1
|
Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93:165-76. [PMID: 9568710 DOI: 10.1016/s0092-8674(00)81569-x] [Citation(s) in RCA: 3948] [Impact Index Per Article: 146.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ligand for osteoprotegerin has been identified, and it is a TNF-related cytokine that replaces the requirement for stromal cells, vitamin D3, and glucocorticoids in the coculture model of in vitro osteoclastogenesis. OPG ligand (OPGL) binds to a unique hematopoeitic progenitor cell that is committed to the osteoclast lineage and stimulates the rapid induction of genes that typify osteoclast development. OPGL directly activates isolated mature osteoclasts in vitro, and short-term administration into normal adult mice results in osteoclast activation associated with systemic hypercalcemia. These data suggest that OPGL is an osteoclast differentiation and activation factor. The effects of OPGL are blocked in vitro and in vivo by OPG, suggesting that OPGL and OPG are key extracellular regulators of osteoclast development.
Collapse
|
|
27 |
3948 |
2
|
Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliott GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TW, Senaldi G. T-cell co-stimulation through B7RP-1 and ICOS. Nature 1999; 402:827-32. [PMID: 10617205 DOI: 10.1038/45582] [Citation(s) in RCA: 611] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
T-cell activation requires co-stimulation through receptors such as CD28 and antigen-specific signalling through the T-cell antigen receptor. Here we describe a new murine costimulatory receptor-ligand pair. The receptor, which is related to CD28 and is the homologue of the human protein ICOS, is expressed on activated T cells and resting memory T cells. The ligand, which has homology to B7 molecules and is called B7-related protein-1 (B7RP-1), is expressed on B cells and macrophages. ICOS and B7RP-I do not interact with proteins in the CD28-B7 pathway, and B7RP-1 co-stimulates T cells in vitro independently of CD28. Transgenic mice expressing a B7RP-1-Fc fusion protein show lymphoid hyperplasia in the spleen, lymph nodes and Peyer's patches. Presensitized mice treated with B7RP-1-Fc during antigen challenge show enhanced hypersensitivity. Therefore, B7RP-1 exhibits co-stimulatory activities in vitro and in vivo. ICOS and B7RP-1 define a new and distinct receptor-ligand pair that is structurally related to CD28-B7 and is involved in the adaptive immune response.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- B7-1 Antigen/genetics
- B7-1 Antigen/metabolism
- CHO Cells
- COS Cells
- Cells, Cultured
- Cricetinae
- DNA, Complementary
- Dermatitis, Contact/immunology
- Female
- Gene Expression
- Humans
- Inducible T-Cell Co-Stimulator Ligand
- Inducible T-Cell Co-Stimulator Protein
- Ligands
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
|
|
26 |
611 |
3
|
Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 1996; 45:522-30. [PMID: 8603776 DOI: 10.2337/diab.45.4.522] [Citation(s) in RCA: 425] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetic nephropathy is characterized by renal hypertrophy, thickening of basement membranes, and accumulation of extracellular matrix in the glomerular mesangium and the interstitium. Our previous investigations have shown that high glucose concentration increases transforming growth factor (TGF)-beta1 mRNA in mesangial and proximal tubule cells and that treatment with anti-TGF-beta antibody results in prevention of the effects of high glucose on cell growth (e.g., induction of cellular hypertrophy) and the stimulation of collagen biosynthesis. We evaluated in vivo the functional role of the renal TGF-beta system in diabetic kidney disease by treatment of streptozotocin-induced diabetic mice with either a neutralizing monoclonal antibody against TGF-beta1, -beta2, and -beta3 (alphaT) or nonimmune murine IgG for 9 days. Diabetic mice given IgG demonstrated total kidney and glomerular hypertrophy, significantly elevated urinary TGF-beta1 protein, and increased mRNAs encoding TGF-beta1, type II TGF-beta receptor, alpha1(IV) collagen, and fibronectin. Treatment of diabetic mice with alphaT prevented glomerular hypertrophy, reduced the increment in kidney weight by approximately 50%, and significantly attenuated the increase in mRNA levels without having any effect on blood glucose. The antibody was without significant effect on mRNA levels in nondiabetic mice. This is the first demonstration that the early characteristic features of diabetic renal involvement, which include hypertrophy and increased matrix mRNAs, are largely mediated by increased endogenous TGF-beta activity in the kidney and that they can be significantly attenuated by treatment with neutralizing anti-TGF-beta antibodies.
