1
|
Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XG, Jiang YY, Wang JP, Zheng H, Zhang H, Bennett PH, Howard BV. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997; 20:537-44. [PMID: 9096977 DOI: 10.2337/diacare.20.4.537] [Citation(s) in RCA: 2592] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Individuals with impaired glucose tolerance (IGT) have a high risk of developing NIDDM. The purpose of this study was to determine whether diet and exercise interventions in those with IGT may delay the development of NIDDM, i.e., reduce the incidence of NIDDM, and thereby reduce the overall incidence of diabetic complications, such as cardiovascular, renal, and retinal disease, and the excess mortality attributable to these complications. RESEARCH DESIGN AND METHODS In 1986, 110,660 men and women from 33 health care clinics in the city of Da Qing, China, were screened for IGT and NIDDM. Of these individuals, 577 were classified (using World Health Organization criteria) as having IGT. Subjects were randomized by clinic into a clinical trial, either to a control group or to one of three active treatment groups: diet only, exercise only, or diet plus exercise. Follow-up evaluation examinations were conducted at 2-year intervals over a 6-year period to identify subjects who developed NIDDM. Cox's proportional hazard analysis was used to determine if the incidence of NIDDM varied by treatment assignment. RESULTS The cumulative incidence of diabetes at 6 years was 67.7% (95% CI, 59.8-75.2) in the control group compared with 43.8% (95% CI, 35.5-52.3) in the diet group, 41.1% (95% CI, 33.4-49.4) in the exercise group, and 46.0% (95% CI, 37.3-54.7) in the diet-plus-exercise group (P < 0.05). When analyzed by clinic, each of the active intervention groups differed significantly from the control clinics (P < 0.05). The relative decrease in rate of development of diabetes in the active treatment groups was similar when subjects were stratified as lean or overweight (BMI < or > or = 25 kg/m2). In a proportional hazards analysis adjusted for differences in baseline BMI and fasting glucose, the diet, exercise, and diet-plus-exercise interventions were associated with 31% (P < 0.03), 46% (P < 0.0005), and 42% (P < 0.005) reductions in risk of developing diabetes, respectively. CONCLUSIONS Diet and/or exercise interventions led to a significant decrease in the incidence of diabetes over a 6-year period among those with IGT.
Collapse
|
Clinical Trial |
28 |
2592 |
2
|
Bannuru RR, Osani MC, Vaysbrot EE, Arden NK, Bennell K, Bierma-Zeinstra SMA, Kraus VB, Lohmander LS, Abbott JH, Bhandari M, Blanco FJ, Espinosa R, Haugen IK, Lin J, Mandl LA, Moilanen E, Nakamura N, Snyder-Mackler L, Trojian T, Underwood M, McAlindon TE. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage 2019; 27:1578-1589. [PMID: 31278997 DOI: 10.1016/j.joca.2019.06.011] [Citation(s) in RCA: 1828] [Impact Index Per Article: 304.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/21/2019] [Accepted: 06/20/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To update and expand upon prior Osteoarthritis Research Society International (OARSI) guidelines by developing patient-focused treatment recommendations for individuals with Knee, Hip, and Polyarticular osteoarthritis (OA) that are derived from expert consensus and based on objective review of high-quality meta-analytic data. METHODS We sought evidence for 60 unique interventions. A systematic search of all relevant databases was conducted from inception through July 2018. After abstract and full-text screening by two independent reviewers, eligible studies were matched to PICO questions. Data were extracted and meta-analyses were conducted using RevMan software. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Evidence Profiles were compiled using the GRADEpro web application. Voting for Core Treatments took place first. Four subsequent voting sessions took place via anonymous online survey, during which Panel members were tasked with voting to produce recommendations for all joint locations and comorbidity classes. We designated non-Core treatments to Level 1A, 1B, 2, 3, 4A, 4B, or 5, based on the percentage of votes in favor, in addition to the strength of the recommendation. RESULTS Core Treatments for Knee OA included arthritis education and structured land-based exercise programs with or without dietary weight management. Core Treatments for Hip and Polyarticular OA included arthritis education and structured land-based exercise programs. Topical non-steroidal anti-inflammatory drugs (NSAIDs) were strongly recommended for individuals with Knee OA (Level 1A). For individuals with gastrointestinal comorbidities, COX-2 inhibitors were Level 1B and NSAIDs with proton pump inhibitors Level 2. For individuals with cardiovascular comorbidities or frailty, use of any oral NSAID was not recommended. Intra-articular (IA) corticosteroids, IA hyaluronic acid, and aquatic exercise were Level 1B/Level 2 treatments for Knee OA, dependent upon comorbidity status, but were not recommended for individuals with Hip or Polyarticular OA. The use of Acetaminophen/Paracetamol (APAP) was conditionally not recommended (Level 4A and 4B), and the use of oral and transdermal opioids was strongly not recommended (Level 5). A treatment algorithm was constructed in order to guide clinical decision-making for a variety of patient profiles, using recommended treatments as input for each decision node. CONCLUSION These guidelines offer comprehensive and patient-centered treatment profiles for individuals with Knee, Hip, and Polyarticular OA. The treatment algorithm will facilitate individualized treatment decisions regarding the management of OA.
