1
|
Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Bréant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 2006; 9:340-8. [PMID: 16462734 DOI: 10.1038/nn1646] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/20/2006] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor C (VEGF-C) was first identified as a regulator of the vascular system, where it is required for the development of lymphatic vessels. Here we report actions of VEGF-C in the central nervous system. We detected the expression of the VEGF-C receptor VEGFR-3 in neural progenitor cells in Xenopus laevis and mouse embryos. In Xenopus tadpole VEGF-C knockdowns and in mice lacking Vegfc, the proliferation of neural progenitors expressing VEGFR-3 was severely reduced, in the absence of intracerebral blood vessel defects. In addition, Vegfc-deficient mouse embryos showed a selective loss of oligodendrocyte precursor cells (OPCs) in the embryonic optic nerve. In vitro, VEGF-C stimulated the proliferation of OPCs expressing VEGFR-3 and nestin-positive ventricular neural cells. VEGF-C thus has a new, evolutionary conserved function as a growth factor selectively required by neural progenitor cells expressing its receptor VEGFR-3.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
146 |
2
|
Ma S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp AT, Mato-Blanco X, Kovner R, Krsnik Ž, de Martin X, Luria V, Martí-Pérez X, Liang D, Karger A, Schmidt DK, Gomez-Sanchez Z, Qi C, Gobeske KT, Pochareddy S, Debnath A, Hottman CJ, Spurrier J, Teo L, Boghdadi AG, Homman-Ludiye J, Ely JJ, Daadi EW, Mi D, Daadi M, Marín O, Hof PR, Rasin MR, Bourne J, Sherwood CC, Santpere G, Girgenti MJ, Strittmatter SM, Sousa AM, Sestan N. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 2022; 377:eabo7257. [PMID: 36007006 PMCID: PMC9614553 DOI: 10.1126/science.abo7257] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.
Collapse
|
research-article |
3 |
125 |
3
|
Homman-Ludiye J, Bourne JA. The medial pulvinar: function, origin and association with neurodevelopmental disorders. J Anat 2019; 235:507-520. [PMID: 30657169 DOI: 10.1111/joa.12932] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 11/25/2022] Open
Abstract
The pulvinar is primarily referred to for its role in visual processing. However, the 'visual pulvinar' only encompasses the inferior and lateral regions of this complex thalamic nucleus. The remaining medial portion (medial pulvinar, PM) establishes distinct cortical connectivity and has been associated with directed attention, executive functions and working memory. These functions are particularly impaired in neurodevelopmental disorders, including schizophrenia and attention deficit and hyperactivity disorder (ADHD), both of which have been associated with abnormal PM architecture and connectivity. With these disorders becoming more prevalent in modern societies, we review the literature to better understand how the PM can participate in the pathophysiology of cognitive disorders and how a better understanding of the development and function of this thalamic nucleus, which is most likely exclusive to the primate brain, can advance clinical research and treatments.
