1
|
Abstract
A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.
Collapse
|
Comparative Study |
24 |
319 |
2
|
Zhang JS, Moncrieffe MC, Kaczynski J, Ellenrieder V, Prendergast FG, Urrutia R. A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A. Mol Cell Biol 2001; 21:5041-9. [PMID: 11438660 PMCID: PMC87230 DOI: 10.1128/mcb.21.15.5041-5049.2001] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sp1-like proteins are defined by three highly homologous C(2)H(2) zinc finger motifs that bind GC-rich sequences found in the promoters of a large number of genes essential for mammalian cell homeostasis. Here we report that TIEG2, a transforming growth factor beta-inducible Sp1-like protein with antiproliferative functions, represses transcription through recruitment of the mSin3A-histone deacetylase complex. The interaction of TIEG2 with mSin3A is mediated by an alpha-helical repression motif (alpha-HRM) located within the repression domain (R1) of TIEG2. This alpha-HRM specifically associates with the second paired amphipathic helix (PAH2) domain of mSin3A. Mutations in the TIEG2 alpha-HRM domain that disrupt its helical structure abolish its ability to both bind mSin3A and repress transcription. Interestingly, the alpha-HRM is conserved in both the TIEG (TIEG1 and TIEG2) and BTEB (BTEB1, BTEB3, and BTEB4) subfamilies of Sp1-like proteins. The alpha-HRM from these proteins also mediates direct interaction with mSin3A and represses transcription. Surprisingly, we found that the alpha-HRM of the Sp1-like proteins characterized here exhibits structural and functional resemblance to the Sin3A-interacting domain previously described for the basic helix-loop-helix protein Mad1. Thus, our study defines a mechanism of transcriptional repression via the interactions of the alpha-HRM with the Sin3-histone deacetylase complex that is utilized by at least five Sp1-like transcriptional factors. More importantly, we demonstrate that a helical repression motif which mediates Sin3 interaction is not an exclusive structural and functional characteristic of the Mad1 subfamily but rather has a wider functional impact on transcriptional repression than previously demonstrated.
Collapse
|
research-article |
24 |
160 |
3
|
Liu FH, Wang SB, Zhang JS, Zhang J, Yan X, Zhou HK, Zhao GP, Zhou ZH. The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol 2009; 106:952-66. [PMID: 19187154 DOI: 10.1111/j.1365-2672.2008.04064.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To identify the bacterial and archaeal composition in a mesophilic biogas digester treating pig manure and to compare the consistency of two 16S rDNA-based methods to investigate the microbial structure. METHODS AND RESULTS Sixty-nine bacterial operational taxonomic units (OTU) and 25 archaeal OTU were identified by sequencing two 16S rDNA clone libraries. Most bacterial OTU were identified as phyla of Firmicutes (47.2% of total clones), Bacteroides (35.4%) and Spirochaetes (13.2%). Methanoculleus bourgensis (29.0%), Methanosarcina barkeri (27.4%) and Methanospirillum hungatei (10.8%) were the dominant methanogens. Only 9% of bacterial and 20% of archaeal OTU matched cultured isolates at a similarity index of >or=97%. About 78% of the dominant bacterial (with abundance >3%) and 83% of archaeal OTU were recovered from the denaturing gradient gel electrophoresis (DGGE) bands of V3 regions in 16S rDNAs. CONCLUSIONS In the digester, most bacterial and archaeal species were uncultured; bacteria belonging to Firmicutes, Bacteroides and Spirochaetes seem to take charge of cellulolysis, proteolysis, acidogenesis, sulfur-reducing and homoacetogenesis; the most methanogens were typical hydrogenotrophic or hydrogenotrophic/aceticlastic; DGGE profiles reflected the dominant microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY This study gave a first insight of the overall microbial structure in a rural biogas digester and also indicated DGGE was useful in displaying its dominant microbiota.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
114 |
4
|
Zhang JS, Kaltenbach JA. Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 1998; 250:197-200. [PMID: 9708866 DOI: 10.1016/s0304-3940(98)00482-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of intense sound exposure on neural activity in the dorsal cochlear nucleus (DCN) were studied in the rat. Seventeen anesthetized adult rats were exposed to a 10-kHz tone at 125-130 dB SPL for 4 h. Fourteen unexposed rats served as controls. Spontaneous activity (SA) and neural thresholds at the characteristic frequency were measured in three rows of 8-12 sites along the mediolateral, tonotopic, axis of the DCN surface 27-61 days after exposure. The results showed that intense tone exposure induced chronic increases in SA. This hyperactivity was found to be distributed broadly across the DCN with an emphasis around the 10-kHz locus and was associated with shifted response thresholds. These findings demonstrate the usefulness of the rat for studies of physiological phenomena related to noise-induced tinnitus and hearing loss.