Collapse
|
Review |
6 |
1828 |
3
|
Perna NT, Plunkett G, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Pósfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001; 409:529-33. [PMID: 11206551 DOI: 10.1038/35054089] [Citation(s) in RCA: 1484] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bacterium Escherichia coli O157:H7 is a worldwide threat to public health and has been implicated in many outbreaks of haemorrhagic colitis, some of which included fatalities caused by haemolytic uraemic syndrome. Close to 75,000 cases of O157:H7 infection are now estimated to occur annually in the United States. The severity of disease, the lack of effective treatment and the potential for large-scale outbreaks from contaminated food supplies have propelled intensive research on the pathogenesis and detection of E. coli O157:H7 (ref. 4). Here we have sequenced the genome of E. coli O157:H7 to identify candidate genes responsible for pathogenesis, to develop better methods of strain detection and to advance our understanding of the evolution of E. coli, through comparison with the genome of the non-pathogenic laboratory strain E. coli K-12 (ref. 5). We find that lateral gene transfer is far more extensive than previously anticipated. In fact, 1,387 new genes encoded in strain-specific clusters of diverse sizes were found in O157:H7. These include candidate virulence factors, alternative metabolic capacities, several prophages and other new functions--all of which could be targets for surveillance.
Collapse
|
|
24 |
1484 |
4
|
Abstract
BACKGROUND We report the first large renal biopsy-based clinicopathologic study on obesity-related glomerulopathy. METHODS Obesity was defined as body mass index (BMI)> 30 kg/m2. Obesity-related glomerulopathy (ORG) was defined morphologically as focal segmental glomerulosclerosis and glomerulomegaly (O-FSGS; N = 57) or glomerulomegaly alone (O-GM; N = 14). RESULTS Review of 6818 native renal biopsies received from 1986 to 2000 revealed a progressive increase in biopsy incidence of ORG from 0.2% in 1986-1990 to 2.0% in 1996-2000 (P = 0.0001). Mean BMI in ORG was 41.7 (range 30.9 to 62.7). Indications for renal biopsy included proteinuria (N = 40) or proteinuria and renal insufficiency (N = 31). Seventy-one patients with ORG were compared to 50 patients with idiopathic FSGS (I-FSGS). Patients with ORG were older (mean 42.9 vs. 32.6 years, P < 0.001) and more often Caucasian (75% vs. 52%; P = 0.003). ORG patients had a lower incidence of nephrotic range proteinuria (48% vs. 66%; P = 0.007) and nephrotic syndrome (5.6% vs. 54%; P < 0.001), with higher serum albumin (3.9 vs. 2.9 g/dL; P < 0.001), lower serum cholesterol (229 vs. 335 mg/dL; P < 0.001), and less edema (35% vs. 68%; P = 0.003). On renal biopsy, patients with ORG had fewer lesions of segmental sclerosis (10 vs. 39%; P < 0.001), more glomerulomegaly (100% vs. 10%; P < 0.001), and less extensive foot process effacement (40 vs. 75%; P < 0.001). Glomerular diameter in ORG (mean 226 mu) was significantly larger than age- and sex-matched normal controls (mean 168 mu; P < 0.001). Follow-up was available in 56 ORG patients (mean 27 months) and 50 idiopathic FSGS controls (mean 38 months). A total of 75% of ORG patients received angiotensin-converting enzyme (ACE) inhibition or A2 blockade while 78% of the I-FSGS patients received immunosuppressive therapy. ORG patients had less frequent doubling of serum creatinine (14.3% vs. 50%; P < 0.001) and progression to ESRD (3.6% vs. 42%; P < 0.001). On multivariate analysis, presenting serum creatinine and severity of proteinuria were the only predictors of poor outcome in ORG. CONCLUSION ORG is distinct from idiopathic FSGS, with a lower incidence of nephrotic syndrome, more indolent course, consistent presence of glomerulomegaly, and milder foot process fusion. The ten-fold increase in incidence over 15 years suggests a newly emerging epidemic. Heightened physician awareness of this entity is needed to ensure accurate diagnosis and appropriate therapy.
