1
|
|
|
24 |
5943 |
2
|
Patten TE, Xia J, Abernathy T, Matyjaszewski K. Polymers with Very Low Polydispersities from Atom Transfer Radical Polymerization. Science 1996; 272:866-8. [PMID: 8662578 DOI: 10.1126/science.272.5263.866] [Citation(s) in RCA: 679] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A radical polymerization process that yields well-defined polymers normally obtained only through anionic polymerizations is reported. Atom transfer radical polymerizations of styrene were conducted with several solubilizing ligands for the copper(I) halides: 4,4'-di-tert-butyl, 4,4'-di-n-heptyl, and 4,4'-di-(5-nonyl)-2,2'-dipyridyl. The resulting polymerizations have all of the characteristics of a living polymerization and displayed linear semilogarithmic kinetic plots, a linear correlation between the number-average molecular weight and the monomer conversion, and low polydispersities (ratio of the weight-average to number-average molecular weights of 1.04 to 1.05). Similar results were obtained for the polymerization of acrylates.
Collapse
|
|
29 |
679 |
3
|
Xia J, Zhang X, Staudinger J, Huganir RL. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 1999; 22:179-87. [PMID: 10027300 DOI: 10.1016/s0896-6273(00)80689-3] [Citation(s) in RCA: 457] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synaptic clustering of neurotransmitter receptors is crucial for efficient signal transduction and integration in neurons. PDZ domain-containing proteins such as PSD-95/SAP90 interact with the intracellular C termini of a variety of receptors and are thought to be important in the targeting and anchoring of receptors to specific synapses. Here, we show that PICK1 (protein interacting with C kinase), a PDZ domain-containing protein, interacts with the C termini of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptors in vitro and in vivo. In neurons, PICK1 specifically colocalizes with AMPA receptors at excitatory synapses. Furthermore, PICK1 induces clustering of AMPA receptors in heterologous expression systems. These results suggest that PICK1 may play an important role in the modulation of synaptic transmission by regulating the synaptic targeting of AMPA receptors.
Collapse
|
|
26 |
457 |
4
|
Ahearn JM, Fischer MB, Croix D, Goerg S, Ma M, Xia J, Zhou X, Howard RG, Rothstein TL, Carroll MC. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 1996; 4:251-62. [PMID: 8624815 DOI: 10.1016/s1074-7613(00)80433-1] [Citation(s) in RCA: 372] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Covalent attachment of activated products of the third component of complement to antigen enhances its immunogenicity, but the mechanism is not clear. This effect is mediated by specific receptors, mCR1 (CD35) and mCR2 (CD21), expressed primarily on B cells and follicular dendritic cells in mice. To dissect the role of mCR1 and mCR2 in the humoral response, we have disrupted the Cr2 locus to generate mice deficient in both receptors. The deficient mice (Cr2-/-) were found to have a reduction in the CD5+ population of peritoneal B-1 cells, although their serum IgM levels were within the range of normal mice. Moreover, Cr2-/- mice had a severe defect in their humoral response to T-dependent antigens that was characterized by a reduction in serum antibody titers and in the number and size of germinal centers within splenic follicles. Reconstitution of the deficient mice with bone marrow from MHC-matched Cr2+/+ donors corrected the defect, demonstrating that the defect was due to B cells themselves. These results indicate an obligatory role of B cell complement receptors in responses of the B cells to protein antigens.
Collapse
|
|
29 |
372 |
5
|
Song I, Kamboj S, Xia J, Dong H, Liao D, Huganir RL. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 1998; 21:393-400. [PMID: 9728920 DOI: 10.1016/s0896-6273(00)80548-6] [Citation(s) in RCA: 344] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glutamate receptors mediate the majority of rapid excitatory synaptic transmission in the central nervous system (CNS) and play important roles in synaptic plasticity and neuronal development. Recently, protein-protein interactions with the C-terminal domain of glutamate receptor subunits have been shown to be involved in the modulation of receptor function and clustering at excitatory synapses. In this paper, we have found that the N-ethylmaleimide-sensitive factor (NSF), a protein involved in membrane fusion events, specifically interacts with the C terminus of the GluR2 and GluR4c subunits of AMPA receptors in vitro and in vivo. Moreover, intracellular perfusion of neurons with a synthetic peptide that competes with the interaction of NSF and AMPA receptor subunits rapidly decreases the amplitude of miniature excitatory postsynaptic currents (mEPSCs), suggesting that NSF regulates AMPA receptor function.