Collapse
|
|
27 |
107 |
5
|
Yeo TT, Yang T, Massa SM, Zhang JS, Honkaniemi J, Butcher LL, Longo FM. Deficient LAR expression decreases basal forebrain cholinergic neuronal size and hippocampal cholinergic innervation. J Neurosci Res 1997; 47:348-60. [PMID: 9039657 DOI: 10.1002/(sici)1097-4547(19970201)47:3<348::aid-jnr13>3.0.co;2-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A role in neural development for protein tyrosine phosphatase (PTPase) receptors has been suggested by the finding of aberrant neurite outgrowth in Drosophila mutants lacking functional leukocyte common antigen-related (LAR) PTPase receptors; however, PTPase functions in the mammalian nervous system remain to be established. In transgenic mice containing a gene trap in the LAR gene, only trace expression of full-length LAR transcripts was found. In these mice, the size of basal forebrain cholinergic neurons was significantly reduced and cholinergic innervation of the dentate gyrus was markedly decreased. These findings constitute the first demonstration of an aberrant neuronal phenotype in a mammalian PTPase mutant and support the hypothesis that LAR-type PTPase receptors function to establish and/or maintain neuronal networks.
Collapse
|
|
28 |
100 |
6
|
Longo FM, Wang S, Narasimhan P, Zhang JS, Chen J, Massa SM, Sharp FR. cDNA cloning and expression of stress-inducible rat hsp70 in normal and injured rat brain. J Neurosci Res 1993; 36:325-35. [PMID: 8271311 DOI: 10.1002/jnr.490360310] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A reverse transcriptase-polymerase chain reaction (RT-PCR) product obtained from ischemic rat brain RNA was used to screen a rat ischemic forebrain cDNA library for a cDNA clone containing the entire open reading frame for the inducible hsp70. The coding sequence for the rat hsp70 cDNA demonstrated significant similarities with the human hsp70 of Hunt and Morimoto (Proc Natl Acad Sci 82:6455-6459, 1985) and the mouse hsp70 of Hunt and Calderwood (Gene 87:199-204, 1990). The rat inducible hsp70 and constitutive hsc73 sequences are distinct. There was a low level of hsp70 mRNA expression in normal rat brain as in found in other tissues. hsp70 mRNA was markedly induced in rat brain 8 hours following global ischemia and kainic acid-induced seizures. Northern blots showed a approximately 2.9kb hsp70 mRNA band from control, kainic acid, and ischemic brains. RT-PCR confirmed the presence of hsp70 mRNA in normal rat brain. Since there are at least five human and six mouse inducible hsp70 genes known, many other rat hsp70 genes probably exist that could function in different cells or organelles or be induced under different circumstances.
Collapse
|
Comparative Study |
32 |
90 |
7
|
Zhang JS, Liu WY. The mechanism of action of trichosanthin on eukaryotic ribosomes--RNA N-glycosidase activity of the cytotoxin. Nucleic Acids Res 1992; 20:1271-5. [PMID: 1561083 PMCID: PMC312169 DOI: 10.1093/nar/20.6.1271] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Trichosanthin is a ribosome-inactivating protein from root tubers of Trichosanthes kirilowii Maxim. In this paper, the mechanism of action of trichosanthin on eukaryotic ribosomes was studied. A fragment of about 450 nucleotides was released from 28S ribosomal RNA after treatment of rat liver ribosome with trichosanthin and its isolated ribosomal RNAs were treated with aniline. Analysis of nucleotide sequence of 5' terminus of this fragment revealed that the aniline-sensitive site of the phosphodiester bond was between positions A4324 and G4325 in the 28S rRNA. Adenine was recovered by ion-exchange column chromatography from the 50% ethanol soluble fraction of the reaction mixture in which rat liver ribosomes were treated with trichosanthin. Thin-layer chromatographic analysis indicated that 1 mol of adenine was released from 1 mol of ribosomes. When the ribosomes were incubated with trichosanthin in the presence of inorganic [32P]phosphate, little incorporation of radioactivity into 28S rRNA was observed, indicating that the release of adenine was not mediated by phosphorolysis. These results demonstrate that trichosanthin inactivates the ribosomes by cleaving the N-C glycosidic bond of adenylic acid at 4324 of 28S rRNA in a hydrolytic fashion.