Collapse
|
Comparative Study |
24 |
832 |
5
|
Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest 1992; 90:52-60. [PMID: 1386087 PMCID: PMC443062 DOI: 10.1172/jci115855] [Citation(s) in RCA: 681] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plasma lipoprotein(a) [Lp(a)], a low density lipoprotein particle with an attached apolipoprotein(a) [apo(a)], varies widely in concentration between individuals. These concentration differences are heritable and inversely related to the number of kringle 4 repeats in the apo(a) gene. To define the genetic determinants of plasma Lp(a) levels, plasma Lp(a) concentrations and apo(a) genotypes were examined in 48 nuclear Caucasian families. Apo(a) genotypes were determined using a newly developed pulsed-field gel electrophoresis method which distinguished 19 different genotypes at the apo(a) locus. The apo(a) gene itself was found to account for virtually all the genetic variability in plasma Lp(a) levels. This conclusion was reached by analyzing plasma Lp(a) levels in siblings who shared zero, one, or two apo(a) genes that were identical by descent (ibd). Siblings with both apo(a) alleles ibd (n = 72) have strikingly similar plasma Lp(a) levels (r = 0.95), whereas those who shared no apo(a) alleles (n = 52), had dissimilar concentrations (r = -0.23). The apo(a) gene was estimated to be responsible for 91% of the variance of plasma Lp(a) concentration. The number of kringle 4 repeats in the apo(a) gene accounted for 69% of the variation, and yet to be defined cis-acting sequences at the apo(a) locus accounted for the remaining 22% of the inter-individual variation in plasma Lp(a) levels. During the course of these studies we observed the de novo generation of a new apo(a) allele, an event that occurred once in 376 meioses.
Collapse
|
research-article |
33 |
681 |
6
|
Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 2001; 8:971-82. [PMID: 11741533 DOI: 10.1016/s1097-2765(01)00390-2] [Citation(s) in RCA: 588] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cachexia is a chronic state of negative energy balance and muscle wasting that is a severe complication of cancer and chronic infection. While cytokines such as IL-1alpha, IL-1beta, and TNFalpha can mediate cachectic states, how these molecules affect energy expenditure is unknown. We show here that many cytokines activate the transcriptional PPAR gamma coactivator-1 (PGC-1) through phosphorylation by p38 kinase, resulting in stabilization and activation of PGC-1 protein. Cytokine or lipopolysaccharide (LPS)-induced activation of PGC-1 in cultured muscle cells or muscle in vivo causes increased respiration and expression of genes linked to mitochondrial uncoupling and energy expenditure. These data illustrate a direct thermogenic action of cytokines and p38 MAP kinase through the transcriptional coactivator PGC-1.
Collapse
|
|
24 |
588 |
7
|
Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000; 404:613-7. [PMID: 10766245 DOI: 10.1038/35007091] [Citation(s) in RCA: 563] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rare diseases ataxia-telangiectasia (AT), caused by mutations in the ATM gene, and Nijmegen breakage syndrome (NBS), with mutations in the p95/nbs1 gene, share a variety of phenotypic abnormalities such as chromosomal instability, radiation sensitivity and defects in cell-cycle checkpoints in response to ionizing radiation. The ATM gene encodes a protein kinase that is activated by ionizing radiation or radiomimetic drugs, whereas p95/nbs1 is part of a protein complex that is involved in responses to DNA double-strand breaks. Here, because of the similarities between AT and NBS, we evaluated the functional interactions between ATM and p95/nbs1. Activation of the ATM kinase by ionizing radiation and induction of ATM-dependent responses in NBS cells indicated that p95/nbs1 may not be required for signalling to ATM after ionizing radiation. However, p95/nbs1 was phosphorylated on serine 343 in an ATM-dependent manner in vitro and in vivo after ionizing radiation. A p95/nbs1 construct mutated at the ATM phosphorylation site abrogated an S-phase checkpoint induced by ionizing radiation in normal cells and failed to compensate for this functional deficiency in NBS cells. These observations link ATM and p95/nbs1 in a common signalling pathway and provide an explanation for phenotypic similarities in these two diseases.
