
14 |
15
|
Erramuzpe A, Ortega GJ, Pastor J, Sola RGD, Marinazzo D, Stramaglia S, Cortes JM. Identification of redundant and synergetic circuits in triplets of electrophysiological data. J Neural Eng 2015; 12:066007. [DOI: 10.1088/1741-2560/12/6/066007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
10 |
13 |
16
|
Gatica M, E. Rosas F, A. M. Mediano P, Diez I, P. Swinnen S, Orio P, Cofré R, M. Cortes J. High-order functional redundancy in ageing explained via alterations in the connectome in a whole-brain model. PLoS Comput Biol 2022; 18:e1010431. [PMID: 36054198 PMCID: PMC9477425 DOI: 10.1371/journal.pcbi.1010431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 09/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The human brain generates a rich repertoire of spatio-temporal activity patterns, which support a wide variety of motor and cognitive functions. These patterns of activity change with age in a multi-factorial manner. One of these factors is the variations in the brain's connectomics that occurs along the lifespan. However, the precise relationship between high-order functional interactions and connnectomics, as well as their variations with age are largely unknown, in part due to the absence of mechanistic models that can efficiently map brain connnectomics to functional connectivity in aging. To investigate this issue, we have built a neurobiologically-realistic whole-brain computational model using both anatomical and functional MRI data from 161 participants ranging from 10 to 80 years old. We show that the differences in high-order functional interactions between age groups can be largely explained by variations in the connectome. Based on this finding, we propose a simple neurodegeneration model that is representative of normal physiological aging. As such, when applied to connectomes of young participant it reproduces the age-variations that occur in the high-order structure of the functional data. Overall, these results begin to disentangle the mechanisms by which structural changes in the connectome lead to functional differences in the ageing brain. Our model can also serve as a starting point for modeling more complex forms of pathological ageing or cognitive deficits.
Collapse
|
research-article |
3 |
13 |
17
|
Camino-Pontes B, Diez I, Jimenez-Marin A, Rasero J, Erramuzpe A, Bonifazi P, Stramaglia S, Swinnen S, Cortes JM. Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major Redundant Role of the Default Mode Network. ENTROPY 2018; 20:e20100742. [PMID: 33265831 PMCID: PMC7512305 DOI: 10.3390/e20100742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023]
Abstract
Interaction Information (II) generalizes the univariate Shannon entropy to triplets of variables, allowing the detection of redundant (R) or synergetic (S) interactions in dynamical networks. Here, we calculated II from functional magnetic resonance imaging data and asked whether R or S vary across brain regions and along lifespan. Preserved along lifespan, we found high overlapping between the pattern of high R and the default mode network, whereas high values of S were overlapping with different cognitive domains, such as spatial and temporal memory, emotion processing and motor skills. Moreover, we have found a robust balance between R and S among different age intervals, indicating informational compensatory mechanisms in brain networks.
Collapse
|
Journal Article |
7 |
12 |
18
|
Cortes JM, Torres JJ, Marro J, Garrido PL, Kappen HJ. Effects of fast presynaptic noise in attractor neural networks. Neural Comput 2006; 18:614-33. [PMID: 16483410 DOI: 10.1162/089976606775623342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We study both analytically and numerically the effect of presynaptic noise on the transmission of information in attractor neural networks. The noise occurs on a very short timescale compared to that for the neuron dynamics and it produces short-time synaptic depression. This is inspired in recent neurobiological findings that show that synaptic strength may either increase or decrease on a short timescale depending on presynaptic activity. We thus describe a mechanism by which fast presynaptic noise enhances the neural network sensitivity to an external stimulus. The reason is that, in general, presynaptic noise induces nonequilibrium behavior and, consequently, the space of fixed points is qualitatively modified in such a way that the system can easily escape from the attractor. As a result, the model shows, in addition to pattern recognition, class identification and categorization, which may be relevant to the understanding of some of the brain complex tasks.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
12 |
19
|
He C, Cortes JM, Kang X, Cao J, Chen H, Guo X, Wang R, Kong L, Huang X, Xiao J, Shan X, Feng R, Chen H, Duan X. Individual-based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder. Hum Brain Mapp 2021; 42:3282-3294. [PMID: 33934442 PMCID: PMC8193534 DOI: 10.1002/hbm.25434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small-worldness (i.e., σ) of individual-level morphological brain networks, increased morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico-cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio-cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically-relevant biomarkers for ASD.
