1
|
Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 2000; 28:697-711. [PMID: 11163260 DOI: 10.1016/s0896-6273(00)00147-1] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disruption of one allele of the LIS1 gene causes a severe developmental brain abnormality, type I lissencephaly. In Aspergillus nidulans, the LIS1 homolog, NUDF, and cytoplasmic dynein are genetically linked and regulate nuclear movements during hyphal growth. Recently, we demonstrated that mammalian LIS1 regulates dynein functions. Here we characterize NUDEL, a novel LIS1-interacting protein with sequence homology to gene products also implicated in nuclear distribution in fungi. Like LIS1, NUDEL is robustly expressed in brain, enriched at centrosomes and neuronal growth cones, and interacts with cytoplasmic dynein. Furthermore, NUDEL is a substrate of Cdk5, a kinase known to be critical during neuronal migration. Inhibition of Cdk5 modifies NUDEL distribution in neurons and affects neuritic morphology. Our findings point to cross-talk between two prominent pathways that regulate neuronal migration.
Collapse
|
|
25 |
382 |
2
|
Bang S, Lee SR, Ko J, Son K, Tahk D, Ahn J, Im C, Jeon NL. A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes. Sci Rep 2017; 7:8083. [PMID: 28808270 PMCID: PMC5556097 DOI: 10.1038/s41598-017-07416-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/26/2017] [Indexed: 12/14/2022] Open
Abstract
A novel three dimensional blood brain barrier (BBB) platform was developed by independently supplying different types of media to separate cell types within a single device. One channel (vascular channel, VC) is connected to the inner lumen of the vascular network while the other supplies media to the neural cells (neural channel, NC). Compared to co-cultures supplied with only one type of medium (or 1:1 mixture), best barrier properties and viability were obtained with culturing HUVECs with endothelial growth medium (EGM) and neural cells with neurobasal medium supplemented with fetal bovine serum (NBMFBS) independently. The measured vascular network permeability were comparable to reported in vivo values (20 kDa FITC-dextran, 0.45 ± 0.11 × 10−6 cm/s; 70 kDa FITC-dextran, 0.36 ± 0.05 × 10−6 cm/s) and a higher degree of neurovascular interfacing (astrocytic contact with the vascular network, GFAP-CD31 stain overlap) and presence of synapses (stained with synaptophysin). The BBB platform can dependably imitate the perivascular network morphology and synaptic structures characteristic of the NVU. This microfluidic BBB model can find applications in screening pharmaceuticals that target the brain for in neurodegenerative diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
164 |
3
|
Ko J, Ou S, Patterson PH. New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res Bull 2001; 56:319-29. [PMID: 11719267 DOI: 10.1016/s0361-9230(01)00599-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We produced eight anti-huntingtin (Htt) monoclonal antibodies (mAbs), several of which have novel binding patterns. Peptide array epitope mapping shows that mAbs MW1-6 specifically bind the polyQ domain of Htt exon 1. On Western blots of extracts from mutant Htt knock-in mouse brain and Huntington's disease lymphoblastoma cell lines, MW1-5 all strongly prefer to bind to the expanded polyQ repeat form of Htt, displaying no detectable binding to normal Htt. These results suggest that the polyQ domain can assume different conformations that are distinguishable by mAbs. This idea is supported by immunohistochemistry with wild type (WT) and mutant Htt transgenic mouse (R6) brains. Despite sharing the same epitope and binding preferences on Western blots, MW1-5 display distinct staining patterns. MW1 shows punctate cytoplasmic and neuropil staining, while MW2-5 strongly stain the neuronal Golgi complex. MW6, in contrast, stains neuronal somas and neuropil. In addition, despite their preference for mutant Htt on blots, none of these mAbs show enhanced staining of R6 brains over WT, and show no binding of the Htt-containing nuclear inclusions in R6 brains. This suggests that in its various subcellular locations, the polyQ domain of Htt either takes on different conformations and/or is differentially occluded by Htt binding proteins. In contrast to MW1-6, MW7, and 8 can differentiate transgenic from WT mice by staining nuclear inclusions in R6/2 brain; MW8 displays no detectable staining in WT brain and stains only inclusions in R6/2 brain. Epitope mapping reveals that MW7 and 8 specifically bind the polyP domains and amino acids 83-90, respectively. As with MW1-6, the epitopes for MW7 and 8 are differentially available in the various subcellular compartments where Htt is found.