Collapse
|
|
25 |
563 |
8
|
Lin J, Chen J, Elenbaas B, Levine AJ. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 1994; 8:1235-46. [PMID: 7926727 DOI: 10.1101/gad.8.10.1235] [Citation(s) in RCA: 502] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The p53 tumor suppressor gene product is a transcriptional activator that may be associated with its ability to suppress tumor cell growth. The acidic amino terminus of the p53 protein has been shown to contain this trans-activation activity as well as the domains for mdm-2 and adenovirus 5 E1B 55-kD protein binding. An extensive genetic analysis of this amino-terminal p53 domain has been undertaken using site-specific mutagenesis. The results demonstrate that the acidic residues in the amino terminus of p53 may contribute to, but are not critical for, this trans-activation activity. Rather, the hydrophobic amino acid residues Leu-22 and Trp-23 of human p53 are both required for trans-activation activity, binding to the adenovirus E1B 55-kD protein and the human mdm-2-p53 protein in vitro. In addition, hydrophobic residues Leu-14 and Phe-19 are crucial for the interactions between p53 and human mdm-2 (hdm-2). Hydrophobic residues Trp-23 and Pro-27 are also important for binding to the adenovirus 5 (Ad5) E1B 55-kD protein in vitro. These mutations have no impact on the ability of the p53 protein to bind to a p53-specific DNA element. These results suggest that 2-4 critical hydrophobic residues in the amino-terminal domain of the p53 protein interact with the transcriptional machinery of the cell resulting in transcriptional activation. These very same hydrophobic residues contact the hdm-2 and Ad5 E1B 55-kD oncogene products.
Collapse
|
|
31 |
502 |
9
|
Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 1997; 385:439-42. [PMID: 9009191 DOI: 10.1038/385439a0] [Citation(s) in RCA: 462] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mechanisms by which neurotransmitter receptors are immobilized at postsynaptic sites in neurons are largely unknown. The activity of NMDA (N-methyl-D-aspartate) receptors is mechanosensitive and dependent on the integrity of actin, suggesting a functionally important interaction between NMDA receptors and the postsynaptic cytoskeleton. alpha-Actinin-2, a member of the spectrin/dystrophin family of actin-binding proteins, is identified here as a brain postsynaptic density protein that colocalizes in dendritic spines with NMDA receptors and the putative NMDA receptor-clustering molecule PSD-95. alpha-Actinin-2 binds by its central rod domain to the cytoplasmic tail of both NR1 and NR2B subunits of the NMDA receptor, and can be immunoprecipitated with NMDA receptors and PSD-95 from rat brain. Intriguingly, NR1-alpha-actinin binding is directly antagonized by Ca2+/calmodulin. Thus alpha-actinin may play a role in both the localization of NMDA receptors and their modulation by Ca2+.
Collapse
|
|
28 |
462 |
10
|
Stein RS, King GC, Lin J. Change in Failure Stress on the Southern San Andreas Fault System Caused by the 1992 Magnitude = 7.4 Landers Earthquake. Science 1992; 258:1328-32. [PMID: 17778356 DOI: 10.1126/science.258.5086.1328] [Citation(s) in RCA: 452] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The 28 June Landers earthquake brought the San Andreas fault significantly closer to failure near San Bernardino, a site that has not sustained a large shock since 1812. Stress also increased on the San Jacinto fault near San Bernardino and on the San Andreas fault southeast of Palm Springs. Unless creep or moderate earthquakes relieve these stress changes, the next great earthquake on the southern San Andreas fault is likely to be advanced by one to two decades. In contrast, stress on the San Andreas north of Los Angeles dropped, potentially delaying the next great earthquake there by 2 to 10 years.
Collapse
|
|
33 |
452 |
11
|
Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, Thomas ML, Fearon DT. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 1995; 269:242-4. [PMID: 7618087 DOI: 10.1126/science.7618087] [Citation(s) in RCA: 427] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD22 is a membrane immunoglobulin (mIg)-associated protein of B cells. CD22 is tyrosine-phosphorylated when mIg is ligated. Tyrosine-phosphorylated CD22 binds and activates SHP, a protein tyrosine phosphatase known to negatively regulate signaling through mIg. Ligation of CD22 to prevent its coaggregation with mIg lowers the threshold at which mIg activates the B cell by a factor of 100. In secondary lymphoid organs, CD22 may be sequestered away from mIg through interactions with counterreceptors on T cells. Thus, CD22 is a molecular switch for SHP that may bias mIg signaling to anatomic sites rich in T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- Cell Adhesion Molecules
- Cells, Cultured
- Humans
- Immunoglobulin M/immunology
- Intracellular Signaling Peptides and Proteins
- Lectins
- Lymphocyte Activation
- Mice
- Molecular Sequence Data
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Recombinant Proteins/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction
- Tumor Cells, Cultured
Collapse
|
|
30 |
427 |
12
|
Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, Ogura Y, Núñez G. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 2000; 275:27823-31. [PMID: 10880512 DOI: 10.1074/jbc.m003415200] [Citation(s) in RCA: 427] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nod1 is an Apaf-1-like molecule composed of a caspase-recruitment domain (CARD), nucleotide-binding domain, and leucine-rich repeats that associates with the CARD-containing kinase RICK and activates nuclear factor kappaB (NF-kappaB). We show that self-association of Nod1 mediates proximity of RICK and the interaction of RICK with the gamma subunit of the IkappaB kinase (IKKgamma). Similarly, the RICK-related kinase RIP associated via its intermediate region with IKKgamma. A mutant form of IKKgamma deficient in binding to IKKalpha and IKKbeta inhibited NF-kappaB activation induced by RICK or RIP. Enforced oligomerization of RICK or RIP as well as of IKKgamma, IKKalpha, or IKKbeta was sufficient for induction of NF-kappaB activation. Thus, the proximity of RICK, RIP, and IKK complexes may play an important role for NF-kappaB activation during Nod1 oligomerization or trimerization of the tumor necrosis factor alpha receptor.