Collapse
|
|
27 |
344 |
6
|
Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 1995; 96:801-10. [PMID: 7635975 PMCID: PMC185266 DOI: 10.1172/jci118126] [Citation(s) in RCA: 320] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We investigated the cellular mechanisms of the unique disorder of insulin action found in the polycystic ovary syndrome (PCOS). Approximately 50% of PCOS women (PCOS-Ser) had a significant increase in insulin-independent beta-subunit [32P]phosphate incorporation (3.7-fold, P < 0.05 vs other groups) in skin fibroblast insulin receptors that was present in serine residues while insulin-induced tyrosine phosphorylation was decreased (both P < 0.05 vs other groups). PCOS skeletal muscle insulin receptors had the same abnormal phosphorylation pattern. The remaining PCOS women (PCOS-n1) had basal and insulin-stimulated receptor autophosphorylation similar to control. Phosphorylation of the artificial substrate poly GLU4:TYR1 by the PCOS-Ser insulin receptors was significantly decreased (P < 0.05) compared to control and PCOS-n1 receptors. The factor responsible for excessive serine phosphorylation appeared to be extrinsic to the receptor since no insulin receptor gene mutations were identified, immunoprecipitation before autophosphorylation corrected the phosphorylation defect and control insulin receptors mixed with lectin eluates from affected PCOS fibroblasts displayed increased serine phosphorylation. Our findings suggest that increased insulin receptor serine phosphorylation decreases its protein tyrosine kinase activity and is one mechanism for the post-binding defect in insulin action characteristic of PCOS.
Collapse
|
research-article |
30 |
320 |
7
|
Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 2000; 28:499-510. [PMID: 11144359 DOI: 10.1016/s0896-6273(00)00128-8] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebellar LTD requires activation of PKC and is expressed, at least in part, as postsynaptic AMPA receptor internalization. Recently, it was shown that AMPA receptor internalization requires clathrin-mediated endocytosis and depends upon the carboxy-terminal region of GluR2/3. Phosphorylation of Ser-880 in this region by PKC differentially regulates the binding of the PDZ domain-containing proteins GRIP/ABP and PICK1. Peptides, corresponding to the phosphorylated and dephosphorylated GluR2 carboxy-terminal PDZ binding motif, were perfused in cerebellar Purkinje cells grown in culture. Both the dephospho form (which blocks binding of GRIP/ABP and PICK1) and the phospho form (which selectively blocks PICK1) attenuated LTD induction by glutamate/depolarization pairing, as did antibodies directed against the PDZ domain of PICK1. These findings indicate that expression of cerebellar LTD requires PKC-regulated interactions between the carboxy-terminal of GluR2/3 and PDZ domain-containing proteins.
Collapse
|
|
25 |
303 |
8
|
Moloney DJ, Shair LH, Lu FM, Xia J, Locke R, Matta KL, Haltiwanger RS. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem 2000; 275:9604-11. [PMID: 10734111 DOI: 10.1074/jbc.275.13.9604] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch is a large cell-surface receptor known to be an essential player in a wide variety of developmental cascades. Here we show that Notch1 endogenously expressed in Chinese hamster ovary cells is modified with O-linked fucose and O-linked glucose saccharides, two unusual forms of O-linked glycosylation found on epidermal growth factor-like (EGF) modules. Interestingly, both modifications occur as monosaccharide and oligosaccharide species. Through exoglycosidase digestions we determined that the O-linked fucose oligosaccharide is a tetrasaccharide with a structure identical to that found on human clotting factor IX: Sia-alpha2,3-Gal-beta1, 4-GlcNAc-beta1,3-Fuc-alpha1-O-Ser/Thr. The elongated form of O-linked glucose appears to be a trisaccharide. Notch1 is the first membrane-associated protein identified with either O-linked fucose or O-linked glucose modifications. It also represents the second protein discovered with an elongated form of O-linked fucose. The sites of glycosylation, which fall within the multiple EGF modules of Notch, are highly conserved across species and within Notch homologs. Since Notch is known to interact with its ligands through subsets of EGF modules, these results suggest that the O-linked carbohydrate modifications of these modules may influence receptor-ligand interactions.