Collapse
|
research-article |
4 |
12 |
20
|
De la Fuente IM, Cortes JM. Quantitative analysis of the effective functional structure in yeast glycolysis. PLoS One 2012; 7:e30162. [PMID: 22393350 PMCID: PMC3290614 DOI: 10.1371/journal.pone.0030162] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022] Open
Abstract
The understanding of the effective functionality that governs the enzymatic self-organized processes in cellular conditions is a crucial topic in the post-genomic era. In recent studies, Transfer Entropy has been proposed as a rigorous, robust and self-consistent method for the causal quantification of the functional information flow among nonlinear processes. Here, in order to quantify the functional connectivity for the glycolytic enzymes in dissipative conditions we have analyzed different catalytic patterns using the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model formed by three delay differential equations where the enzymatic rate equations of the irreversible stages have been explicitly considered. These enzymatic activity functions were previously modeled and tested experimentally by other different groups. The results show the emergence of a new kind of dynamical functional structure, characterized by changing connectivity flows and a metabolic invariant that constrains the activity of the irreversible enzymes. In addition to the classical topological structure characterized by the specific location of enzymes, substrates, products and feedback-regulatory metabolites, an effective functional structure emerges in the modeled glycolytic system, which is dynamical and characterized by notable variations of the functional interactions. The dynamical structure also exhibits a metabolic invariant which constrains the functional attributes of the enzymes. Finally, in accordance with the classical biochemical studies, our numerical analysis reveals in a quantitative manner that the enzyme phosphofructokinase is the key-core of the metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast glycolysis.
Collapse
|
research-article |
13 |
11 |
21
|
Jimenez‐Marin A, Diez I, Labayru G, Sistiaga A, Caballero MC, Andres‐Benito P, Sepulcre J, Ferrer I, Lopez de Munain A, Cortes JM. Transcriptional signatures of synaptic vesicle genes define myotonic dystrophy type I neurodegeneration. Neuropathol Appl Neurobiol 2021; 47:1092-1108. [PMID: 33955002 PMCID: PMC9292638 DOI: 10.1111/nan.12725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
AIM To delineate the neurogenetic profiles of brain degeneration patterns in myotonic dystrophy type I (DM1). METHODS In two cohorts of DM1 patients, brain maps of volume loss (VL) and neuropsychological deficits (NDs) were intersected to large-scale transcriptome maps provided by the Allen Human Brain Atlas (AHBA). For validation, neuropathological and RNA analyses were performed in a small series of DM1 brain samples. RESULTS Twofold: (1) From a list of preselected hypothesis-driven genes, confirmatory analyses found that three genes play a major role in brain degeneration: dystrophin (DMD), alpha-synuclein (SNCA) and the microtubule-associated protein tau (MAPT). Neuropathological analyses confirmed a highly heterogeneous Tau-pathology in DM1, different to the one in Alzheimer's disease. (2) Exploratory analyses revealed gene clusters enriched for key biological processes in the central nervous system, such as synaptic vesicle recycling, localization, endocytosis and exocytosis, and the serotonin and dopamine neurotransmitter pathways. RNA analyses confirmed synaptic vesicle dysfunction. CONCLUSIONS The combination of large-scale transcriptome interactions with brain imaging and cognitive function sheds light on the neurobiological mechanisms of brain degeneration in DM1 that might help define future therapeutic strategies and research into this condition.