Collapse
|
|
25 |
427 |
13
|
Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 1995; 177:4097-104. [PMID: 7608084 PMCID: PMC177142 DOI: 10.1128/jb.177.14.4097-4104.1995] [Citation(s) in RCA: 408] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several members of the family Enterobacteriaceae were examined for differences in extreme acid survival strategies. A surprising degree of variety was found between three related genera. The minimum growth pH of Salmonella typhimurium was shown to be significantly lower (pH 4.0) than that of either Escherichia coli (pH 4.4) or Shigella flexneri (pH 4.8), yet E. coli and S. flexneri both survive exposure to lower pH levels (2 to 2.5) than S. typhimurium (pH 3.0) in complex medium. S. typhimurium and E. coli but not S. flexneri expressed low-pH-inducible log-phase and stationary-phase acid tolerance response (ATR) systems that function in minimal or complex medium to protect cells to pH 3.0. All of the organisms also expressed a pH-independent general stress resistance system that contributed to acid survival during stationary phase. E. coli and S. flexneri possessed several acid survival systems (termed acid resistance [AR]) that were not demonstrable in S. typhimurium. These additional AR systems protected cells to pH 2.5 and below but required supplementation of minimal medium for either induction or function. One acid-inducible AR system required oxidative growth in complex medium for expression but successfully protected cells to pH 2.5 in unsupplemented minimal medium, while two other AR systems important for fermentatively grown cells required the addition of either glutamate or arginine during pH 2.5 acid challenge. The arginine AR system was only observed in E. coli and required stationary-phase induction in acidified complex medium. The product of the adi locus, arginine decarboxylase, was responsible for arginine-based acid survival.
Collapse
|
research-article |
30 |
408 |
14
|
Lin J, Smith MP, Chapin KC, Baik HS, Bennett GN, Foster JW. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 1996; 62:3094-100. [PMID: 8795195 PMCID: PMC168100 DOI: 10.1128/aem.62.9.3094-3100.1996] [Citation(s) in RCA: 398] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Enterohemorrhagic strains of Escherichia coli must pass through the acidic gastric barrier to cause gastrointestinal disease. Taking into account the apparent low infectious dose of enterohemorrhagic E. coli, 11 O157:H7 strains and 4 commensal strains of E. coli were tested for their abilities to survive extreme acid exposures (pH 3). Three previously characterized acid resistance systems were tested. These included an acid-induced oxidative system, an acid-induced arginine-dependent system, and a glutamate-dependent system. When challenged at pH 2.0, the arginine-dependent system provided more protection in the EHEC strains than in commensal strains. However, the glutamate-dependent system provided better protection than the arginine system and appeared equally effective in all strains. Because E. coli must also endure acid stress imposed by the presence of weak acids in intestinal contents at a pH less acidic than that of the stomach, the ability of specific acid resistance systems to protect against weak acids was examined. The arginine- and glutamate-dependent systems were both effective in protecting E. coli against the bactericidal effects of a variety of weak acids. The acids tested include benzoic acid (20 mM; pH 4.0) and a volatile fatty acid cocktail composed of acetic, propionic, and butyric acids at levels approximating those present in the intestine. The oxidative system was much less effective. Several genetic aspects of E. coli acid resistance were also characterized. The alternate sigma factor RpoS was shown to be required for oxidative acid resistance but was only partially involved with the arginine- and glutamate-dependent acid resistance systems. The arginine decarboxylase system (including adi and its regulators cysB and adiY) was responsible for arginine-dependent acid resistance. The results suggest that several acid resistance systems potentially contribute to the survival of pathogenic E. coli in the different acid stress environments of the stomach (pH 1 to 3) and the intestine (pH 4.5 to 7 with high concentrations of volatile fatty acids). Of particular importance to the food industry was the finding that once induced, the acid resistance systems will remain active for prolonged periods of cold storage at 4 degrees C.
Collapse
|
research-article |
29 |
398 |
15
|
Abstract
The past several years have seen the beginning of a shift in the way that TCR signal transduction is studied. Although many investigators continue to identify new molecules, particularly adaptor proteins, others have attempted to look at signaling events in a larger cellular context. Thus the identification of distinct formations of signaling molecules at junctions between T cells and antigen-presenting cells, the role of the cytoskeleton and the partitioning of molecules into specialized lipid subdomains have been the subjects of many publications. Such concepts are helping to assemble a blueprint of how the myriad adaptors and kinases fit together to effect T cell activation.