Collapse
|
|
25 |
274 |
9
|
Song Y, Liu P, Shi XL, Chu YL, Zhang J, Xia J, Gao XZ, Qu T, Wang MY. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 2020; 69:1143-1144. [PMID: 32139552 DOI: 10.1136/gutjnl-2020-320891] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
|
Case Reports |
5 |
214 |
10
|
Little TL, Xia J, Duling BR. Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circ Res 1995; 76:498-504. [PMID: 7859395 DOI: 10.1161/01.res.76.3.498] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dye tracers were chosen, based on net charge, chemical structure, and reactive groups, to test for the existence of and to provide novel insight into channel selectivities of junctional pathways connecting smooth muscle and endothelial cells of the arteriolar wall. Dyes were injected into individual smooth muscle or endothelial cells of hamster cheek pouch arterioles using microiontophoresis. Coupling, independent of tracer net charge, was seen both within and between cell layers. Endothelial cells were well coupled by all of the tested dyes. Smooth muscle junctions appeared less effective in dye transfer than endothelial junctions. Lucifer yellow was confirmed to be a poor tracer of smooth muscle gap junctions, and remarkably this dye and other related sulfate-containing molecules interfered with dye movement through smooth muscle but not endothelial junctions. Myoendothelial junctions showed a striking polarity of dye movement, with dye transfer from endothelial to smooth muscle cells but little or no transfer in the reverse direction. Because the dyes have size and charge characteristics similar to those of known cellular second messengers, these findings have important implications for cell-cell signaling in the vessel wall.
Collapse
|
|
30 |
185 |
11
|
Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A. Drug delivery systems: water soluble taxol 2'-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. J Med Chem 1996; 39:424-31. [PMID: 8558510 DOI: 10.1021/jm950475e] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Water soluble 2'-taxol poly(ethylene glycol) (PEG) esters have been synthesized and shown to function in vitro as prodrugs. However, in vivo experiments clearly establish that in order for these prodrugs to behave in a predictable fashion, the molecular weight of PEG must be of such magnitude so as to maintain a t1/2(circulation) > t1/2(hydrolysis). When PEG derivatives of molecular weight approximately 40 kDa were employed with paclitaxel, ca. 4% by weight of paclitaxel was carried by the water soluble prodrug form, and equivalent in vivo toxicity and increased life expectancy in the P388-treated mouse was observed. An effective method for prescreening prodrugs was found to be the acute murine lethality, which reflects the equivalency of the solubilized transport form and the native drug.
Collapse
|
|
29 |
181 |
12
|
Rowles J, Scherer SW, Xi T, Majer M, Nickle DC, Rommens JM, Popov KM, Harris RA, Riebow NL, Xia J, Tsui LC, Bogardus C, Prochazka M. Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem 1996; 271:22376-82. [PMID: 8798399 DOI: 10.1074/jbc.271.37.22376] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Different isoenzymes of pyruvate dehydrogenase kinase (PDK) inhibit the mitochondrial pyruvate dehydrogenase complex by phosphorylation of the E1alpha subunit, thus contributing to the regulation of glucose metabolism. By positional cloning in the 7q21.3-q22.1 region linked with insulin resistance and non-insulin-dependent diabetes mellitus in the Pima Indians, we identified a gene encoding an additional human PDK isoform, as evidenced by its amino acid sequence identity (>65%) with other mammalian PDKs, and confirmed by biochemical analyses of the recombinant protein. We performed detailed comparative analyses of the gene, termed PDK4, in insulin-resistant and insulin-sensitive Pima Indians, and detected five DNA variants with comparable frequencies in both subject groups. Using quantitative reverse transcription polymerase chain reaction, we found that the variants identified in the promoter and 5'-untranslated region did not correlate with differences in mRNA level in skeletal muscle and adipose tissue. We conclude that alterations in PDK4 are unlikely to be the molecular basis underlying the observed linkage at 7q21.3-q22.1 in the Pima Indians. Information about the genomic organization and promoter sequences of PDK4 will be useful in studies of other members of this family of mitochondrial protein kinases that are important for the regulation of glucose metabolism.