Collapse
|
Comparative Study |
29 |
425 |
4
|
Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage 2020; 28:400-409. [PMID: 32081707 DOI: 10.1016/j.joca.2020.02.027] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a complicated degenerative disease that affects whole joint tissue. Currently, apart from surgical approaches to treat late stage OA, effective treatments to reverse OA are not available. Thus, the mechanisms leading to OA, and more effective approaches to treat OA should be investigated. According to available evidence, the PI3K/AKT/mTOR signaling pathway is essential for normal metabolism of joint tissues, but is also involved in development of OA. To provide a wide viewpoint to roles of PI3K/AKT/mTOR signaling pathway in osteoarthritis, a comprehensive literature search was performed using PubMed terms 'PI3K OR AKT OR mTOR' and 'osteoarthritis'. This review highlights the role of PI3K/AKT/mTOR signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation, and discusses how this signaling pathway affects development of the disease. We also summarize recent evidences of therapeutic approaches to treat OA by targeting the PI3K/AKT/mTOR pathway, and discuss potential challenges in developing these strategies for clinical treatment of OA.
Collapse
|
Review |
5 |
380 |
5
|
Abstract
The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.
Collapse
|
Review |
9 |
298 |
6
|
Yu G, Boone T, Delaney J, Hawkins N, Kelley M, Ramakrishnan M, McCabe S, Qiu WR, Kornuc M, Xia XZ, Guo J, Stolina M, Boyle WJ, Sarosi I, Hsu H, Senaldi G, Theill LE. APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nat Immunol 2000; 1:252-6. [PMID: 10973284 DOI: 10.1038/79802] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report that the tumor neurosis factor homolog APRIL (a proliferation-inducing ligand) stimulates in vitro proliferation of primary B and T cells and increases spleen weight due to accumulation of B cells in vivo. APRIL functions via binding to BCMA (B cell maturation antigen) and TACI (transmembrane activator and CAML-interactor) and competes with TALL-I (also called BLyS or BAFF) for receptor binding. Soluble BCMA and TACI specifically prevent binding of APRIL and block APRIL-stimulated proliferation of primary B cells. BCMA-Fc also inhibits production of antibodies against keyhole limpet hemocyanin and Pneumovax in mice, indicating that APRIL and/or TALL-I signaling via BCMA and/or TACI are required for generation of humoral immunity. Thus, APRIL-TALL-I and BCMA-TACI form a two ligands-two receptors pathway involved in stimulation of B and T cell function.
Collapse
|
|
25 |
292 |
7
|
Zeitlin C, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, Brinza DE, Kang S, Weigle G, Böttcher S, Böhm E, Burmeister S, Guo J, Köhler J, Martin C, Posner A, Rafkin S, Reitz G. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 2013; 340:1080-4. [PMID: 23723233 DOI: 10.1126/science.1235989] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
287 |
8
|
Kosterman R, Hawkins JD, Guo J, Catalano RF, Abbott RD. The dynamics of alcohol and marijuana initiation: patterns and predictors of first use in adolescence. Am J Public Health 2000; 90:360-6. [PMID: 10705852 PMCID: PMC1446176 DOI: 10.2105/ajph.90.3.360] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES This study, guided by the social development model, examined the dynamic patterns and predictors of alcohol and marijuana use onset. METHODS Survival analysis and complementary log-log regression were used to model hazard rates and etiology of initiation with time-varying covariates. The sample was derived from a longitudinal study of 808 youth interviewed annually from 10 to 16 years of age and at 18 years of age. RESULTS Alcohol initiation rose steeply up to the age of 13 years and then increased more gradually; most participants had initiated by 13 years of age. Marijuana initiation showed a different pattern, with more participants initiating after the age of 13 years. CONCLUSIONS This study showed that: (1) the risk of initiation spans the entire course of adolescent development; (2) young people exposed to others who use substances are at higher risk for early initiation; (3) proactive parents can help delay initiation; and (4) clear family standards and proactive family management are important in delaying alcohol and marijuana use, regardless of how closely bonded a child is to his or her mother.