Collapse
|
Review |
25 |
386 |
16
|
Chen P, Wu X, Lin J, Tan KL. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 1999; 285:91-3. [PMID: 10390369 DOI: 10.1126/science.285.5424.91] [Citation(s) in RCA: 350] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lithium- or potassium-doped carbon nanotubes can absorb approximately 20 or approximately 14 weight percent of hydrogen at moderate (200 degrees to 400 degrees C) or room temperatures, respectively, under ambient pressure. These values are greater than those of metal hydride and cryoadsorption systems. The hydrogen stored in the lithium- or potassium-doped carbon nanotubes can be released at higher temperatures, and the sorption-desorption cycle can be repeated with little decrease in the sorption capacity. The high hydrogen-uptake capacity of these systems may be derived from the special open-edged, layered structure of the carbon nanotubes made from methane, as well as the catalytic effect of alkali metals.
Collapse
|
|
26 |
350 |
17
|
Nikolov DB, Hu SH, Lin J, Gasch A, Hoffmann A, Horikoshi M, Chua NH, Roeder RG, Burley SK. Crystal structure of TFIID TATA-box binding protein. Nature 1992; 360:40-6. [PMID: 1436073 DOI: 10.1038/360040a0] [Citation(s) in RCA: 321] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structure of a central component of the eukaryotic transcriptional apparatus, a TATA-box binding protein (TBP or TFIID tau) from Arabidopsis thaliana, has been determined by X-ray crystallography at 2.6 A resolution. This highly symmetric alpha/beta structure contains a new DNA-binding fold, resembling a molecular 'saddle' that sits astride the DNA. The DNA-binding surface is a curved, antiparallel beta-sheet. When bound to DNA, the convex surface of the saddle would be presented for interaction with other transcription initiation factors and regulatory proteins.
Collapse
|
|
33 |
321 |
18
|
Stein RS, King GC, Lin J. Stress Triggering of the 1994 M = 6.7 Northridge, California, Earthquake by Its Predecessors. Science 1994; 265:1432-5. [PMID: 17833817 DOI: 10.1126/science.265.5177.1432] [Citation(s) in RCA: 292] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A model of stress transfer implies that earthquakes in 1933 and 1952 increased the Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas where its aftershocks and surface faulting occurred. Together, the earthquakes with moment magnitude M >/= 6 near Los Angeles since 1933 have stressed parts of the Oak Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-lnglewood faults by more than 1 bar. Although too small to cause earthquakes, these stress changes can trigger events if the crust is already near failure or advance future earthquake occurrence if it is not.
Collapse
|
|
31 |
292 |
19
|
Chen J, Wu X, Lin J, Levine AJ. mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol Cell Biol 1996; 16:2445-52. [PMID: 8628312 PMCID: PMC231233 DOI: 10.1128/mcb.16.5.2445] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mdm-2 gene encodes a 90-kDa polypeptide that binds specifically to the p53 tumor suppressor protein. This physical interaction results in the inhibition of the transcriptional functions of p53 (J. Chen, J. Lin, and A. J. Levine, Mol. Med. 1:142-152, 1995, and J. Momand, G. P. Zambetti, D. C. Olson, D. George, and A. J. Levine, Cell 69:1237-1245, 1992). Experiments are described that demonstrate the ability of mdm-2 to abrogate both the p53-mediated cell cycle arrest and the apoptosis functions. In addition, the results presented here suggest that mdm-2 binding to p53 and the resultant inhibition of p53 transcription functions are critical for reversing p53-mediated cell cycle arrest. The N-terminal half or domain of the mdm-2 protein is sufficient to regulate these biological activities of p53, consistent with the possibility that the highly conserved central acidic region and the C-terminal putative zinc fingers of mdm-2 may encode other functions.
Collapse
|
research-article |
29 |
276 |
20
|
Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q, Allen H, Franlin L, Parks RJ, Graham FL, Kochanek S, Bett AJ, Caskey CT. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci U S A 1998; 95:7866-71. [PMID: 9653106 PMCID: PMC20895 DOI: 10.1073/pnas.95.14.7866] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adenoviral (Ad)-mediated in vivo gene transfer and expression are limited in part by cellular immune responses to viral-encoded proteins and/or transgene immunogenicity. In an attempt to diminish the former responses, we have previously developed and described helper-dependent (HD) Ad vectors in which the viral protein coding sequences are completely eliminated. These HD vectors have up to 37 kb insert capacity, are easily propagated in a Cre recombinase-based system, and can be produced to high concentration and purity (>99.9% helper-free vector). In this study, we compared safety and efficacy of leptin gene delivery mediated by an HD vector (HD-leptin) and a first-generation E1-deleted Ad vector (Ad-leptin) in normal lean and ob/ob (leptin-deficient) mice. In contrast to evidence of liver toxicity, inflammation, and cellular infiltration observed with Ad-leptin delivery in mice, HD-leptin delivery was associated with a significant improvement in associated safety/toxicity and resulted in efficient gene delivery, prolonged elevation of serum leptin levels, and associated weight loss. The greater safety, efficient gene delivery, and increased insert capacity of HD vectors are significant improvements over current Ad vectors and represent favorable features especially for clinical gene therapy applications.