Collapse
MESH Headings
- Adipose Tissue/chemistry
- Amino Acid Sequence
- Base Sequence
- Chromosomes, Human, Pair 7
- Cloning, Molecular
- DNA, Complementary/chemistry
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Humans
- Indians, North American
- Isoenzymes/genetics
- Molecular Sequence Data
- Muscle, Skeletal/chemistry
- Polymerase Chain Reaction
- Protein Kinases/genetics
- Protein Serine-Threonine Kinases
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- RNA, Messenger/analysis
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
|
|
29 |
139 |
13
|
Li Z, Song Y, Liu L, Hou N, An X, Zhan D, Li Y, Zhou L, Li P, Yu L, Xia J, Zhang Y, Wang J, Yang X. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ 2015; 24:1205-1213. [PMID: 26160071 PMCID: PMC5520159 DOI: 10.1038/cdd.2015.95] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/22/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022] Open
Abstract
Basal autophagy is tightly regulated by transcriptional and epigenetic factors to maintain cellular homeostasis. Dysregulation of cardiac autophagy is associated with heart diseases, including cardiac hypertrophy, but the mechanism governing cardiac autophagy is rarely identified. To analyze the in vivo function of miR-199a in cardiac autophagy and cardiac hypertrophy, we generated cardiac-specific miR-199a transgenic mice and showed that overexpression of miR-199a was sufficient to inhibit cardiomyocyte autophagy and induce cardiac hypertrophy in vivo. miR-199a impaired cardiomyocyte autophagy in a cell-autonomous manner by targeting glycogen synthase kinase 3β (GSK3β)/mammalian target of rapamycin (mTOR) complex signaling. Overexpression of autophagy related gene 5 (Atg5) attenuated the hypertrophic effects of miR-199a overexpression on cardiomyocytes, and activation of autophagy using rapamycin was sufficient to restore cardiac autophagy and decrease cardiac hypertrophy in miR-199a transgenic mice. These results reveal a novel role of miR-199a as a key regulator of cardiac autophagy, suggesting that targeting miRNAs controlling autophagy as a potential therapeutic strategy for cardiac disease.
Collapse
|
Journal Article |
10 |
138 |
14
|
Boudin H, Doan A, Xia J, Shigemoto R, Huganir RL, Worley P, Craig AM. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron 2000; 28:485-97. [PMID: 11144358 DOI: 10.1016/s0896-6273(00)00127-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aggregation of neurotransmitter receptors at pre- and postsynaptic structures is crucial for efficient neuronal communication. In contrast to the wealth of information about postsynaptic specializations, little is known about the molecular organization of presynaptic membrane proteins. We show here that the metabotropic glutamate receptor mGluR7a, which localizes specifically to presynaptic active zones, interacts in vitro and in vivo with PICK1. Coexpression in heterologous systems induces coclustering dependent upon the extreme C terminus of mGluR7a and the PDZ domain of PICK1. mGluR7a and PICK1 localize to excitatory synapses in hippocampal neurons. Furthermore, whereas transfected mGluR7a clusters at presynaptic sites, mGluR7adelta3 lacking the PICK1 binding site targets to axons but does not cluster. These results suggest that PICK1 is a component of the presynaptic machinery involved in mGluR7a aggregation and in modulation of glutamate neurotransmission.