Collapse
|
|
24 |
147 |
4
|
Ko J, Ahn J, Kim S, Lee Y, Lee J, Park D, Jeon NL. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. LAB ON A CHIP 2019; 19:2822-2833. [PMID: 31360969 DOI: 10.1039/c9lc00140a] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The field of microfluidics-based three-dimensional (3D) cell culture system is rapidly progressing from academic proof-of-concept studies to valid solutions to real-world problems. Polydimethylsiloxane (PDMS)-based platform has been widely adopted as in vitro platforms for mimicking tumor microenvironment. However, PDMS has not been welcomed as a standardized commercial application for preclinical screening due to inherent material limitations that make it difficult to scale-up production. Here, we present an injection-molded plastic array 3D spheroid culture platform (Sphero-IMPACT). The platform is made of polystyrene (PS) in a standardized 96-well plate format with a user-friendly interface. This interface describes a simpler design that incorporates a tapered hole in the center of the rail to pattern a large spheroid with 3D extracellular matrix and various cell types. This hole is designed to accommodate standard pipette tip for automated system. The platform that mediate open microfluidics allows implement spontaneous fluid patterning with high repeatability from the end user. To demonstrate versatile use of the platform, we developed 3D perfusable blood vessel network and tumor spheroid assays. In addition, we established a tumor spheroid induced angiogenesis model that can be applicable for drug screening. Sphero-IMPACT has the potential to provide a robust and reproducible in vitro assay related to vascularized cancer research. This easy-to-use, ready-to-use platform can be translated into an enhanced preclinical model that faithfully reflects the complex tumor microenvironment.
Collapse
|
|
6 |
134 |
5
|
Gallo LH, Ko J, Donoghue DJ. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle 2017; 16:634-648. [PMID: 28166483 PMCID: PMC5397262 DOI: 10.1080/15384101.2017.1288326] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination serves as a degradation mechanism of proteins, but is involved in additional cellular processes such as activation of NFκB inflammatory response and DNA damage repair. We highlight the E2 ubiquitin conjugating enzymes, E3 ubiquitin ligases and Deubiquitinases that support the metastasis of a plethora of cancers. E3 ubiquitin ligases also modulate pluripotent cancer stem cells attributed to chemotherapy resistance. We further describe mutations in E3 ubiquitin ligases that support tumor proliferation and adaptation to hypoxia. Thus, this review describes how tumors exploit members of the vast ubiquitin signaling pathways to support aberrant oncogenic signaling for survival and metastasis.
Collapse
|
Review |
8 |
114 |
6
|
Ahn J, Ko J, Lee S, Yu J, Kim Y, Jeon NL. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv Drug Deliv Rev 2018; 128:29-53. [PMID: 29626551 DOI: 10.1016/j.addr.2018.04.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 01/03/2023]
Abstract
Microfluidic technologies employ nano and microscale fabrication techniques to develop highly controllable and reproducible fluidic microenvironments. Utilizing microfluidics, lead compounds can be produced with the controlled physicochemical properties, characterized in a high-throughput fashion, and evaluated in in vitro biomimetic models of human organs; organ-on-a-chip. As a step forward from conventional in vitro culture methods, microfluidics shows promise in effective preclinical testing of nanoparticle-based drug delivery. This review presents a curated selection of state-of-the-art microfluidic platforms focusing on the fabrication, characterization, and assessment of nanoparticles for drug delivery applications. We also discuss the current challenges and future prospects of nanoparticle drug delivery development using microfluidics.