Collapse
|
research-article |
33 |
85 |
8
|
Yu YL, Shao YK, Ding YQ, Lin KZ, Chen B, Zhang HZ, Zhao LN, Wang ZB, Zhang JS, Tang ML, Mei J. Decellularized kidney scaffold-mediated renal regeneration. Biomaterials 2014; 35:6822-8. [PMID: 24855960 DOI: 10.1016/j.biomaterials.2014.04.074] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/22/2014] [Indexed: 01/04/2023]
Abstract
Renal regeneration approaches offer great potential for the treatment of chronic kidney disease, but their availability remains limited by the clinical challenges they pose. In the present study, we used continuous detergent perfusion to generate decellularized (DC) rat kidney scaffolds. The scaffolds retained intact vascular trees and overall architecture, along with significant concentrations of various cytokines, but lost all cellular components. To evaluate its potential in renal function recovery, DC scaffold tissue was grafted onto partially nephrectomized rat kidneys. An increase of renal size was found, and regenerated renal parenchyma cells were observed in the repair area containing the grafted scaffold. In addition, the number of nestin-positive renal progenitor cells was markedly higher in scaffold-grafted kidneys compared to controls. Moreover, radionuclide scan analysis showed significant recovery of renal functions at 6 weeks post-implantation. Our results provide further evidence to show that DC kidney scaffolds could be used to promote renal recovery in the treatment of chronic kidney disease.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
83 |
9
|
Zhu W, Zhang JS, Young CY. Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis 2001; 22:1399-403. [PMID: 11532861 DOI: 10.1093/carcin/22.9.1399] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A number of reports have shown that the polyphenolic flavonoid silymarin (SM) is an effective anticancer agent. Agents with novel mechanisms of blocking androgen receptor (AR) function may be useful for prostate cancer prevention and therapy. Previous studies showed that silibinin (SB), the major active component of SM, could inhibit cell proliferation of a human prostate cancer cell line, LNCaP, by arresting the cell cycle at the G(1) phase without causing cell death. This study further delineates the potential molecular mechanism by which SM and SB exhibit antiproliferative effects on androgen-responsive prostate cancer cells by inhibiting function of the AR. We observed that SM and SB inhibited androgen-stimulated cell proliferation as well as androgen-stimulated secretion of both prostate-specific antigen (PSA) and human glandular kallikrein (hK2). Additionally, for the first time, we show that an immunophilin, FKBP51, is androgen regulated and that this up-regulation is suppressed by SM and SB. We further demonstrate that transactivation activity of the AR was diminished by SM and SB using gene transfer of PSA promoter and hK2 androgen-responsive element constructs. However, expression and steroid-binding ability of total AR were not affected by SM in western blotting and ligand-binding assays. Intriguingly, we found that nuclear AR levels are significantly reduced by SM and SB in the presence of androgens using western blotting assay and immunocytochemical staining. This study provides a new insight into how SM and SB negatively modulate androgen action in prostate cancer cells.
Collapse
|
|
24 |
81 |
10
|
Higashida H, Egorova A, Higashida C, Zhong ZG, Yokoyama S, Noda M, Zhang JS. Sympathetic potentiation of cyclic ADP-ribose formation in rat cardiac myocytes. J Biol Chem 1999; 274:33348-54. [PMID: 10559213 DOI: 10.1074/jbc.274.47.33348] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the role of cyclic ADP-ribose (cADP-ribose) as a second messenger downstream of adrenergic receptors in the heart after excitation of sympathetic neurons. To address this question, ADP-ribosyl cyclase activity was measured as the rate of [(3)H]cADP-ribose formation from [(3)H]NAD(+) in a crude membrane fraction of rat ventricular myocytes. Isoproterenol at 1 microM increased ADP-ribosyl cyclase activity by 1.7-fold in ventricular muscle; this increase was inhibited by propranolol. The stimulatory effect on the cyclase was mimicked by 10 nM GTP and 10 microM guanosine 5'-3-O-(thio)triphosphate, whereas 10 microM GTP inhibited the cyclase. Cholera toxin blocked the activation of the cyclase by isoproterenol and GTP. The above effects of isoproterenol and GTP in ventricular membranes were confirmed by cyclic GDP-ribose formation fluorometrically. These results demonstrate the existence of a signal pathway from beta-adrenergic receptors to membrane-bound ADP-ribosyl cyclase via G protein in the ventricular muscle cells and suggest that increased cADP-ribose synthesis is involved in up-regulation of cardiac function by sympathetic stimulation.