Collapse
|
Review |
6 |
54 |
4
|
Homman-Ludiye J, Manger PR, Bourne JA. Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus). J Comp Neurol 2011; 518:4439-62. [PMID: 20853515 DOI: 10.1002/cne.22465] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrophysiological mapping of the adult ferret visual cortex has until now determined the existence of 12 retinotopically distinct areas; however, in the cat, another member of the Carnivora, 20 distinct visual areas have been identified by using retinotopic mapping and immunolabeling. In the present study, the immunohistochemical approach to demarcate the areal boundaries of the adult ferret visual cortex was applied in order to overcome the difficulties in accessing the sulcal surfaces of a small, gyrencephalic brain. Nonphosphorylated neurofilament (NNF) expression profiles were compared with another classical immunostain of cortical nuclei, Cat-301 chondroitin sulfate proteoglycan (CSPG). Together, these two markers reliably demarcated the borders of the 12 previously defined areas and revealed further arealization beyond those borders to a total of 19 areas: 21a and 21b; the anterolateral, posterolateral, dorsal, and ventral lateral suprasylvian areas (ALLS, PLLS, DLS, and VLS, respectively); and the splenial and cingulate visual areas (SVA and CVA). NNF expression profile and location of the newly defined areas correlate with previously defined areas in the cat. Moreover, NNF and Cat-301 together revealed discrete expression domains in the posteroparietal (PP) cortex, demarcating four subdivisions in the caudal lateral and medial domains (PPcL and PPcM) and rostral lateral and medial domains (PPrL and PPrM), where only two retinotopic maps have been previously identified (PPc and PPr). Taken together, these studies suggest that NNF and Cat-301 can illustrate the homology between cortical areas in different species and draw out the principles that have driven evolution of the visual cortex.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
40 |
5
|
Mundinano IC, Fox DM, Kwan WC, Vidaurre D, Teo L, Homman-Ludiye J, Goodale MA, Leopold DA, Bourne JA. Transient visual pathway critical for normal development of primate grasping behavior. Proc Natl Acad Sci U S A 2018; 115:1364-1369. [PMID: 29298912 PMCID: PMC5819431 DOI: 10.1073/pnas.1717016115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.
Collapse
|
Research Support, N.I.H., Intramural |
7 |
38 |
6
|
Balka KR, Venkatraman R, Saunders TL, Shoppee A, Pang ES, Magill Z, Homman-Ludiye J, Huang C, Lane RM, York HM, Tan P, Schittenhelm RB, Arumugam S, Kile BT, O'Keeffe M, De Nardo D. Termination of STING responses is mediated via ESCRT-dependent degradation. EMBO J 2023:e112712. [PMID: 37139896 DOI: 10.15252/embj.2022112712] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.
Collapse
|
|
2 |
37 |
7
|
Dark C, Homman-Ludiye J, Bryson-Richardson RJ. The role of ADHD associated genes in neurodevelopment. Dev Biol 2018; 438:69-83. [DOI: 10.1016/j.ydbio.2018.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|
|
7 |
28 |
8
|
Homman-Ludiye J, Mundinano IC, Kwan WC, Bourne JA. Extensive Connectivity Between the Medial Pulvinar and the Cortex Revealed in the Marmoset Monkey. Cereb Cortex 2021; 30:1797-1812. [PMID: 31711181 DOI: 10.1093/cercor/bhz203] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 11/13/2022] Open
Abstract
The medial pulvinar (PM) is a multimodal associative thalamic nucleus, recently evolved in primates. PM participates in integrative and modulatory functions, including directed attention, and consistently exhibits alterations in disorders such as schizophrenia and autism. Despite essential cognitive functions, the cortical inputs to the PM have not been systematically investigated. To date, less than 20 cortices have been demonstrated to project to PM. The goal of this study was to establish a comprehensive map of the cortical afferents to PM in the marmoset monkey. Using a magnetic resonance imaging-guided injection approach, we reveal 62 discrete cortices projecting to the adult marmoset PM. We confirmed previously reported connections and identified further projections from discrete cortices across the temporal, parietal, retrosplenial-cingulate, prefrontal, and orbital lobes. These regions encompass areas recipient of PM efferents, demonstrating the reciprocity of the PM-cortical connectivity. Moreover, our results indicate that PM neurones projecting to distinct cortices are intermingled and form multimodal cell clusters. This microunit organization, believed to facilitate cross-modal integration, contrasts with the large functional subdivisions usually observed in thalamic nuclei. Altogether, we provide the first comprehensive map of PM cortical afferents, an essential stepping stone in expanding our knowledge of PM and its function.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
23 |
9
|
Alzu’bi A, Homman-Ludiye J, Bourne JA, Clowry GJ. Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cereb Cortex 2019; 29:1706-1718. [PMID: 30668846 PMCID: PMC6418397 DOI: 10.1093/cercor/bhy327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7-7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10-12 PCW TCAs were occupying much of the cortex. Observations at equivalent stages in the marmoset confirmed that this pattern is conserved across primates. Therefore, our results demonstrate that in primates, TCAs innervate the cortical presubplate at earlier stages than previously demonstrated by acetylcholinesterase histochemistry, suggesting that pioneer thalamic afferents may contribute to early cortical circuitry that can participate in defining cortical neuron phenotypes.