Collapse
|
research-article |
4 |
11 |
22
|
Torres JJ, Marro J, Cortes JM, Wemmenhove B. Instabilities in attractor networks with fast synaptic fluctuations and partial updating of the neurons activity. Neural Netw 2008; 21:1272-7. [PMID: 18701255 DOI: 10.1016/j.neunet.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/15/2008] [Accepted: 07/19/2008] [Indexed: 11/24/2022]
Abstract
We present and study a probabilistic neural automaton in which the fraction of simultaneously-updated neurons is a parameter, rhoin(0,1). For small rho, there is relaxation towards one of the attractors and a great sensibility to external stimuli and, for rho > or = rho(c), itinerancy among attractors. Tuning rho in this regime, oscillations may abruptly change from regular to chaotic and vice versa, which allows one to control the efficiency of the searching process. We argue on the similarity of the model behavior with recent observations, and on the possible role of chaos in neurobiology.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
10 |
23
|
Labayru G, Jimenez‐Marin A, Fernández E, Villanua J, Zulaica M, Cortes JM, Díez I, Sepulcre J, López de Munain A, Sistiaga A. Neurodegeneration trajectory in pediatric and adult/late DM1: A follow-up MRI study across a decade. Ann Clin Transl Neurol 2020; 7:1802-1815. [PMID: 32881379 PMCID: PMC7545612 DOI: 10.1002/acn3.51163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To characterize the progression of brain structural abnormalities in adults with pediatric and adult/late onset DM1, as well as to examine the potential predictive markers of such progression. METHODS 21 DM1 patients (pediatric onset: N = 9; adult/late onset: N = 12) and 18 healthy controls (HC) were assessed longitudinally over 9.17 years through brain MRI. Additionally, patients underwent neuropsychological, genetic, and muscular impairment assessment. Inter-group comparisons of total and voxel-level regional brain volume were conducted through Voxel Based Morphometry (VBM); cross-sectionally and longitudinally, analyzing the associations between brain changes and demographic, clinical, and cognitive outcomes. RESULTS The percentage of GM loss did not significantly differ in any of the groups compared with HC and when assessed independently, adult/late DM1 patients and their HC group suffered a significant loss in WM volume. Regional VBM analyses revealed subcortical GM damage in both DM1 groups, evolving to frontal regions in the pediatric onset patients. Muscular impairment and the outcomes of certain neuropsychological tests were significantly associated with follow-up GM damage, while visuoconstruction, attention, and executive function tests showed sensitivity to WM degeneration over time. INTERPRETATION Distinct patterns of brain atrophy and its progression over time in pediatric and adult/late onset DM1 patients are suggested. Results indicate a possible neurodevelopmental origin of the brain abnormalities in DM1, along with the possible existence of an additional neurodegenerative process. Fronto-subcortical networks appear to be involved in the disease progression at young adulthood in pediatric onset DM1 patients. The involvement of a multimodal integration network in DM1 is discussed.
Collapse
|
research-article |
5 |
9 |
24
|
Fuente IMDL, Cortes JM, Perez-Pinilla MB, Ruiz-Rodriguez V, Veguillas J. The metabolic core and catalytic switches are fundamental elements in the self-regulation of the systemic metabolic structure of cells. PLoS One 2011; 6:e27224. [PMID: 22125607 PMCID: PMC3220688 DOI: 10.1371/journal.pone.0027224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. METHODOLOGY/PRINCIPAL FINDINGS In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. CONCLUSIONS/SIGNIFICANCE We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub--with a high degree of effective connectivity--exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic Metabolic Structure.
Collapse
|
research-article |
14 |
9 |
25
|
Abstract
When presented with an item or a face, one might have a sense of recognition without the ability to recall when or where the stimulus has been encountered before. This sense of recognition is called familiarity memory. Following previous computational studies of familiarity memory, we investigate the dynamical properties of familiarity discrimination and contrast two different familiarity discriminators: one based on the energy of the neural network and the other based on the time derivative of the energy. We show how the familiarity signal decays rapidly after stimulus presentation. For both discriminators, we calculate the capacity using mean field analysis. Compared to recall capacity (the classical associative memory in Hopfield nets), both the energy and the slope discriminators have bigger capacity, yet the energy-based discriminator has a higher capacity than one based on its time derivative. Finally, both discriminators are found to have a different noise dependence.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
9 |