Collapse
|
|
26 |
75 |
11
|
Meng LH, Zhang JS, Ding J. Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes. Biochem Pharmacol 2001; 62:733-41. [PMID: 11551518 DOI: 10.1016/s0006-2952(01)00732-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salvicine, a structurally modified diterpenoid quinone derived from Salvia prionitis, is a novel anticancer drug candidate. The compound has significant in vitro and in vivo activity against malignant tumor cells and xenografts, especially some human solid tumor models. This anticancer activity of salvicine is associated with its ability to induce tumor cell apoptosis. Salvicine was also found to have a profound cytotoxic effect on multidrug-resistant (MDR) cell lines by down-regulating the expression of MDR-1 mRNA of MDR cells. Salvicine acted as a topoisomerase II (Topo II) poison through its marked enhancement effect on Topo II-mediated DNA double-strand breaks as observed in the DNA cleavage assay. Strong inhibitory activity of salvicine against Topo II was observed in a kDNA decatenation assay, with an approximate IC(50) value of 3 microM. A similar result was obtained by a Topo II-mediated supercoiled DNA relaxation assay. In contrast, no inhibitory activity was observed against the catalytic activity of Topo I. When the effects of salvicine on individual steps of the catalytic cycle of Topo II were dissected, it was found that the mechanism by which salvicine inactivates Topo II is different from that by other anti-Topo II agents. Salvicine greatly promoted Topo II-DNA binding and inhibited pre- and post-strand Topo II-mediated DNA religation without interference with the forward cleavage steps. In addition, salvicine was not a DNA intercalative agent, as demonstrated by DNA unwinding assays. The results of this study indicate that the inhibitory activity of salvicine against Topo II was derived from its ability to stabilize DNA strand breaks through interactions with the enzyme alone or with the DNA-enzyme complex. It is therefore postulated that salvicine acts on Topo by trapping the DNA-Topo II complex, which in turn produces anticancer effects.
Collapse
|
|
24 |
74 |
12
|
Zhang JS, Lee S, Lee JW. Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point? J Colloid Interface Sci 2007; 315:313-8. [PMID: 17681521 DOI: 10.1016/j.jcis.2007.06.049] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 11/17/2022]
Abstract
Sodium dodecyl sulfate (SDS) can accelerate nucleation and growth of gas hydrates in a quiescent system. The objective of this paper is to investigate whether or not SDS micelles form in the meta-stable region of methane hydrates by the direct measurement of aqueous SDS concentration. The SDS solubility in water with high-pressure methane is identical to that under atmospheric pressure at a temperature range of 270-282 K; thus, the Krafft point under these methane hydrate-forming conditions does not shift from the normal Krafft point (281-289 K) under atmospheric pressure. The mole fraction of methane in SDS solution is independent of aqueous SDS concentration at a hydrate-forming condition. These results suggest that at temperatures below the normal Krafft point, no SDS micelles are present in the aqueous phase even in a high-pressure methane environment.
Collapse
|
|
18 |
74 |
13
|
Zhang JS, Longo FM. LAR tyrosine phosphatase receptor: alternative splicing is preferential to the nervous system, coordinated with cell growth and generates novel isoforms containing extensive CAG repeats. J Biophys Biochem Cytol 1995; 128:415-31. [PMID: 7844155 PMCID: PMC2120354 DOI: 10.1083/jcb.128.3.415] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Receptor-linked tyrosine phosphatases regulate cell growth by dephosphorylating proteins involved in tyrosine kinase signal transduction. The leukocyte common antigen-related (LAR) tyrosine phosphatase receptor has sequence similarity to the neural cell adhesion molecule N-CAM and is located in a chromosomal region (1p32-33) frequently altered in neuroectodermal tumors. To understand the function of receptor-linked tyrosine phosphatases in neural development, we sought to identify LAR isoforms preferentially expressed in the nervous system and cellular processes regulating LAR alternative splicing. We report here the isolation of a series of rat LAR cDNA clones arising from complex combinatorial alternative splicing, not previously demonstrated for the tyrosine phosphatase-receptor gene family in general. Isoforms included: (a) deletions of the fourth, sixth and seventh fibronectin type III-like domains; (b) an alternatively spliced novel cassette exon in the fifth fibronectin type III-like domain; (c) two alternatively spliced novel cassette exons in the juxtamembrane region; (d) a retained intron in the extracellular region with in-frame stop codons predicting a secreted LAR isoform; and (e) an LAR transcript including an alternative 3' untranslated region containing multiple stretches of tandem CAG repeats up to 21 repeats in length. This number of repeats was in the range found in normal alleles of genes in which expansions of repeats are associated with neurodegenerative disease and the genetic phenomenon of anticipation. RT-PCR and Northern analysis demonstrated that LAR alternative splicing occurred preferentially in neuromuscular tissue in vivo and in neurons compared to astrocytes in vitro and was developmentally regulated. Alternative splicing was also regulated in PC12 cells by NGF, in 3T3 fibroblasts by cell confluence and in sciatic nerve and muscle subsequent to nerve transection. Western blot analysis demonstrated that alternatively spliced cassette exons result in the presence of corresponding amino acid segments of LAR protein in vivo. These studies suggest specialized functions of LAR isoforms in the nervous system and support our hypothesis that LAR-like tyrosine phosphatase receptors play a role in neural development and regeneration.