Collapse
|
Review |
7 |
106 |
7
|
Wu WI, McDonough VM, Nickels JT, Ko J, Fischl AS, Vales TR, Merrill AH, Carman GM. Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1. J Biol Chem 1995; 270:13171-8. [PMID: 7768913 DOI: 10.1074/jbc.270.22.13171] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regulation of lipid biosynthesis in the yeast Saccharomyces cerevisiae by fumonisin B1 was examined. Fumonisin B1 inhibited the growth of yeast cells. Cells supplemented with fumonisin B1 accumulated free sphinganine and phytosphingosine in a dose-dependent manner. The cellular concentration of ceramide was reduced in fumonisin B1-supplemented cells. Ceramide synthase activity was found in yeast cell membranes and was inhibited by fumonisin B1. Fumonisin B1 inhibited the synthesis of the inositol-containing sphingolipids inositol phosphorylceramide, mannosylinositol phosphorylceramide, and mannosyldiinositol phosphorylceramide. Fumonisin B1 also caused a decrease in the synthesis of the major phospholipids synthesized via the CDP-diacylglycerol-dependent pathway and the synthesis of neutral lipids. The effects of fumonisin B1 and sphingoid bases on the activities of enzymes in the pathways leading to the synthesis of sphingolipids, phospholipids, and neutral lipids were also examined. Other than ceramide synthase, fumonisin B1 did not affect the activities of any of the enzymes examined. However, sphinganine and phytosphingosine inhibited the activities of inositol phosphorylceramide synthase, phosphatidylserine synthase, and phosphatidate phosphatase. These are key enzymes responsible for the synthesis of lipids in yeast. The data reported here indicated that the biosynthesis of sphingolipids, phospholipids and neutral lipids was coordinately regulated by fumonisin B1 through the regulation of lipid biosynthetic enzymes by sphingoid bases.
Collapse
|
|
30 |
95 |
8
|
Wang Y, Weidner DJ, Liebermann RC, Liu X, Ko J, Vaughan MT, Zhao Y, Yeganeh-Haeri A, Pacalo RE. Phase Transition and Thermal Expansion of MgSiO
3
Perovskite. Science 1991; 251:410-3. [PMID: 17775105 DOI: 10.1126/science.251.4992.410] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Results from in situ x-ray diffraction experiments with a DIA-type cubic anvil apparatus (SAM 85) reveal that MgSiO(3) perovskite transforms from the orthorhombic Pbnm symmetry to another perovskite-type structure above 600 kelvin (K) at pressures of 7.3 gigapascals; the apparent volume increase across the transition is 0.7%. Unit-cell volume increased linearly with temperature, both below (1.44 x 10(-5) K(-1)) and above (1.55 x 10(-5) K(-1)) the transition. These results indicate that the physical properties measured on the Pbnm phase should be used with great caution because they may not be applicable to the earth's lower mantle. A density analysis based on the new data yields an iron content of 10.4 weight percent for a pyrolite composition under conditions corresponding to the lower mantle. All current equation-of-state data are compatible with constant chemical composition in the upper and lower mantle; thus, these data imply that a chemically layered mantle is unnecessary, and whole-mantle convection is possible.
Collapse
|
|
34 |
76 |
9
|
Sun J, Tadokoro S, Imanaka T, Murakami SD, Nakamura M, Kashiwada K, Ko J, Nishida W, Sobue K. Isolation of PSD-Zip45, a novel Homer/vesl family protein containing leucine zipper motifs, from rat brain. FEBS Lett 1998; 437:304-8. [PMID: 9824313 DOI: 10.1016/s0014-5793(98)01256-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using monoclonal antibody against the 45 kDa postsynaptic density protein, we isolated a novel isoform of Homer/vesl. The NH2-terminal region containing a PDZ domain of this protein is identical to that of Homer/vesl, and the COOH-terminal region containing unique leucine zippers shows self-multimerization. We named this protein PSD-Zip45. In addition to specific binding of PSD-Zip45 mediated by a PDZ domain to the metabotropic glutamate receptors 1alpha or 5, the distribution of PSD-Zip45 transcripts is highly consistent with that of metabotropic glutamate receptor transcripts. The PSD-Zip45 is, therefore, the first candidate as receptor anchoring proteins containing leucine zipper motifs in the central nervous system.