Collapse
|
research-article |
27 |
263 |
21
|
Fisher GJ, Talwar HS, Lin J, Lin P, McPhillips F, Wang Z, Li X, Wan Y, Kang S, Voorhees JJ. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo. J Clin Invest 1998; 101:1432-40. [PMID: 9502786 PMCID: PMC508699 DOI: 10.1172/jci2153] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human skin is exposed daily to solar ultraviolet (UV) radiation. UV induces the matrix metalloproteinases collagenase, 92-kD gelatinase, and stromelysin, which degrade skin connective tissue and may contribute to premature skin aging (photoaging). Pretreatment of skin with all-trans retinoic acid (tRA) inhibits UV induction of matrix metalloproteinases. We investigated upstream signal transduction pathways and the mechanism of tRA inhibition of UV induction of matrix metalloproteinases in human skin in vivo. Exposure of human skin in vivo to low doses of UV activated EGF receptors, the GTP-binding regulatory protein p21Ras, and stimulated mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38. Both JNK and p38 phosphorylated, and thereby activated transcription factors c-Jun and activating transcription factor 2 (ATF-2), which bound to the c-Jun promoter and upregulated c-Jun gene expression. Elevated c-Jun, in association with constitutively expressed c-Fos, formed increased levels of transcription factor activator protein (AP) 1, which is required for transcription of matrix metalloproteinases. Pretreatment of human skin with tRA inhibited UV induction of c-Jun protein and, consequently, AP-1. c-Jun protein inhibition occurred via a posttranscriptional mechanism, since tRA did not inhibit UV induction of c-Jun mRNA. These data demonstrate, for the first time, activation of MAP kinase pathways in humans in vivo, and reveal a novel posttranscriptional mechanism by which tRA antagonizes UV activation of AP-1 by inhibiting c-Jun protein induction. Inhibition of c-Jun induction likely contributes to the previously reported prevention by tRA of UV induction of AP-1-regulated matrix-degrading metalloproteinases in human skin.
Collapse
|
research-article |
27 |
258 |
22
|
Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang CX, Ji P, Xie Y, Kang M, Wang CQ, Wang AM, Xu YH, Shen JL, Sun ZY, Chen ZJ, Ni YX, Sun JY, Chu YZ, Tian SF, Hu ZD, Li J, Yu YS, Lin J, Shan B, Du Y, Han Y, Guo S, Wei LH, Wu L, Zhang H, Kong J, Hu YJ, Ai XM, Zhuo C, Su DH, Yang Q, Jia B, Huang W. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005-2014. Clin Microbiol Infect 2016; 22 Suppl 1:S9-14. [PMID: 27000156 DOI: 10.1016/j.cmi.2016.01.001] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 02/05/2023]
Abstract
With the aim of gathering temporal trends on bacterial epidemiology and resistance from multiple laboratories in China, the CHINET surveillance system was organized in 2005. Antimicrobial susceptibility testing was carried out according to a unified protocol using the Kirby-Bauer method or automated systems. Results were analyzed according to Clinical and Laboratory Standards Institute (CLSI) 2014 definitions. Between 2005 and 2014, the number of bacterial isolates ranged between 22,774 and 84,572 annually. Rates of extended-spectrum β-lactamase production among Escherichia coli isolates were stable, between 51.7 and 55.8%. Resistance of E. coli and Klebsiella pneumoniae to amikacin, ciprofloxacin, piperacillin/tazobactam and cefoperazone/sulbactam decreased with time. Carbapenem resistance among K. pneumoniae isolates increased from 2.4 to 13.4%. Resistance of Pseudomonas aeruginosa strains against all of antimicrobial agents tested including imipenem and meropenem decreased with time. On the contrary, resistance of Acinetobacter baumannii strains to carbapenems increased from 31 to 66.7%. A marked decrease of methicillin resistance from 69% in 2005 to 44.6% in 2014 was observed for Staphylococcus aureus. Carbapenem resistance rates in K. pneumoniae and A. baumannii in China are high. Our results indicate the importance of bacterial surveillance studies.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
253 |
23
|
Riederer MA, Soldati T, Shapiro AD, Lin J, Pfeffer SR. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J Cell Biol 1994; 125:573-82. [PMID: 7909812 PMCID: PMC2119986 DOI: 10.1083/jcb.125.3.573] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Newly synthesized lysosomal enzymes bind to mannose 6-phosphate receptors (MPRs) in the TGN, and are carried to prelysosomes, where they are released. MPRs then return to the TGN for another round of transport. Rab9 is a ras-like GTPase which facilitates MPR recycling to the TGN in vitro. We show here that a dominant negative form of rab9, rab9 S21N, strongly inhibited MPR recycling in living cells. The block was specific in that the rates of biosynthetic protein transport, fluid phase endocytosis and receptor-mediated endocytosis were unchanged. Expression of rab9 S21N was accompanied by a decrease in the efficiency of lysosomal enzyme sorting. Cells compensated for the presence of the mutant protein by inducing the synthesis of both soluble and membrane-associated lysosomal enzymes, and by internalizing lysosomal enzymes that were secreted by default. These data show that MPRs are limiting in the secretory pathway of cells expressing rab9 S21N and document the importance of MPR recycling and the rab9 GTPase for efficient lysosomal enzyme delivery.