Collapse
|
|
25 |
120 |
15
|
Xia J, Peng Y, Mian IS, Lue NF. Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol Cell Biol 2000; 20:5196-207. [PMID: 10866675 PMCID: PMC85968 DOI: 10.1128/mcb.20.14.5196-5207.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Telomerase is a ribonucleoprotein reverse transcriptase responsible for the maintenance of one strand of telomere terminal repeats. The key protein subunit of the telomerase complex, known as TERT, possesses reverse transcriptase-like motifs that presumably mediate catalysis. These motifs are located in the C-terminal region of the polypeptide. Hidden Markov model-based sequence analysis revealed in the N-terminal region of all TERTs the presence of four conserved motifs, named GQ, CP, QFP, and T. Point mutation analysis of conserved residues confirmed the functional importance of the GQ motif. In addition, the distinct phenotypes of the GQ mutants suggest that this motif may play at least two distinct functions in telomere maintenance. Deletion analysis indicates that even the most N-terminal nonconserved region of yeast TERT (N region) is required for telomerase function. This N region exhibits a nonspecific nucleic acid binding activity that probably reflects an important physiologic function. Expression studies of various portions of the yeast TERT in Escherichia coli suggest that the N region and the GQ motif together may constitute a stable domain. We propose that all TERTs may have a bipartite organization, with an N-GQ domain connected to the other motifs through a flexible linker.
Collapse
|
research-article |
25 |
118 |
16
|
Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, Ouyang S, Xia J. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. ARCHIVES OF NEUROLOGY 2000; 57:540-4. [PMID: 10768629 DOI: 10.1001/archneur.57.4.540] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To assess the frequency of SCA1 (spinocerebellar ataxia type 1), SCA2, SCA3/MJD (spinocerebellar ataxia type 3/Machado-Joseph disease), SCA6, SCA7, and DRPLA (dentatorubropallidoluysian atrophy) CAG trinucleotide repeat expansions [(CAG)n] among persons diagnosed with hereditary SCA from Chinese families. PATIENTS AND METHODS Spinocerebellar ataxia type 1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA (CAG)n mutation were detected with the polymerase chain reaction, highly denaturing polyacrylamide gel electrophoresis, and silver staining technique in 167 patients with autosomal dominant SCA from 85 Chinese families and 37 patients with sporadic SCA. RESULTS Spinocerebellar ataxia type 1 (CAG)n mutation in 7 patients from 4 kindreds (4.70%) was expanded to 53 to 62 repeats. Spinocerebellar ataxia type 2 (CAG)n mutation in 12 patients from 5 kindreds (5.88%) was expanded to 42 to 47 repeats. Spinocerebellar ataxia type 3/Machado-Joseph disease (CAG)n mutation in 83 patients from 41 kindreds (48.23%) was expanded to 68 to 83 repeats. Sixty-five patients from 35 kindreds (41.19%) and 37 patients with sporadic SCA did not test positive for SCA1, SCA2, SCA3/MJD, SCA6, SCA7, or DRPLA. There was a predictable inverse relationship between the number of CAG repeats and the age at onset for SCA3/MJD and SCA2. Clinically, dementia and hyporeflexia were more frequent in patients with SCA2, while spasticity, hyperreflexia, and Babinski signs were more frequent in patients with SCA3/ MJD, and those might be helpful in clinical work to primarily distinguish patients with SCA3/MJD and SCA2 from others with different types of SCA. CONCLUSIONS The frequency of SCA3/MJD is substantially higher than that of SCA1 and SCA2 in patients with autosomal dominant SCA from Chinese kindreds, who are non-Portuguese. Clinical expressions of the various types of SCAs overlap one another; therefore, for clinical study it is important to make a gene diagnosis and genetic classification for patients with SCA.