Collapse
|
|
27 |
69 |
10
|
Park D, Son K, Hwang Y, Ko J, Lee Y, Doh J, Jeon NL. High-Throughput Microfluidic 3D Cytotoxicity Assay for Cancer Immunotherapy (CACI-IMPACT Platform). Front Immunol 2019; 10:1133. [PMID: 31191524 PMCID: PMC6546835 DOI: 10.3389/fimmu.2019.01133] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/07/2019] [Indexed: 01/19/2023] Open
Abstract
Adoptive cell transfer against solid tumors faces challenges to overcome tumor microenvironment (TME), which plays as a physical barrier and provides immuno-suppressive conditions. Classical cytotoxicity assays are widely used to measure killing ability of the engineered cytotoxic lymphocytes as therapeutics, but the results cannot represent the performance in clinical application due to the absence of the TME. This paper describes a 3D cytotoxicity assay using an injection molded plastic array culture (CACI-IMPACT) device for 3D cytotoxicity assay to assess killing abilities of cytotoxic lymphocytes in 3D microenvironment through a spatiotemporal analysis of the lymphocytes and cancer cells embedded in 3D extra cellular matrix (ECM). Rail-based microfluidic design was integrated within a single 96-well and the wells were rectangularly arrayed in 2 × 6 to enhance the experimental throughput. The rail-based microstructures facilitate hydrogel patterning with simple pipetting so that hydrogel pre-solution aspirated with 10 μl pipette can be patterned in 10 wells within 30 s. To demonstrate 3D cytotoxicity assay, we patterned HeLa cells encapsulated by collagen gel and observed infiltration, migration and cytotoxic activity of NK-92 cells against HeLa cells in the collagen matrix. We found that 3D ECM significantly reduced migration of cytotoxic lymphocytes and access to cancer cells, resulting in lower cytotoxicity compared with 2D assays. In dense ECM, the physical barrier function of the 3D matrix was enhanced, but the cytotoxic lymphocytes effectively killed cancer cells once they contacted with cancer cells. The results implied ECM significantly influences migration and cytotoxicity of cytotoxic lymphocytes. Hence, the CACI-IMPACT platform, enabling high-throughput 3D co-culture of cytotoxic lymphocyte with cancer cells, has the potential to be used for pre-clinical evaluation of cytotoxic lymphocytes engineered for immunotherapy against solid tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
66 |
11
|
Kang Y, Lee SS, Park KM, Lee SH, Kang SO, Ko J. Self-assembly of one-dimensional coordination polymers from AgX (X = CF(3)SO(3)(-), ClO(4)(-), and NO(3)(-)) and 2-aminomethylpyridinedipropionitrile (2-AMPDPN). Inorg Chem 2001; 40:7027-31. [PMID: 11754286 DOI: 10.1021/ic0105765] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three novel supramolecules whose topologies depend on the counteranion, [Ag(2-AMPDPN)X] (X = CF(3)SO(3)(-) (1), ClO(4)(-) (2), and NO(3)(-) (3)), have been prepared by the self-assembly of AgX (X = CF(3)SO(3)(-), ClO(4)(-), and NO(3)(-)) with 2-aminomethylpyridinedipropionitrile (2-AMPDPN). The crystal structures reveal different packing arrangements of the one-dimensional infinite coordination polymers. Compound 1 is made up of ladder chains that are interlocked by cyano groups, while the polymeric chain of 2 is isomorphous to 1 except for the Ag-Ag interaction. Compound 3 consists of helical chains that are surrounded by nitrate. The adjacent helical chains are racemic. The structures of 1, 2, and 3 suggest the role that the counterions may play in the network construction.
Collapse
|
|
24 |
66 |
12
|
Lee S, Ko J, Park D, Lee SR, Chung M, Lee Y, Jeon NL. Microfluidic-based vascularized microphysiological systems. LAB ON A CHIP 2018; 18:2686-2709. [PMID: 30110034 DOI: 10.1039/c8lc00285a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microphysiological systems have emerged in the last decade to provide an alternative to in vivo models in basic science and pharmaceutical research. In the field of vascular biology, in particular, there has been a lack of a suitable in vitro model exhibiting a three-dimensional structure and the physiological function of vasculature integrated with organ-on-a-chip models. The rapid development of organ-on-a-chip technology is well positioned to fulfill unmet needs. Recently, functional integration of vasculature with diverse microphysiological systems has been increasing. This recent trend corresponds to emerging research interest in how the vascular system contributes to various physiological and pathological conditions. This innovative platform has undergone significant development, but adoption of this technology by end-users and researchers in biology is still a work in progress. Therefore, it is critical to focus on simplification and standardization to promote the distribution and acceptance of this technology by the end-users. In this review, we will introduce the latest developments in vascularized microphysiological systems and summarize their outlook in basic research and drug screening applications.