Collapse
|
research-article |
25 |
265 |
9
|
Liao S, Umekita Y, Guo J, Kokontis JM, Hiipakka RA. Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett 1995; 96:239-43. [PMID: 7585463 DOI: 10.1016/0304-3835(95)03948-v] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human prostate cancer cell lines, PC-3 (androgen-insensitive) and LNCaP 104-R (androgen-repressed) were inoculated subcutaneously into nude mice to produce prostate tumors. Intraperitoneal injection of green tea (-)epigallocatechin-3-gallate but not structurally related catechins, such as (-)epicatechin-3-gallate, inhibited the growth and rapidly reduced the size of human prostate tumors in nude mice. (-)Epigallocatechin-3-gallate also rapidly inhibited the growth of tumor growth formed by the human mammary cancer cell line MCF-7 in nude mice. It is possible that there is a relationship between the high consumption of green tea and the low incidence of prostate and breast cancers in some Asian countries.
Collapse
|
|
30 |
250 |
10
|
Lee H, Veazey R, Williams K, Li M, Guo J, Neipel F, Fleckenstein B, Lackner A, Desrosiers RC, Jung JU. Deregulation of cell growth by the K1 gene of Kaposi's sarcoma-associated herpesvirus. Nat Med 1998; 4:435-40. [PMID: 9546789 DOI: 10.1038/nm0498-435] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At a position equivalent to the gene encoding the saimiri transforming protein (STP) of herpesvirus saimiri (HVS), Kaposi's sarcoma-associated herpesvirus (KSHV) contains a distinct open reading frame called K1. Although KSHV and HVS are related members of the rhadinovirus subgroup of gamma herpesviruses, K1 and STP exhibit no similarity in amino acid sequence or in structural organization. Since STP is required for the oncogenic potential of HVS, we investigated the functional consequence of K1 expression. Expression of the K1 gene in rodent fibroblasts produced morphologic changes and focus formation indicative of transformation. A recombinant herpesvirus in which the STP oncogene of HVS was replaced with K1, immortalized primary T lymphocytes to IL-2 independent growth and induced lymphoma in common marmosets. These results demonstrate the transforming potential of the K1 gene of KSHV.