Collapse
|
|
25 |
114 |
17
|
Wang W, Xia J, Kass RS. MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel. J Biol Chem 1998; 273:34069-74. [PMID: 9852064 DOI: 10.1074/jbc.273.51.34069] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IsK, a slowly activating delayed rectifier K+ current through channels formed by the assembly of two channel proteins KvLQT1 and MinK, modulates the repolarization of cardiac action potentials. Mutations that map to the KvLQT1 and minK genes account for more than 50% of an inherited cardiac disorder, the Long QT syndrome (Splawski, I., Tristani-Firouzi, M., Lehmann, M. H., Sanguinetti, M. C., and Keating, M. T. (1997) Nat. Genet. 17, 338-340). Despite the importance of these channels to human cardiac function, the molecular basis of their uniquely slow gating properties as well as the stoichiometry and interaction sites of these two subunits are still unclear. We have constructed several fusion channel proteins to begin investigating the stoichiometry of these two subunits and the role of voltage-dependent subunit assembly in channel gating. Functional properties of these constructs were measured using whole cell patch clamp recordings of transiently transfected Chinese hamster ovary cells. The constructs we tested are as follows: MK24 (C terminus of MinK linked to N terminus of KvLQT1); KK40 (a tandem homodimer of KvLQT1); and MKK44 (C terminus of MinK linked to N terminus of KK40). In control experiments (no DNA, control DNA, or only MinK), no time-dependent K+ current was observed. Expression of KvLQT1 or KK40 produced currents that activate and inactivate in a voltage-dependent manner as reported by others for KvLQT1. In contrast, expression of MK24 and MKK44 elicited current with activation kinetics and voltage dependence very similar to native IsK and identical to currents expressed by cells co-transfected with independent MinK and KvLQT1 cDNA. Expression of MK24 plus additional MinK significantly slows current kinetics. Our data raise the possibility 1) of multiple MinK/KvLQT1 stoichiometries and 2) indicate that uniquely slow kinetics of IsK channels is due to voltage-dependent conformational changes of the channel protein and not to assembly of channel subunits.
Collapse
|
|
27 |
108 |
18
|
Schroeder J, Crane H, Xia J, Liotta D, Merrill A. Disruption of sphingolipid metabolism and stimulation of DNA synthesis by fumonisin B1. A molecular mechanism for carcinogenesis associated with Fusarium moniliforme. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41887-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
|
31 |
107 |
19
|
Tolkunova E, Park H, Xia J, King MP, Davidson E. The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript. J Biol Chem 2000; 275:35063-9. [PMID: 10952987 DOI: 10.1074/jbc.m006265200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cDNAs encoding human lysyl-tRNA synthetase have been identified. One encodes the cytoplasmic form of the enzyme identified previously. The second cDNA contains the same sequence but with a 180-bp insertion at the 5'-end of the mRNA. This results in a predicted protein whose carboxyl 576 amino acids are identical to those of the cytoplasmic enzyme but with a different amino terminus of 49 amino acids that contains a putative mitochondrial targeting sequence. Expression of the two lysyl-tRNA synthetase-green fluorescent protein gene fusions in a human cell line confirmed that the cytoplasmic form was targeted to the cytoplasm and the mitochondrial form to mitochondria. The genomic lysyl-tRNA synthetase gene consisted of 15 exons. The two isoforms were created by alternative splicing of the first three exons of the gene. The cytoplasmic form was created by splicing exon 1 to exon 3. The inclusion of exon 2 between exons 1 and 3 produced an mRNA encoding the mitochondrial isoform with an additional upstream small open reading frame, consisting mainly of a portion of the 5' coding region of the cytoplasmic isoform. This is the first example of mitochondrial targeting sequence being encoded on the second exon of a gene. Ribonuclease protection analysis showed that the mRNA encoding the cytoplasmic isoform makes up approximately 70%, and the mitochondrial isoform approximately 30%, of the mature transcripts from the lysyl-tRNA synthetase gene. The mitochondrial form of the enzyme, purified after expression in Escherichia coli, aminoacylated in vitro transcripts corresponding to both the cytoplasmic and mitochondrial tRNA(Lys), despite the difference in the discriminator base sequence in the acceptor stems of these tRNAs.