Collapse
|
Review |
7 |
65 |
13
|
Qu C, Srivastava K, Ko J, Zhang TF, Sampson HA, Li XM. Induction of tolerance after establishment of peanut allergy by the food allergy herbal formula-2 is associated with up-regulation of interferon-? Clin Exp Allergy 2007; 37:846-55. [PMID: 17517098 DOI: 10.1111/j.1365-2222.2007.02718.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Peanut (PN)-anaphylaxis is potentially life threatening. We previously reported that a Chinese herbal medicine preparation, food allergy herbal formula-2 (FAHF-2), prevented peanut allergy (PNA) in mice when administered during sensitization. OBJECTIVE To investigate whether FAHF-2 also can prevent anaphylactic reactions when administered to mice with established PNA and, if so, whether protection would persist after cessation of therapy. METHODS C3H/HeJ mice sensitized and boosted over 8 weeks with a standard protocol known to establish PN hypersensitivity received seven weeks of FAHF-2 treatment or water as a sham treatment. Mice were subsequently challenged with PN at week 14 (1-day post-therapy) and week 18 (4-week post-therapy) to evaluate the efficacy and persistence of FAHF-2 treatment by assessing anaphylactic scores, core body temperatures and plasma histamine levels. Serum PN-specific antibody levels and cytokine profiles from splenocytes and mesenteric lymph node (MLN) cells were also determined. RESULTS All sham-treated mice challenged at weeks 14 and 18 showed anaphylactic symptoms. In contrast, FAHF-2-treated mice showed no sign of anaphylactic reactions. PN-specific IgE levels in FAHF-2-treated mice also were reduced whereas IgG2a levels were increased. Furthermore, MLN cells from FAHF-2-treated mice produced markedly less IL-4 and IL-5, but more IFN-gamma, and contained increased numbers of IFN-gamma-producing CD8+ cells as compared with sham-treated mice. CONCLUSION FAHF-2 treatment established PN tolerance in this model, which persisted for at least 4-week post-treatment. This result was associated with modulation of intestinal T helper type 1 cell (Th1) and Th2 cytokine production, and with increased numbers of mesenteric IFN-gamma-producing CD8+ cells.
Collapse
|
|
18 |
65 |
14
|
Kim SW, Rhee HJ, Ko J, Kim YJ, Kim HG, Yang JM, Choi EC, Na DS. Inhibition of cytosolic phospholipase A2 by annexin I. Specific interaction model and mapping of the interaction site. J Biol Chem 2001; 276:15712-9. [PMID: 11278580 DOI: 10.1074/jbc.m009905200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexins (ANXs) display regulatory functions in diverse cellular processes, including inflammation, immune suppression, and membrane fusion. However, the exact biological functions of ANXs still remain obscure. Inhibition of phospholipase A(2) (PLA(2)) by ANX-I, a 346-amino acid protein, has been observed in studies with various forms of PLA(2). "Substrate depletion" and "specific interaction" have been proposed for the mechanism of PLA(2) inhibition by ANX-I. Previously, we proposed a specific interaction model for inhibition of a 100-kDa porcine spleen cytosolic form of PLA(2) (cPLA(2)) by ANX-I (Kim, K. M., Kim, D. K., Park, Y. M., and Na, D. S. (1994) FEBS Lett. 343, 251-255). Herein, we present an analysis of the inhibition mechanism of cPLA(2) by ANX-I in detail using ANX-I and its deletion mutants. Deletion mutants were produced in Escherichia coli, and inhibition of cPLA(2) activity was determined. The deletion mutant ANX-I-(1-274), containing the N terminus to amino acid 274, exhibited no cPLA(2) inhibitory activity, whereas the deletion mutant ANX-I-(275-346), containing amino acid 275 to the C terminus, retained full activity. The protein-protein interaction between cPLA(2) and ANX-I was examined using the deletion mutants by immunoprecipitation and mammalian two-hybrid methods. Full-length ANX-I and ANX-I-(275-346) interacted with the calcium-dependent lipid-binding domain of cPLA(2). ANX-I-(1-274) did not interact with cPLA(2). Immunoprecipitation of A549 cell lysate with anti-ANX-I antibody resulted in coprecipitation of cPLA(2). These results are consistent with the specific interaction mechanism rather than the substrate depletion model. ANX-I may function as a negative regulator of cPLA(2) in cellular signal transduction.
Collapse
|
|
24 |
64 |
15
|
Jeon J, Kitamura T, Yoo BW, Kang SO, Ko J. Synthesis and reactivity of an efficient 1,2-dehydrocarborane precursor, phenyl[o-(trimethylsilyl)carboranyl]iodonium acetate. Chem Commun (Camb) 2001:2110-1. [PMID: 12240187 DOI: 10.1039/b107343e] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [o-(trimethylsilyl)carboranyl]lithium with IPh(OAc)2 in diethyl ether affords an efficient 1,2-dehydro-o-carborane precursor 4: the facile 2 + 4 cycloaddition of 4 with dienes in the presence of the desilylating agent is reported.