Collapse
|
research-article |
31 |
246 |
24
|
Freed AM, Lin J. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer. Nature 2001; 411:180-3. [PMID: 11346791 DOI: 10.1038/35075548] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stress changes in the crust due to an earthquake can hasten the failure of neighbouring faults and induce earthquake sequences in some cases. The 1999 Hector Mine earthquake in southern California (magnitude 7.1) occurred only 20 km from, and 7 years after, the 1992 Landers earthquake (magnitude 7.3). This suggests that the Hector Mine earthquake was triggered in some fashion by the earlier event. But uncertainties in the slip distribution and rock friction properties associated with the Landers earthquake have led to widely varying estimates of both the magnitude and sign of the resulting stress change that would be induced at the location of the Hector Mine hypocentre-with estimates varying from -1.4 bar (ref. 6) to +0.5 bar (ref. 7). More importantly, coseismic stress changes alone cannot satisfactorily explain the delay of 7 years between the two events. Here we present the results of a three-dimensional viscoelastic model that simulates stress transfer from the ductile lower crust and upper mantle to the brittle upper crust in the 7 years following the Landers earthquake. Using viscoelastic parameters that can reproduce the observed horizontal surface deformation following the Landers earthquake, our calculations suggest that lower-crustal or upper-mantle flow can lead to postseismic stress increases of up to 1-2 bar at the location of the Hector Mine hypocentre during this time period, contributing to the eventual occurrence of the 1999 Hector Mine earthquake. These results attest to the importance of considering viscoelastic processes in the assessment of seismic hazard.
Collapse
|
|
24 |
242 |
25
|
Lee IS, Lin J, Hall HK, Bearson B, Foster JW. The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol 1995; 17:155-67. [PMID: 7476202 DOI: 10.1111/j.1365-2958.1995.mmi_17010155.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The acid tolerance response (ATR) of log-phase Salmonella typhimurium is induced by acid exposures below pH 4.5 and will protect cells against more extreme acid. Two systems are evident: a transiently induced system dependent on the iron regulator Fur that provides a moderate degree of acid tolerance and a more effective sustained ATR that requires the alternate sigma factor sigma S encoded by rpoS. Differences between the acid responses of virulent S. typhimurium and the attenuated laboratory strain LT2 were attributed to disparate levels of RpoS caused by different translational starts. The sustained ATR includes seven newly identified acid shock proteins (ASPs) that are dependent upon sigma S for their synthesis. It is predicted that one or more of these ASPs is essential for the sustained system. The sustained ATR also provided cross-protection to a variety of other environmental stresses (heat, H2O2 and osmolarity); however, adaptation to the other stresses did not provide significant acid tolerance. Therefore, in addition to starvation, acid shock serves as an important signal for inducing general stress resistance. Consistent with this model, sigma S proved to be induced by acid shock. Our results also revealed a connection between the transient and sustained ATR systems. Mutations in the regulator atbR are known to cause the overproduction of ten proteins, of which one or more can suppress the acid tolerance defect of an rpoS mutant. One member of the AtbR regulon, designated atrB, was found to be co-regulated by sigma S and AtbR. Both regulators had a negative effect on atrB expression. The results suggest AtrB serves as a link between the sustained and transient ATR systems. When sigma S concentrations are low, a compensatory increase in AtrB is required to engage the transiently induced, RpoS-independent system of acid tolerance. Results also suggest different acid-sensitive targets occur in log-phase versus stationary-phase cells.
Collapse
|
|
30 |
230 |