Collapse
|
Comparative Study |
6 |
17 |
10
|
Homman-Ludiye J, Merson TD, Bourne JA. The early postnatal nonhuman primate neocortex contains self-renewing multipotent neural progenitor cells. PLoS One 2012; 7:e34383. [PMID: 22470566 PMCID: PMC3314641 DOI: 10.1371/journal.pone.0034383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/01/2012] [Indexed: 01/14/2023] Open
Abstract
The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to support this hypothesis remains controversial while the source of putative neural progenitors responsible for generating new neurons in the postnatal neocortex is unknown. Here we report the identification of self-renewing multipotent neural progenitor cells (NPCs) derived from the postnatal day 14 (PD14) marmoset monkey primary visual cortex (V1, striate cortex). While neuronal maturation within V1 is well advanced by PD14, we observed cells throughout this region that co-expressed Sox2 and Ki67, defining a population of resident proliferating progenitor cells. When cultured at low density in the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF-2), dissociated V1 tissue gave rise to multipotent neurospheres that exhibited the ability to differentiate into neurons, oligodendrocytes and astrocytes. While the capacity to generate neurones and oligodendrocytes was not observed beyond the third passage, astrocyte-restricted neurospheres could be maintained for up to 6 passages. This study provides the first direct evidence for the existence of multipotent NPCs within the postnatal neocortex of the nonhuman primate. The potential contribution of neocortical NPCs to neural repair following injury raises exciting new possibilities for the field of regenerative medicine.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
17 |
11
|
Homman-Ludiye J, Bourne JA. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution. Front Neural Circuits 2014; 8:79. [PMID: 25071460 PMCID: PMC4081835 DOI: 10.3389/fncir.2014.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species.
Collapse
|
Review |
11 |
16 |
12
|
Homman-Ludiye J, Bourne JA. The Guidance Molecule Semaphorin3A is Differentially Involved in the Arealization of the Mouse and Primate Neocortex. Cereb Cortex 2013; 24:2884-98. [DOI: 10.1093/cercor/bht141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
|
12 |
16 |
13
|
Goldshmit Y, Homman-Ludiye J, Bourne JA. EphA4 is associated with multiple cell types in the marmoset primary visual cortex throughout the lifespan. Eur J Neurosci 2014; 39:1419-28. [DOI: 10.1111/ejn.12514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/01/2014] [Accepted: 01/14/2014] [Indexed: 11/28/2022]
|
|
11 |
10 |
14
|
Homman-Ludiye J, Kwan WC, de Souza MJ, Bourne JA. Full: Ontogenesis and development of the nonhuman primate pulvinar. J Comp Neurol 2018; 526:2870-2883. [PMID: 30225841 DOI: 10.1002/cne.24534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 11/08/2022]
Abstract
Recent evidence demonstrates that the pulvinar nuclei play a critical role in shaping the connectivity and function of the multiple cortical areas they connect. Surprisingly, however, little is known about the development of this area, the largest corpus of the thalamic nuclei, which go on to occupy 40% of the adult thalamus in the human. It was proposed that the nonhuman primate and the human pulvinar develop according to very different processes, with a greatly reduced neurogenic period in nonhuman primate compared to human and divergent origins. In the marmoset monkey, we demonstrate that neurons populating the pulvinar are generated throughout gestation, suggesting that this aspect of development is more similar to the human than first predicted. While we were able to confirm the diencephalic source of pulvinar neurons, we provide new evidence contesting the presence of an additional niche in the telencephalon. Finally, our study defines new molecular markers that will simplify future investigations in the development and evolution of the pulvinar.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
9 |
15
|