Collapse
|
|
24 |
60 |
16
|
Ko J, Hemphill M, Yang Z, Sewell E, Na YJ, Sandsmark DK, Haber M, Fisher SA, Torre EA, Svane KC, Omelchenko A, Firestein BL, Diaz-Arrastia R, Kim J, Meaney DF, Issadore D. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. LAB ON A CHIP 2018; 18:3617-3630. [PMID: 30357245 PMCID: PMC6334845 DOI: 10.1039/c8lc00672e] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The accurate diagnosis and clinical management of traumatic brain injury (TBI) is currently limited by the lack of accessible molecular biomarkers that reflect the pathophysiology of this heterogeneous disease. To address this challenge, we developed a microchip diagnostic that can characterize TBI more comprehensively using the RNA found in brain-derived extracellular vesicles (EVs). Our approach measures a panel of EV miRNAs, processed with machine learning algorithms to capture the state of the injured and recovering brain. Our diagnostic combines surface marker-specific nanomagnetic isolation of brain-derived EVs, biomarker discovery using RNA sequencing, and machine learning processing of the EV miRNA cargo to minimally invasively measure the state of TBI. We achieved an accuracy of 99% identifying the signature of injured vs. sham control mice using an independent blinded test set (N = 77), where the injured group consists of heterogeneous populations (injury intensity, elapsed time since injury) to model the variability present in clinical samples. Moreover, we successfully predicted the intensity of the injury, the elapsed time since injury, and the presence of a prior injury using independent blinded test sets (N = 82). We demonstrated the translatability in a blinded test set by identifying TBI patients from healthy controls (AUC = 0.9, N = 60). This approach, which can detect signatures of injury that persist across a variety of injury types and individual responses to injury, more accurately reflects the heterogeneity of human TBI injury and recovery than conventional diagnostics, opening new opportunities to improve treatment of traumatic brain injuries.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
57 |
17
|
Oh S, Ryu H, Tahk D, Ko J, Chung Y, Lee HK, Lee TR, Jeon NL. "Open-top" microfluidic device for in vitro three-dimensional capillary beds. LAB ON A CHIP 2017; 17:3405-3414. [PMID: 28944383 DOI: 10.1039/c7lc00646b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We introduce a novel microfluidic device to co-culture a blood vessel network and cell tissues in an in vivo-like niche. Our "open-top" microfluidic device is composed of microchannels with micropores in the ceiling, which provides direct fluid access from reservoir to microchannel. Fluid connections through micropores afford novel advantages, including: i) the long-term culture of large-scale microvessel network, ii) access of different fluids to inner and exterior sides of the microvessel, and iii) co-culturing of the microvessel network and small cell tissue. In this study, we have successfully assembled microvessels with 5 mm channel widths. We were also able to mimic capillary bed conditions by co-culturing microvessels with cancer spheroids. Intimate contact between the cancer spheroid and microvessel caused vessel recruitment and an increase in vessel formation, and affected vessel morphology. We expect this device to be used as a novel platform for vascularized tissue models.
Collapse
|
|
8 |
55 |
18
|
Finger LW, Ko J, Hazen RM, Gasparik T, Hemley RJ, Prewitt CT, Weidner DJ. Crystal chemistry of phase B and an anhydrous analogue: implications for water storage in the upper mantle. Nature 1989. [DOI: 10.1038/341140a0] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
36 |
53 |
19
|
Lê AD, Ko J, Chow S, Quan B. Alcohol consumption by C57BL/6, BALB/c, and DBA/2 mice in a limited access paradigm. Pharmacol Biochem Behav 1994; 47:375-8. [PMID: 8146231 DOI: 10.1016/0091-3057(94)90026-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alcohol consumption by three inbred mice strains in a limited access condition was examined. Access to "Richter" tubes containing alcohol solution was restricted to 60 min per day in a drinking cage. Alcohol solution was given in escalating concentrations starting at 3% and ending at 12% w/v over several days. During the 12% phase, C57 mice consumed an average of 1.68 g/kg, while BALB and DBA mice consumed an average of 0.66 and 0.25 g/kg, respectively. The C57BL/6 mice achieved an average blood alcohol level (BAL) of 60 mg%, whereas the other two strains displayed negligible levels. The relationship between alcohol intake in a continuous and limited access as well as the utility of the limited access paradigm are discussed.