Collapse
|
|
25 |
101 |
20
|
Li HD, Yao QC, Fan JL, Jiang N, Wang JY, Xia J, Peng XJ. A fluorescent probe for H2S in vivo with fast response and high sensitivity. Chem Commun (Camb) 2015; 51:16225-8. [DOI: 10.1039/c5cc06612c] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a fluorescent probe has been designed and synthesized that could be applied for monitoring and imaging exogenous or endogenous H2S in live MCF-7 cells and in live mice with the fastest response.
Collapse
|
|
10 |
98 |
21
|
Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J, Yamada T, Ozeki Y, Kawahara R, Okawa M, Huganir RL, Ujike H, Snyder SH, Sawa A. Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 2006; 11:150-7. [PMID: 16314870 DOI: 10.1038/sj.mp.4001776] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accumulating evidence from both genetic and clinico-pharmacological studies suggests that D-serine, an endogenous coagonist to the NMDA subtype glutamate receptor, may be implicated in schizophrenia (SZ). Although an association of genes for D-serine degradation, such as D-amino acid oxidase and G72, has been reported, a role for D-serine in SZ has been unclear. In this study, we identify and characterize protein interacting with C-kinase (PICK1) as a protein interactor of the D-serine synthesizing enzyme, serine racemase (SR). The binding of endogenous PICK1 and SR requires the PDZ domain of PICK1. The gene coding for PICK1 is located at chromosome 22q13, a region frequently linked to SZ. In a case-control association study using well-characterized Japanese subjects, we observe an association of the PICK1 gene with SZ, which is more prominent in disorganized SZ. Our findings implicating PICK1 as a susceptibility gene for SZ are consistent with a role for D-serine in the disease.
Collapse
|
Controlled Clinical Trial |
19 |
98 |
22
|
Maluf FC, Sabbatini P, Schwartz L, Xia J, Aghajanian C. Endometrial stromal sarcoma: objective response to letrozole. Gynecol Oncol 2001; 82:384-8. [PMID: 11531300 DOI: 10.1006/gyno.2001.6238] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Low-grade endometrial stromal sarcoma is generally an indolent tumor rich in estrogen and progesterone receptors. Objective responses to hormonal therapy, most commonly with megestrol acetate, have been reported. CASE The patient is a 51-year-old woman who presented with low-grade endometrial stromal sarcoma confined to the uterus in 1991 and was treated with total abdominal hysterectomy and bilateral salpingo-oophorectomy. Approximately 5 years later, the patient had recurrent pelvic disease treated with radiation therapy, followed by an attempt at resection. She was treated with megestrol acetate during the period she received radiation therapy with poor tolerance. Tamoxifen was then given with no tumor response. Megestrol acetate was restarted with progression of disease in the pelvis and abdomen. Letrozole was then given at a daily dose of 2.5 mg with partial response for a duration of 9 months. CONCLUSION Letrozole at a daily dose of 2.5 mg may be effective in low-grade endometrial stromal sarcoma with positive estrogen receptors.
Collapse
|
Case Reports |
24 |
95 |
23
|
Schrauwen P, Xia J, Bogardus C, Pratley RE, Ravussin E. Skeletal muscle uncoupling protein 3 expression is a determinant of energy expenditure in Pima Indians. Diabetes 1999; 48:146-9. [PMID: 9892236 DOI: 10.2337/diabetes.48.1.146] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The recent discovery of uncoupling protein (UCP)-2 and UCP-3, and their high expression in skeletal muscle, has renewed interest in a possible role for these proteins in underlying the variability in energy expenditure and therefore metabolic efficiency. Using reverse transcription-polymerase chain reaction, levels of expression of UCP-2 and long and short forms of UCP-3 were measured in skeletal muscle of 19 nondiabetic, male Pima Indians covering a wide range of body weight. Twenty-four-hour energy expenditure was measured in a respiratory chamber in 16 of these individuals. BMI was negatively correlated with the expression levels of the long (r = -0.53, P = 0.025) and short (r = -0.46, P = 0.047) forms of UCP-3. BMI was not correlated with UCP-2 expression. Metabolic rate during sleep, adjusted for fat-free mass and fat mass, was positively correlated with the long form of UCP-3 (r = 0.69, P = 0.006). These results indicate that UCP-3 may be a determinant of energy expenditure and metabolic efficiency in Pima Indians.