Homman-Ludiye J, Bourne JA. The Marmoset: The Next Frontier in Understanding the Development of the Human Brain. ILAR J 2021; 61:248-259. [PMID: 33620074 DOI: 10.1093/ilar/ilaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Rodent models, particularly mice, have dominated the field of developmental neuroscience for decades, like they have in most fields of biomedicine research. However, with 80 million years since rodents and primates last shared a common ancestor, the use of mice to model the development of the human brain is not without many shortcomings. The human brain diverges from the mouse brain in many aspects and is comprised of novel structures as well as diversified cellular subtypes. While these newly evolved features have no equivalent in rodents, they are observed in nonhuman primates. Therefore, elucidating the cellular mechanisms underlying the development and maturation of the healthy and diseased human brain can be achieved using less complex nonhuman primates. Historically, macaques were the preferred nonhuman primate model. However, over the past decade, the New World marmoset monkey (Callithrix jacchus) has gained more importance, particularly in the field of neurodevelopment. With its small size, twin or triplet birth, and prosocial behavior, the marmoset is an ideal model to study normal brain development as well as neurodevelopmental disorders, which are often associated with abnormal social behaviors. The growing interest in the marmoset has prompted many comparative studies, all demonstrating that the marmoset brain closely resembles that of the human and is perfectly suited to model human brain development. The marmoset is thus poised to extend its influence in the field of neurodevelopment and will hopefully fill the gaps that the mouse has left in our understanding of how our brain forms and how neurodevelopmental disorders originate.
Collapse
|
|
4 |
8 |
16
|
Teo L, Homman-Ludiye J, Rodger J, Bourne JA. Discrete ephrin-B1 expression by specific layers of the primate retinogeniculostriate system continues throughout postnatal and adult life. J Comp Neurol 2012; 520:2941-56. [PMID: 22778007 DOI: 10.1002/cne.23077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular guidance cue ephrin-B1 has traditionally been associated with the early development of the visual system, encompassing retinocollicular mapping as well as development and maturation of synapses. Although little is known about its role in the visual system during the postnatal period and in adulthood, recent studies have demonstrated the expression of ephrin-B1 in the adult mouse brain, indicating a sustained role beyond early development. Therefore, we explored the spatiotemporal expression of ephrin-B1 in the postnatal and adult nonhuman primate visual system and demonstrated that a modulated expression continued following birth into adulthood in the lateral geniculate nucleus (LGN) and primary visual cortex (V1, striate cortex). This occurred in the layers involved in bidirectional geniculostriate communication: layers 3Bβ, 4, and 6 of V1 and the parvocellular (P) and magnocellular (M) layers of the LGN. Furthermore, discrete gradients between the ipsi- and contralateral inputs of the P and M layers of the LGN evolved between 1 month following birth and the start of the critical period (3 months), and continued into adulthood. We also detected the postsynaptic expression of ephrin-B1 by excitatory cells in adult LGN and V1 and a subset of interneurons in adult V1, suggestive of a more global rather than subtype-specific role. Together these results suggest a possible role for ephrin-B1 in the maturation of the primate retinogeniculostriate pathway throughout postnatal life, extending into adulthood.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
6 |
17
|
Alzu'bi A, Homman-Ludiye J, Bourne JA, Clowry GJ. Corrigendum: Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cereb Cortex 2019; 29:5316. [PMID: 31037284 PMCID: PMC6918923 DOI: 10.1093/cercor/bhz056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 12/04/2022] Open
|
Published Erratum |
6 |
2 |
18
|
Bonny SQ, Zhou X, Khan MF, Rahman MM, Xin Y, Vankadari N, Tikhomirova A, Homman-Ludiye J, Roujeinikova A. Functional and biochemical characterisation of remote homologues of type IV pili proteins PilN and PilO in Helicobacter pylori. IUBMB Life 2024; 76:780-787. [PMID: 38748402 DOI: 10.1002/iub.2828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 10/19/2024]
Abstract
Helicobacter pylori encodes homologues of PilM, PilN and PilO from bacteria with Type IV pili, where these proteins form a pilus alignment complex. Inactivation of pilO changes H. pylori motility in semi-solid media, suggesting a link to the chemosensory pathways or flagellar motor. Here, we showed that mutation of the pilO or pilN gene in H. pylori strain SS1 reduced the mean linear swimming speed in liquid media, implicating PilO and PilN in the function, or regulation of, the flagellar motor. We also demonstrated that the soluble variants of H. pylori PilN and PilO share common biochemical properties with their Type IV pili counterparts which suggests their adapted function in the bacterial flagellar motor may be similar to that in the Type IV pili.