Collapse
|
research-article |
30 |
67 |
14
|
Kaczynski J, Zhang JS, Ellenrieder V, Conley A, Duenes T, Kester H, van Der Burg B, Urrutia R. The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J Biol Chem 2001; 276:36749-56. [PMID: 11477107 DOI: 10.1074/jbc.m105831200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1-like proteins are characterized by three conserved C-terminal zinc finger motifs that bind GC-rich sequences found in promoters of numerous genes essential for mammalian cell homeostasis. These proteins behave as transcriptional activators or repressors. Although significant information has been reported on the molecular mechanisms by which Sp1-like activators function, relatively little is known about mechanisms for repressor proteins. Here we report the functional characterization of BTEB3, a ubiquitously expressed Sp1-like transcriptional repressor. GAL4 assays show that the N terminus of BTEB3 contains regions that can act as direct repressor domains. Immunoprecipitation assays reveal that BTEB3 interacts with the co-repressor mSin3A and the histone deacetylase protein HDAC-1. Gel shift assays demonstrate that BTEB3 specifically binds the BTE site, a well characterized GC-rich DNA element, with an affinity similar to that of Sp1. Reporter and gel shift assays in Chinese hamster ovary cells show that BTEB3 can also mediate repression by competing with Sp1 for BTE binding. Thus, the characterization of this protein expands the repertoire of BTEB-like members of the Sp1 family involved in transcriptional repression. Furthermore, our results suggest a mechanism of repression for BTEB3 involving direct repression by the N terminus via interaction with mSin3A and HDAC-1 and competition with Sp1 via the DNA-binding domain.
Collapse
|
|
24 |
67 |
15
|
Wang L, Darling J, Zhang JS, Huang H, Liu W, Smith DI. Allele-specific late replication and fragility of the most active common fragile site, FRA3B. Hum Mol Genet 1999; 8:431-7. [PMID: 9949202 DOI: 10.1093/hmg/8.3.431] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
FRA3B at 3p14.2 is the most active of the common fragile sites in the human genome and is expressed when cells are exposed to the DNA replication inhibitor, aphidicolin. Several lines of evidence suggest that fragile sites are regions of late replication. To elucidate the relationship between the timing of replication across the FRA3B region and its corresponding fragility, we labeled cells with 5-bromo-2'-deoxyuridine (BrdU) and adopted an immunofluorescent procedure to visualize late replicating DNA (BrdU-substituted DNA) in metaphase chromosomes. We also chose 21 markers along the FRA3B region and analyzed the timing of replication using BrdU-labeled DNA from different stages of the cell cycle sorted by flow cytometry. Our results show that there are two distinct alleles that replicate at different stages in the cell cycle and that breaks/gaps preferentially occurred on the chromosome 3 with the late replication allele. These results provide direct evidence that allele-specific late replication is involved in the fragility of the most active common fragile site, FRA3B.
Collapse
|
|
26 |
66 |
16
|
Zhang JS, Yang-Feng TL, Muller U, Mohandas TK, de Jong PJ, Lau YF. Molecular isolation and characterization of an expressed gene from the human Y chromosome. Hum Mol Genet 1992; 1:717-26. [PMID: 1284595 DOI: 10.1093/hmg/1.9.717] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using a positional cloning approach, we have isolated an expressed gene from a flow-sorted Y chromosome cosmid library. The isolation of this gene was based on the identification of the Y-231 cosmid that contains CpG rich sequences (HTF islands) in its human insert. The Y-231 cosmid was capable of detecting a 1.3 kb transcript in poly (A)+ RNA samples from human testis. Several cDNA clones were isolated from a human testis cDNA library constructed in lambda gt10. In addition, DNA-mediated gene transfer and restriction enzyme mapping experiments demonstrated that two functional transcriptional units are present within the Y-231 cosmid. DNA sequencing analysis showed that the largest cDNA clone contains 1075 bp of unique sequence and a poly (A) track at the 3' end of the corresponding mRNA. An open reading frame of 762 bp that encodes a predicted protein of 253 amino acids with a calculated molecular weight of 28.9 kD was identified. The Y-231 structural gene encompasses approximately 2.7 kb of genomic sequence and contains six exons that are interrupted by five introns. The Y-231 gene shares very high (97%) identity at the DNA level to a previously described Y-specific gene, testis specific protein Y-encoded (TSPY) gene, suggesting the possibility that these two genes are related, if not identical. However, the TSPY gene has been postulated to be intronless. Further PCR and RT-PCR analyses of these two genes and their transcripts have provided evidence supporting the hypothesis that they are the same gene and are members of a Y-specific repeated gene family containing intronic sequences. The Y-231 (TSPY) gene is conserved in the male genome and expressed in the testis of the chimpanzee, suggesting that it may play an important role in the physiology of this organ in man and the great ape.