Collapse
|
|
26 |
93 |
24
|
Maiuri T, Woloshansky T, Xia J, Truant R. The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal. Hum Mol Genet 2013; 22:1383-94. [PMID: 23297360 PMCID: PMC3596850 DOI: 10.1093/hmg/dds554] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/14/2012] [Accepted: 12/27/2012] [Indexed: 11/12/2022] Open
Abstract
The first 17 amino acids of Huntington's disease (HD) protein, huntingtin, comprise an amphipathic alpha-helical domain that can target huntingtin to the endoplasmic reticulum (ER). N17 is phosphorylated at two serines, shown to be important for disease development in genetic mouse models, and shown to be modified by agents that reverse the disease phenotype in an HD mouse model. Here, we show that the hydrophobic face of N17 comprises a consensus CRM1/exportin-dependent nuclear export signal, and that this nuclear export activity can be affected by serine phospho-mimetic mutants. We define the precise residues that comprise this nuclear export sequence (NES) as well as the interaction of the NES, but not phospho-mimetic mutants, with the CRM1 nuclear export factor. We show that the nuclear localization of huntingtin depends upon the RanGTP/GDP gradient, and that N17 phosphorylation can also distinguish localization of endogenous huntingtin between the basal body and stalk of the primary cilium. We present a mechanism and multifunctional role for N17 in which phosphorylation of N17 not only releases huntingtin from the ER to allow nuclear entry, but also prevents nuclear export during a transient stress response event to increase the levels of nuclear huntingtin and to regulate huntingtin access to the primary cilium. Thus, N17 is a master localization signal of huntingtin that can mediate huntingtin localization between the cytoplasm, nucleus and primary cilium. This localization can be regulated by signaling, and is misregulated in HD.
Collapse
|
research-article |
12 |
91 |
25
|
Schrauwen P, Xia J, Walder K, Snitker S, Ravussin E. A novel polymorphism in the proximal UCP3 promoter region: effect on skeletal muscle UCP3 mRNA expression and obesity in male non-diabetic Pima Indians. Int J Obes (Lond) 1999; 23:1242-5. [PMID: 10643679 DOI: 10.1038/sj.ijo.0801057] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE UCP2 and UCP3 are newly discovered uncoupling proteins, which are thought to underlie the variability in energy metabolism in humans. Mutations in the UCP2 and/or UCP3 gene have been associated with sleeping metabolic rate. Recently we reported that skeletal muscle UCP3 mRNA expression was positively correlated with sleeping metabolic rate in Pima Indians. To study whether genetic variation in the promoter region of UCP3 contributed to the variation in expression of UCP3, we screened part of the proximal promoter region for polymorphisms. METHODS In the first part of the study, the proximal promoter region of UCP3 was screened by direct sequencing in 24 non-diabetic Pima Indians (range body mass index (BMI): 18-47 kg/m2) (Schrauwen et al. Diabetes 1999; 48: 146-149) and skeletal muscle UCP3 mRNA expression was measured by RT-PCR. In the second part of the study, we typed the polymorphism found in the first part of the study in 67 Pima Indians (32 males, 35 females) from the upper and lower extremes of the BMI distribution. RESULTS We identified a novel C to T substitution in the UCP3 promoter, 6bp upstream of the putative TATA signal, and 55bp upstream of the transcription starting site. Among 18 male subjects, skeletal muscle UCP3 mRNA expression was significantly higher in the C/T & T/T group compared to the C/C homozygotes (P<0.02). However, in the group of 67 Pima Indians genotype frequencies were not different in the obese and lean groups. CONCLUSION We identified a novel polymorphism in the proximal promoter region of UCP3, which was associated with increased skeletal muscle expression of UCP3 in male non-diabetic Pima Indians. Considering the suggested role of UCP3 in energy metabolism, this polymorphism might be of physiological importance in the regulation of energy balance.
Collapse
|
|
26 |
88 |