Collapse
|
|
1 |
1 |
19
|
Hosseini Fin NS, Yip A, Scott JT, Teo L, Homman-Ludiye J, Bourne JA. Developmental dynamics of marmoset prefrontal cortical SST and PV interneuron networks highlight primate-specific features. Development 2025; 152:dev204254. [PMID: 40292611 DOI: 10.1242/dev.204254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The primate prefrontal cortex (PFC) undergoes protracted postnatal development, crucial for the emergence of cognitive control and executive function. Central to this maturation are inhibitory interneurons (INs), particularly parvalbumin-expressing (PV+) and somatostatin-expressing (SST+) subtypes, which regulate cortical circuit timing and plasticity. While rodent models have provided foundational insights into IN development, the trajectory of postmigratory maturation in primates remains largely uncharted. In this study, we characterized the expression of PV, SST, the chloride transporter KCC2, and the ion channels Kv3.1b and Nav1.1 across six PFC regions (areas 8aD, 8aV, 9, 46, 11 and 47L) in the postnatal marmoset. We report a prolonged maturation of PV+ INs into adolescence, accompanied by progressive upregulation of ion channels that support high-frequency firing. In contrast, SST+ INs show a postnatal decline in density, diverging from rodent developmental patterns. These findings reveal distinct, cell type-specific maturation dynamics in the primate PFC and offer a developmental framework for understanding how inhibitory circuit refinement may underlie vulnerability to neurodevelopmental disorders.
Collapse
|
|
1 |
|
20
|
Teo L, Boghdadi AG, Homman-Ludiye J, Mundinano IC, Kwan WC, Bourne JA. Replicating infant-specific reactive astrocyte functions in the injured adult brain. Prog Neurobiol 2021; 204:102108. [PMID: 34147584 DOI: 10.1016/j.pneurobio.2021.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Infants and adults respond differently to brain injuries. Specifically, improved neuronal sparing along with reduced astrogliosis and glial scarring often observed earlier in life, likely contributes to improved long-term outcomes. Understanding the underlying mechanisms could enable the recapitulation of neuroprotective effects, observed in infants, to benefit adults after brain injuries. We reveal that in primates, Eph/ ephrin signaling contributes to age-dependent reactive astrocyte behavior. Ephrin-A5 expression on astrocytes was more protracted in adults, whereas ephrin-A1 was only expressed on infant astrocytes. Furthermore, ephrin-A5 exacerbated major hallmarks of astrocyte reactivity via EphA2 and EphA4 receptors, which was subsequently alleviated by ephrin-A1. Rather than suppressing reactivity, ephrin-A1 signaling shifted astrocytes towards GAP43+ neuroprotection, accounting for improved neuronal sparing in infants. Reintroducing ephrin-A1 after middle-aged focal ischemic injury significantly attenuated glial scarring, improved neuronal sparing and preserved circuitry. Therefore, beneficial infant mechanisms can be recapitulated in adults to improve outcomes after CNS injuries.