Collapse
MESH Headings
- Acquired Immunodeficiency Syndrome/complications
- Amino Acid Sequence
- Animals
- Base Sequence
- COS Cells
- Cell Line
- Cell Transformation, Neoplastic
- DNA Primers
- DNA, Viral/genetics
- Genes, Viral
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/pathogenicity
- Herpesvirus 8, Human/genetics
- Humans
- Male
- Molecular Sequence Data
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Open Reading Frames
- Polymerase Chain Reaction
- Rats
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Sarcoma, Kaposi/etiology
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
- Viral Proteins/biosynthesis
- Viral Proteins/chemistry
- Viral Proteins/genetics
Collapse
|
|
27 |
238 |
11
|
Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M, Shen Y, Yu G, Liu J, Xie H, Gucev ZS, Liu S, Yang N, Al-Kateb H, Chen J, Zhang J, Hauser N, Zhang T, Tasic V, Liu P, Su X, Pan X, Liu C, Wang L, Shen J, Shen J, Chen Y, Zhang T, Zhang J, Choy KW, Wang J, Wang Q, Li S, Zhou W, Guo J, Wang Y, Zhang C, Zhao H, An Y, Zhao Y, Wang J, Liu Z, Zuo Y, Tian Y, Weng X, Sutton VR, Wang H, Ming Y, Kulkarni S, Zhong TP, Giampietro PF, Dunwoodie SL, Cheung SW, Zhang X, Jin L, Lupski JR, Qiu G, Zhang F. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med 2015; 372:341-50. [PMID: 25564734 PMCID: PMC4326244 DOI: 10.1056/nejmoa1406829] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Congenital scoliosis is a common type of vertebral malformation. Genetic susceptibility has been implicated in congenital scoliosis. METHODS We evaluated 161 Han Chinese persons with sporadic congenital scoliosis, 166 Han Chinese controls, and 2 pedigrees, family members of which had a 16p11.2 deletion, using comparative genomic hybridization, quantitative polymerase-chain-reaction analysis, and DNA sequencing. We carried out tests of replication using an additional series of 76 Han Chinese persons with congenital scoliosis and a multicenter series of 42 persons with 16p11.2 deletions. RESULTS We identified a total of 17 heterozygous TBX6 null mutations in the 161 persons with sporadic congenital scoliosis (11%); we did not observe any null mutations in TBX6 in 166 controls (P<3.8×10(-6)). These null alleles include copy-number variants (12 instances of a 16p11.2 deletion affecting TBX6) and single-nucleotide variants (1 nonsense and 4 frame-shift mutations). However, the discordant intrafamilial phenotypes of 16p11.2 deletion carriers suggest that heterozygous TBX6 null mutation is insufficient to cause congenital scoliosis. We went on to identify a common TBX6 haplotype as the second risk allele in all 17 carriers of TBX6 null mutations (P<1.1×10(-6)). Replication studies involving additional persons with congenital scoliosis who carried a deletion affecting TBX6 confirmed this compound inheritance model. In vitro functional assays suggested that the risk haplotype is a hypomorphic allele. Hemivertebrae are characteristic of TBX6-associated congenital scoliosis. CONCLUSIONS Compound inheritance of a rare null mutation and a hypomorphic allele of TBX6 accounted for up to 11% of congenital scoliosis cases in the series that we analyzed. (Funded by the National Basic Research Program of China and others.).
Collapse
|
Multicenter Study |
10 |
231 |
12
|
Stathopoulos-Gerontides A, Guo JJ, Cyert MS. Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev 1999; 13:798-803. [PMID: 10197980 PMCID: PMC316598 DOI: 10.1101/gad.13.7.798] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calcineurin, a Ca2+/calmodulin dependent protein phosphatase, regulates Ca2+-dependent processes in a wide variety of cells. In the yeast, Saccharomyces cerevisiae, calcineurin effects Ca2+-dependent changes in gene expression through regulation of the Crz1p transcription factor. We show here that calcineurin dephosphorylates Crz1p and that this results in translocation of Crz1p to the nucleus. We identify a region of Crz1p that is required for calcineurin-dependent regulation of its phosphorylation, localization, and activity, and show that this region has significant sequence simlarity to a portion of NF-AT, a family of mammalian transcription factors whose localization is also regulated by calcineurin. Thus, the mechanism of Ca2+/calcineurin-dependent signaling shows remarkable conservation between yeast and mammalian cells.