Collapse
|
Comparative Study |
31 |
52 |
20
|
Shin J, Ko J, Jeong S, Won P, Lee Y, Kim J, Hong S, Jeon NL, Ko SH. Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. NATURE MATERIALS 2021; 20:100-107. [PMID: 32807919 DOI: 10.1038/s41563-020-0769-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The patterning of polydimethylsiloxane (PDMS) into complex two-dimensional (2D) or 3D shapes is a crucial step for diverse applications based on soft lithography. Nevertheless, mould replication that incorporates time-consuming and costly photolithography processes still remains the dominant technology in the field. Here we developed monolithic quasi-3D digital patterning of PDMS using laser pyrolysis. In contrast with conventional burning or laser ablation of transparent PDMS, which yields poor surface properties, our successive laser pyrolysis technique converts PDMS into easily removable silicon carbide via consecutive photothermal pyrolysis guided by a continuous-wave laser. We obtained high-quality 2D or 3D PDMS structures with complex patterning starting from a PDMS monolith in a remarkably low prototyping time (less than one hour). Moreover, we developed distinct microfluidic devices with elaborated channel architectures and a customizable organ-on-a-chip device using this approach, which showcases the potential of the successive laser pyrolysis technique for the fabrication of devices for several technological applications.
Collapse
|
|
4 |
52 |
21
|
Kim J, Seymen F, Lee K, Ko J, Yildirim M, Tuna E, Gencay K, Shin T, Kyun H, Simmer J, Hu JC. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta. J Dent Res 2013; 92:899-904. [PMID: 23958762 PMCID: PMC3775375 DOI: 10.1177/0022034513502054] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/12/2013] [Accepted: 07/26/2013] [Indexed: 01/13/2023] Open
Abstract
Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
48 |
22
|
Coel M, Yamada CY, Ko J. MR imaging of patients with lateral epicondylitis of the elbow (tennis elbow): importance of increased signal of the anconeus muscle. AJR Am J Roentgenol 1993; 161:1019-21. [PMID: 8273602 DOI: 10.2214/ajr.161.5.8273602] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The purpose of this study was to determine what changes might be detected on MR images of patients with chronic lateral epicondylitis (tennis elbow) that could explain why some cases are resistant to therapy. SUBJECTS AND METHODS Seven consecutive patients with chronic lateral epicondylitis were included. The diagnosis was based on symptoms and signs characteristic of the disease, as determined by each patient's orthopedic surgeon. Three volunteers with normal elbows were control subjects. All patients had MR imaging of the involved elbow, and control subjects had MR imaging of the nondominant elbow. Short tau inversion-recovery (STIR) MR imaging was chosen because of its sensitivity to changes in the water content of muscle and its suppression of the fat signal. The images were analyzed visually and on an MR workstation to measure the signal intensity of the elbow muscles. RESULTS In all seven patients, MR images showed increased signal intensity of the anconeus muscle. This increase in signal intensity was not observed in the control subjects, and to our knowledge it has not been reported previously. CONCLUSION Increased signal intensity of the anconeus muscle on MR images in patients with chronic lateral epicondylitis suggests involvement of the muscle. Increased signal intensity is seen with edema, granulation tissue, and inflammation, which may explain the findings in this study. Our results are inconclusive as to whether this increased signal intensity contributes to the chronicity of patient symptomatology or is associated with abnormal elbow motion because of the symptoms.