Collapse
|
Journal Article |
4 |
|
21
|
Fin NSH, Yip A, Teo L, Homman-Ludiye J, Bourne JA. Developmental dynamics of the prefrontal cortical SST and PV interneuron networks: Insights from the monkey highlight human-specific features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602904. [PMID: 39026896 PMCID: PMC11257587 DOI: 10.1101/2024.07.10.602904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The primate prefrontal cortex (PFC) is a quintessential hub of cognitive functions. Amidst its intricate neural architecture, the interplay of distinct neuronal subtypes, notably parvalbumin (PV) and somatostatin (SST) interneurons (INs), emerge as a cornerstone in sculpting cortical circuitry and governing cognitive processes. While considerable strides have been made in elucidating the developmental trajectory of these neurons in rodent models, our understanding of their postmigration developmental dynamics in primates still needs to be studied. Disruptions to this developmental trajectory can compromise IN function, impairing signal gating and circuit modulation within cortical networks. This study examined the expression patterns of PV and SST, ion transporter KCC2, and ion channel subtypes Kv3.1b, and Nav1.1 - associated with morphophysiological stages of development in the postnatal marmoset monkey in different frontal cortical regions (granular areas 8aD, 8aV, 9, 46; agranular areas 11, 47L). Our results demonstrate that the maturation of PV+ INs extends into adolescence, characterized by discrete epochs associated with specific expression dynamics of ion channel subtypes. Interestingly, we observed a postnatal decrease in SST interneurons, contrasting with studies in rodents. This endeavor broadens our comprehension of primate cortical development and furnishes invaluable insights into the etiology and pathophysiology of neurodevelopmental disorders characterized by perturbations in PV and SST IN function.
Collapse
|
Preprint |
1 |
|
22
|
Homman-Ludiye J, Kwan WC, de Souza MJ, Bourne JA. Cover Image, Volume 526, Issue 17. J Comp Neurol 2018. [DOI: 10.1002/cne.24580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
7 |
|
23
|
Conn K, Milton LK, Huang K, Munguba H, Ruuska J, Lemus MB, Greaves E, Homman-Ludiye J, Oldfield BJ, Foldi CJ. Psilocybin restrains activity-based anorexia in female rats by enhancing cognitive flexibility: contributions from 5-HT1A and 5-HT2A receptor mechanisms. Mol Psychiatry 2024; 29:3291-3304. [PMID: 38678087 PMCID: PMC11449803 DOI: 10.1038/s41380-024-02575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Psilocybin has shown promise for alleviating symptoms of depression and is currently in clinical trials for the treatment of anorexia nervosa (AN), a condition that is characterised by persistent cognitive inflexibility. Considering that enhanced cognitive flexibility after psilocybin treatment is reported to occur in individuals with depression, it is plausible that psilocybin could improve symptoms of AN by breaking down cognitive inflexibility. A mechanistic understanding of the actions of psilocybin is required to tailor the clinical application of psilocybin to individuals most likely to respond with positive outcomes. This can only be achieved using incisive neurobiological approaches in animal models. Here, we use the activity-based anorexia (ABA) rat model and comprehensively assess aspects of reinforcement learning to show that psilocybin (post-acutely) improves body weight maintenance in female rats and facilitates cognitive flexibility, specifically via improved adaptation to the initial reversal of reward contingencies. Further, we reveal the involvement of signalling through the serotonin (5-HT) 1 A and 5-HT2A receptor subtypes in specific aspects of learning, demonstrating that 5-HT1A antagonism negates the cognitive enhancing effects of psilocybin. Moreover, we show that psilocybin elicits a transient increase and decrease in cortical transcription of these receptors (Htr2a and Htr1a, respectively), and a further reduction in the abundance of Htr2a transcripts in rats exposed to the ABA model. Together, these findings support the hypothesis that psilocybin could ameliorate cognitive inflexibility in the context of AN and highlight a need to better understand the therapeutic mechanisms independent of 5-HT2A receptor binding.