Collapse
|
|
33 |
65 |
17
|
Nur AO, Zhang JS. Captopril floating and/or bioadhesive tablets: design and release kinetics. Drug Dev Ind Pharm 2000; 26:965-9. [PMID: 10914320 DOI: 10.1081/ddc-100101323] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two viscosity grades of hydroxypropylmethylcellulose (HPMC 4000 and 15,000 cps) and Carbopol 934P were used to prepare captopril floating tablets. In vitro dissolution was carried out in simulated gastric fluid (enzyme free) at 37 degrees C +/- 0.1 degree C using the USP apparatus 2 basket method. Compared to conventional tablets, release of captopril from these floating tablets was apparently prolonged; as a result, a 24-hr controlled-release dosage form for captopril was achieved. Drug release best fit both the Higuchi model and the Korsmeyer and Peppas equation, followed by first-order kinetics. While tablet hardness and stirring rate had no or little effect on the release kinetics, tablets hardness was found to be a determining factor with regard to the buoyancy of the tablets.
Collapse
|
|
25 |
53 |
18
|
Liu FH, Lin GH, Gao G, Qin BQ, Zhang JS, Zhao GP, Zhou ZH, Shen JH. Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, Lake Taihu, as revealed by denaturing gradient gel electrophoresis. J Appl Microbiol 2009; 106:1022-32. [PMID: 19191955 DOI: 10.1111/j.1365-2672.2008.04069.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To explore the association of microbial community structure with the development of eutrophication in a large shallow freshwater lake, Lake Taihu. METHODS AND RESULTS The bacterial and archaeal assemblages in sediments of different lake areas were analysed using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA fragments. The bacterial DGGE profiles showed that eutrophied sites, grass-bottom areas and relatively clean sites with a eutrophic (albeit dredged) site are three respective clusters. Fifty-one dominant bacterial DGGE bands were detected and 92 corresponding clones were sequenced, most of which were affiliated with bacterial phylotypes commonly found in freshwater ecosystems. Actinobacteria were detected in the centre of the lake and not at eutrophied sites whereas the opposite was found with respect to Verrucomicrobiales. Twenty-five dominant archaeal DGGE bands were detected and 31 corresponding clones were sequenced, most of which were affiliated with freshwater archaeal phylotypes. CONCLUSIONS The bacterial community structures in the sediments of different areas with similar water quality and situation tend to be similar in Taihu Lake. SIGNIFICANCE AND IMPACT OF THE STUDY This study may expand our knowledge on the relationship between the overall microbial assemblages and the development of eutrophication in the shallow freshwater lake.
Collapse
|
Journal Article |
16 |
52 |
19
|
Jin J, Xie Y, Zhang JS, Wang JQ, Dai SJ, He WF, Li SY, Ashby CR, Chen ZS, He Q. Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist Updat 2023; 67:100929. [PMID: 36739809 DOI: 10.1016/j.drup.2023.100929] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Currently, renal cell carcinoma (RCC) is the most prevalent type of kidney cancer. Targeted therapy has replaced radiation therapy and chemotherapy as the main treatment option for RCC due to the lack of significant efficacy with these conventional therapeutic regimens. Sunitinib, a drug used to treat gastrointestinal tumors and renal cell carcinoma, inhibits the tyrosine kinase activity of a number of receptor tyrosine kinases, including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), c-Kit, rearranged during transfection (RET) and fms-related receptor tyrosine kinase 3 (Flt3). Although sunitinib has been shown to be efficacious in the treatment of patients with advanced RCC, a significant number of patients have primary resistance to sunitinib or acquired drug resistance within the 6-15 months of therapy. Thus, in order to develop more efficacious and long-lasting treatment strategies for patients with advanced RCC, it will be crucial to ascertain how to overcome sunitinib resistance that is produced by various drug resistance mechanisms. In this review, we discuss: 1) molecular mechanisms of sunitinib resistance; 2) strategies to overcome sunitinib resistance and 3) potential predictive biomarkers of sunitinib resistance.