Collapse
|
|
32 |
48 |
23
|
Chaudhuri BN, Ko J, Park C, Jones TA, Mowbray SL. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution. J Mol Biol 1999; 286:1519-31. [PMID: 10064713 DOI: 10.1006/jmbi.1999.2571] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABC transport systems for import or export of nutrients and other substances across the cell membrane are widely distributed in nature. In most bacterial systems, a periplasmic component is the primary determinant of specificity of the transport complex as a whole. We report here the crystal structure of the periplasmic binding protein for the allose system (ALBP) from Escherichia coli, solved at 1.8 A resolution using the molecular replacement method. As in the other members of the family (especially the ribose binding protein, RBP, with which it shares 35 % sequence homology), this structure consists of two similar domains joined by a three-stranded hinge region. The protein is believed to exist in a dynamic equilibrium of closed and open conformations in solution which is an important part of its function. In the closed ligand-bound form observed here, D-allose is buried at the domain interface. Only the beta-anomer of allopyranose is seen in the crystal structure, although the alpha-anomer can potentially bind with a similar affinity. Details of the ligand-binding cleft reveal the features that determine substrate specificity. Extensive hydrogen bonding as well as hydrophobic interactions are found to be important. Altogether ten residues from both the domains form 14 hydrogen bonds with the sugar. In addition, three aromatic rings, one from each domain with faces parallel to the plane of the sugar ring and a third perpendicular, make up a hydrophobic stacking surface for the ring hydrogen atoms. Our results indicate that the aromatic rings forming the sugar binding cleft can sterically block the binding of any hexose epimer except D-allose, 6-deoxy-allose or 3-deoxy-glucose; the latter two are expected to bind with reduced affinity, due to the loss of some hydrogen bonds. The pyranose form of the pentose, D-ribose, can also fit into the ALBP binding cleft, although with lower binding affinity. Thus, ALBP can function as a low affinity transporter for D-ribose. The significance of these results is discussed in the context of the function of allose and ribose transport systems.
Collapse
|
Comparative Study |
26 |
45 |
24
|
Jusoh N, Ko J, Jeon NL. Microfluidics-based skin irritation test using in vitro 3D angiogenesis platform. APL Bioeng 2019; 3:036101. [PMID: 31431937 PMCID: PMC6697035 DOI: 10.1063/1.5093975] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/26/2019] [Indexed: 01/19/2023] Open
Abstract
A global ban on animal experiments has been proposed. Hence, it is imperative to develop alternative models. Artificial skin models should reflect the responses of subcutaneous blood vessels and the immune system to elucidate disease and identify cosmetics' base materials. Notably, in vivo skin-irritation cascades involve disruption of the epidermal barrier and the release of proinflammatory mediators in response to chemical stimuli. Such proinflammatory factors promote angiogenesis and blood vessel permeability, as observed in irritant contact dermatitis. As an alternative to animal models, we propose a novel skin-irritation model based on a three-dimensional in vitro angiogenesis platform, in which irritated keratinocytes biochemically stimulate vascular endothelial growth factors. Our microfluidic platform hosts interactions between keratinocytes and dermal fibroblasts, which promote angiogenic sprouting. We use sodium lauryl sulfate (SLS) and steartrimonium chloride (SC) as chemical irritants. The irritative effects of SLS and SC are of particular interest due to the ubiquity of both SLS and SC in cosmetics. SLS was observed to significantly affect angiogenic performance, with increasing sprout length. Further promotion of vessel sprouting and lumen formation was observed with 10, 20, and 60 μM of SC, despite its classification as nonirritating and use in supposedly safe formulations. This platform provides an alternative to animal testing as a basis for testing cosmetics and pharmaceutical substances, in addition to serving as a disease model for irritant contact dermatitis.
Collapse
|
Journal Article |
6 |
43 |
25
|
Kim S, Ko J, Kim JH, Choi EC, Na DS. Differential effects of annexins I, II, III, and V on cytosolic phospholipase A2 activity: specific interaction model. FEBS Lett 2001; 489:243-8. [PMID: 11165258 DOI: 10.1016/s0014-5793(00)02326-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Annexins (ANXs) are a family of proteins with calcium-dependent phospholipid binding properties. Although inhibition of phospholipase A2 (PLA2) by ANX-I has been reported, the mechanism is still controversial. Previously we proposed a 'specific interaction' model for the mechanism of cytosolic PLA2 (cPLA2) inhibition by ANX-I [Kim et al., FEBS Lett. 343 (1994) 251-255]. Here we have studied the cPLA2 inhibition mechanism using ANX-I, N-terminally deleted ANX-I (DeltaANX-I), ANX-II, ANX-II(2)P11(2), ANX-III, and ANX-V. Under the conditions for the specific interaction model, ANX-I, DeltaANX-I, and ANX-II(2)P11(2) inhibited cPLA2, whereas inhibition by ANX-II and ANX-III was negligible. Inhibition by ANX-V was much smaller than that by ANX-I. The protein-protein interactions between cPLA2 and ANX-I, DeltaANX-I, and ANX-II(2)P11(2) were verified by immunoprecipitation. We can therefore conclude that inhibition of cPLA2 by specific interaction is not a general function of all ANXs, and is rather a specific function of ANX-I. The results are consistent with the specific interaction model.
Collapse
|
|
24 |
42 |