Collapse
MESH Headings
- Animals
- Female
- Psilocybin/pharmacology
- Rats
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Anorexia/metabolism
- Anorexia/drug therapy
- Cognition/drug effects
- Disease Models, Animal
- Anorexia Nervosa/drug therapy
- Anorexia Nervosa/metabolism
- Rats, Sprague-Dawley
- Body Weight/drug effects
- Reward
- Hallucinogens/pharmacology
Collapse
|
research-article |
1 |
|
24
|
Osanai Y, Xing YL, Mochizuki S, Kobayashi K, Homman-Ludiye J, Cooray A, Poh J, Inutsuka A, Ohno N, Merson TD. 5' Transgenes drive leaky expression of 3' transgenes in Cre-inducible bi-cistronic vectors. Mol Ther Methods Clin Dev 2024; 32:101288. [PMID: 39104576 PMCID: PMC11298883 DOI: 10.1016/j.omtm.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
Molecular cloning techniques enabling contemporaneous expression of two or more protein-coding sequences provide an invaluable tool for understanding the molecular regulation of cellular functions. The Cre-lox system is used for inducing the expression of recombinant proteins encoded within a bi-/poly-cistronic cassette. However, leak expression of transgenes is often observed in the absence of Cre recombinase activity, compromising the utility of this approach. To investigate the mechanism of leak expression, we generated Cre-inducible bi-cistronic vectors to monitor the expression of transgenes positioned either 5' or 3' of a 2A peptide or internal ribosomal entry site (IRES) sequence. Cells transfected with these bi-cistronic vectors exhibited Cre-independent leak expression specifically of transgenes positioned 3' of the 2A peptide or IRES sequence. Similarly, AAV-FLEX vectors encoding bi-cistronic cassettes or fusion proteins revealed the selective Cre-independent leak expression of transgenes positioned at the 3' end of the open reading frame. Our data demonstrate that 5' transgenes confer promoter-like activity that drives the expression of 3' transgenes. An additional lox-STOP-lox cassette between the 2A sequence and 3' transgene dramatically decreased Cre-independent transgene expression. Our findings highlight the need for appropriate experimental controls when using Cre-inducible bi-/poly-cistronic constructs and inform improved design of vectors for more tightly regulated inducible transgene expression.
Collapse
|
research-article |
1 |
|
25
|
Zhou X, Rahman MM, Bonny SQ, Xin Y, Liddelow N, Khan MF, Tikhomirova A, Homman-Ludiye J, Roujeinikova A. Pal power: Demonstration of the functional association of the Helicobacter pylori flagellar motor with peptidoglycan-associated lipoprotein (Pal) and its preliminary crystallographic analysis. Biosci Trends 2024; 17:491-498. [PMID: 38072447 DOI: 10.5582/bst.2023.01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The bacterial flagellar motor is a molecular nanomachine, the assembly and regulation of which requires many accessory proteins. Their identity, structure and function are often discovered through characterisation of mutants with impaired motility. Here, we demonstrate the functional association of the Helicobacter pylori peptidoglycan-associated lipoprotein (HpPal) with the flagellar motor by analysing the motility phenotype of the ∆pal mutant, and present the results of the preliminary X-ray crystallographic analysis of its globular C-terminal domain HpPal-C. Purified HpPal-C behaved as a dimer in solution. Crystals of HpPal-C were grown by the hanging drop vapour diffusion method using medium molecular weight polyethylene glycol (PEG) Smear as the precipitating agent. The crystals belong to the primitive orthorhombic space group P1 with unit cell parameters a = 50.7, b = 63.0, c = 75.1 Å. X-ray diffraction data were collected to 1.8 Å resolution on the Australian Synchrotron beamline MX2. Calculation of the Matthews coefficient (VM=2.24 Å3/Da) and molecular replacement showed that the asymmetric unit contains two protein subunits. This study is an important step towards elucidation of the non-canonical role of H. pylori Pal in the regulation, or function of, the flagellar motor.
Collapse
|
|
1 |
|