Collapse
|
Review |
2 |
52 |
20
|
Fan XL, Zhang JS, Zhang XQ, Yue W, Ma L. Differential regulation of beta-arrestin 1 and beta-arrestin 2 gene expression in rat brain by morphine. Neuroscience 2003; 117:383-9. [PMID: 12614678 DOI: 10.1016/s0306-4522(02)00930-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beta-arrestins are a family of regulatory and scaffold proteins functioning in signal transduction of G protein-coupled receptors including opioid receptors. Upon agonist stimulation, beta-arrestins bind to opioid receptors phosphorylated by G protein-coupled receptor kinases and promote receptor internalization and desensitization. Studies indicated that beta-arrestins are required in the development of morphine tolerance in mice. In the current study, we investigated the potential regulatory effects of morphine administration on beta-arrestin 1 and beta-arrestin 2 mRNA levels in different brain regions in rat using in situ hybridization method. Our results showed that the acute morphine administration (10 mg/kg) resulted in approximately 30% reduction in both beta-arrestin 1 and beta-arrestin 2 mRNA levels in hippocampus while the chronic morphine treatment (10 mg/kg, b.i.d., for 9 days) caused no significant change in level of either beta-arrestin mRNA. In locus coeruleus, both acute and chronic morphine treatments resulted in significant decreases (over 50%) in beta-arrestin 1 mRNA level but failed to induce any change in the level of beta-arrestin 2 gene expression. The acute morphine administration had no significant effect on beta-arrestin 1 or beta-arrestin 2 mRNA level in periaqueductal gray and cerebral cortex. However, after chronic morphine treatment, beta-arrestin 2 mRNA level decreased by 40% in periaqueductal gray and increased by 25% in cerebral cortex, in strong contrast to the unchanged beta-arrestin 1 mRNA level in these two brain regions. Furthermore, spontaneous or naloxone-precipitated withdrawal of morphine that did not affect the level of beta-arrestin 1 mRNA resulted in an aberrant increase (100% over control) in beta-arrestin 2 mRNA level in hippocampus. Our results thus demonstrated for the first time that opiate administration regulates level of beta-arrestin mRNAs in brain and the expression of beta-arrestin 1 and beta-arrestin 2 subtypes is differentially regulated in locus coeruleus, periaqueductal gray, and cerebral cortex by morphine. These data suggest that beta-arrestin 1 and beta-arrestin 2 may play different roles in the development of opioid tolerance and dependence.
Collapse
|
Comparative Study |
22 |
51 |
21
|
Wang L, Darling J, Zhang JS, Liu W, Qian J, Bostwick D, Hartmann L, Jenkins R, Bardenhauer W, Schutte J, Opalka B, Smith DI. Loss of expression of the DRR 1 gene at chromosomal segment 3p21.1 in renal cell carcinoma. Genes Chromosomes Cancer 2000; 27:1-10. [PMID: 10564580 DOI: 10.1002/(sici)1098-2264(200001)27:1<1::aid-gcc1>3.0.co;2-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Consistent deletion of DNA sequences in chromosomal band 3p21 observed in a variety of human tumors suggests the presence of one or more tumor suppressor genes within this region. Previously, we reported on the construction of two distinct cosmid contigs and our identification of several new genes within 3p21.1. In our search for tumor suppressor genes from this region, we have cloned a gene that we have called DRR 1 (downregulated in renal cell carcinoma). The gene was first mapped to 3p21.1 by fluorescence in situ hybridization analysis. Further analysis of yeast artificial chromosome clones in 3p14.2-p21.1 refined its localization. DRR 1 spans about 10 Kb of genomic DNA with a 3.5-Kb mature transcript. The putative protein encoded by this gene is 144 amino acids and includes a nuclear localization signal and a coiled domain. The gene showed loss of expression in eight of eight renal cell carcinoma cell lines, one of seven ovarian cancer cell lines, one of one cervical cancer cell line, one of one gastric cancer cell line, and one of one non-small-cell lung cancer cell line. Southern blot analysis did not show any altered bands, indicating that gross structural changes or deletions did not cause the loss of expression. This gene was also found to have reduced expression in 23 of 34 paired primary renal cell carcinomas. Mutational analysis detected three polymorphic sites within the gene, but no point mutations were identified in the 34 primary tumors. However, we did detect base substitutions in 4 of 12 cell lines that had undetectable expression of the gene. We also transfected the gene into DRR 1-negative cell lines and observed clear growth retardation. Our results suggest that loss of expression of the DRR 1 gene may play an important role in the development of renal cell carcinoma and possibly other tumors. Genes Chromosomes Cancer 27:1-10, 2000.
Collapse
|
|
25 |
51 |
22
|
Zhang JS, Stanforth RS, Pehkonen SO. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (α-FeOOH). J Colloid Interface Sci 2007; 306:16-21. [PMID: 17056055 DOI: 10.1016/j.jcis.2006.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/02/2006] [Accepted: 10/02/2006] [Indexed: 11/25/2022]
Abstract
Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but supports the thesis that the charge on the goethite surface comes primarily from protonation of the triply bound oxygen atoms on the surface.
Collapse
|
|
18 |
51 |
23
|
Chung BH, Mitchell SH, Zhang JS, Young CY. Effects of docosahexaenoic acid and eicosapentaenoic acid on androgen-mediated cell growth and gene expression in LNCaP prostate cancer cells. Carcinogenesis 2001; 22:1201-6. [PMID: 11470750 DOI: 10.1093/carcin/22.8.1201] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is some epidemiological support for a protective influence of omega-3 fatty acids against prostate cancer. We wanted to explore whether omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can affect androgen receptor function in prostate cancer cells. Our study showed that both DHA and EPA inhibit androgen-stimulated cell growth. Androgenic induction of prostate-specific antigen (PSA) protein was repressed by DHA and EPA in a dose-dependent manner. The mRNA levels of five androgen up-regulated genes, PSA, ornithine decarboxylase, NKX 3.1, immunophilin fkbp 51 and Drg-1, were decreased with DHA treatment in the presence of androgens. Transfection experiments using a DNA vector containing androgen-responsive elements demonstrated that both DHA and EPA could interfere with transactivation activities of the androgen receptor (AR). However, western blot analysis of AR protein showed that DHA and EPA treatments did not change AR expression levels. Interestingly, the proto-oncoprotein c-jun was increased by DHA treatment. A transient transfection found that forced expression of c-jun inhibited AR transactivation activity. Thus, this study found that the inhibitory effects of omega-3 polyunsaturated fatty acids on AR-mediated actions are due, at least in part, to an increase in c-jun protein.
Collapse
|
|
24 |
51 |
24
|
Zhang JS, Kaltenbach JA, Wang J, Kim SA. Fos-like immunoreactivity in auditory and nonauditory brain structures of hamsters previously exposed to intense sound. Exp Brain Res 2003; 153:655-60. [PMID: 12955379 DOI: 10.1007/s00221-003-1612-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Accepted: 06/14/2003] [Indexed: 11/28/2022]
Abstract
Fos-like immunoreactivity (FLI) was evaluated in auditory and nonauditory brain structures in hamsters that had been exposed previously to intense sound and tested behaviorally for tinnitus. The immunocytochemical results demonstrated a significant increase in exposed animals of FLI in auditory brain structures such as the lateral lemniscus, central nucleus of inferior colliculus, and auditory cortex, as well as in some nonauditory brain structures such as the locus coeruleus, lateral parabrachial nucleus, certain subregions of the hypothalamus, and amygdala. The behavioral scores suggest that animals that had been exposed to intense sound developed tinnitus. This is consistent with the hypothesis that FLI induced by intense sound exposure might represent a neural correlate of tinnitus or of plasticity associated with tinnitus. The possibility and the mechanisms underlying the increased FLI are discussed.
Collapse
|
|
22 |
47 |
25
|
Higashida H, Hashii M, Yokoyama S, Hoshi N, Chen XL, Egorova A, Noda M, Zhang JS. Cyclic ADP-ribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADP-ribosyl cyclase. Pharmacol Ther 2001; 90:283-96. [PMID: 11578661 DOI: 10.1016/s0163-7258(01)00142-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cyclic ADP-ribose (cADPR), an endogenous modulator of ryanodine receptor Ca(2+)-releasing channels, is found in various tissues. Cytosolic injection of cADPR induces an elevation of intracellular Ca(2+) concentrations or potentiates Ca(2+) increases. cADPR facilitates neurotransmitter or insulin release and modifies ionic currents. cADPR is synthesized by ADP-ribosyl cyclase and is metabolized by cADPR hydrolase. ADP-ribosyl cyclase activity is up-regulated by nitric oxide/cyclic GMP-dependent phosphorylation or receptor stimulation via G-proteins within membranes. These findings suggest that cADPR is a second messenger in cellular Ca(2+) signaling. However, many intriguing issues remain to be addressed before this identity is confirmed.
Collapse
|
Review |
24 |
46 |