Collapse
|
research-article |
26 |
202 |
13
|
Fisher SP, Tomich AW, Lovera SO, Kleinsasser JF, Guo J, Asay MJ, Nelson HM, Lavallo V. Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage. Chem Rev 2019; 119:8262-8290. [PMID: 30707011 DOI: 10.1021/acs.chemrev.8b00551] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Classically closo-carborane anions, particularly [HCB11H11]- and [HCB9H9]-, and their derivatives have primarily been used as weakly coordinating anions to isolate reactive intermediates, platforms for stoichiometric and catalytic functionalization, counteranions for simple Lewis acid catalysis, and components of materials like liquid crystals. The aim of this article is to educate the reader on the contemporary nonclassical applications of these anions. Specifically, this review will cover new directions in main group catalysis utilized to achieve some of the most challenging catalytic reactions such as C-F, C-H, and C-C functionalizations that are difficult or impossible to realize with transition metals. In addition, the review will cover the utilization of the clusters as dianionic C σ-bound ligands for coordination chemistry, ligand substituents for coordination chemistry and advanced catalyst design, and covalently bound spectator substituents to stabilize radicals. Furthermore, their applications as solution-based and solid-state electrolytes for Li, Na, and Mg batteries will be discussed.
Collapse
|
Journal Article |
6 |
194 |
14
|
Guo J, Li Y, Zhu S, Chen Z, Liu Q, Zhang D, Moon WJ, Song DM. Synthesis of WO3@Graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv 2012. [DOI: 10.1039/c1ra00621e] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
|
13 |
193 |
15
|
Senaldi G, Varnum BC, Sarmiento U, Starnes C, Lile J, Scully S, Guo J, Elliott G, McNinch J, Shaklee CL, Freeman D, Manu F, Simonet WS, Boone T, Chang MS. Novel neurotrophin-1/B cell-stimulating factor-3: a cytokine of the IL-6 family. Proc Natl Acad Sci U S A 1999; 96:11458-63. [PMID: 10500198 PMCID: PMC18055 DOI: 10.1073/pnas.96.20.11458] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/1999] [Indexed: 11/18/2022] Open
Abstract
We have identified a cytokine of the IL-6 family and named it novel neurotrophin-1/B cell-stimulating factor-3 (NNT-1/BSF-3). NNT-1/BSF-3 cDNA was cloned from activated Jurkat human T cell lymphoma cells. Its sequence predicts a 225-aa protein with a 27-aa signal peptide, a molecular mass of 22 kDa in mature form, and the highest homology to cardiotrophin-1 and ciliary neurotrophic factor. The gene for NNT-1/BSF-3 is on chromosome 11q13. A murine equivalent to NNT-1/BSF-3 also was identified, which shows 96% homology to human NNT-1/BSF-3. NNT-1/BSF-3 mRNA is found mainly in lymph nodes and spleen. NNT-1/BSF-3 induces tyrosine phosphorylation of glycoprotein 130 (gp130), leukemia inhibitory factor receptor beta, and signal transducer and activator of transcription 3 in the SK-N-MC human neuroblastoma cells. NNT-1/BSF-3 shows activities typical of IL-6 family members. In vitro, it supports the survival of chicken embryo motor and sympathetic neurons. In mice, it induces serum amyloid A, potentiates the induction by IL-1 of corticosterone and IL-6, and causes body weight loss and B cell hyperplasia with serum IgG and IgM increase. NNT-1/BSF-3 is a gp130 activator with B-cell stimulating capability.
Collapse
|
research-article |
26 |
186 |
16
|
Guo J, Liu X, Jiang N, Yetisen AK, Yuk H, Yang C, Khademhosseini A, Zhao X, Yun SH. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10244-10249. [PMID: 27714887 PMCID: PMC5148684 DOI: 10.1002/adma.201603160] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/14/2016] [Indexed: 05/17/2023]
Abstract
A core-clad fiber made of elastic, tough hydrogels is highly stretchable while guiding light. Fluorescent dyes are easily doped into the hydrogel fiber by diffusion. When stretched, the transmission spectrum of the fiber is altered, enabling the strain to be measured and also its location.
Collapse
|
research-article |
9 |
186 |
17
|
Ivanov D, Kwak YT, Guo J, Gaynor RB. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol Cell Biol 2000; 20:2970-83. [PMID: 10757782 PMCID: PMC85557 DOI: 10.1128/mcb.20.9.2970-2983.2000] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SPT5 and its binding partner SPT4 regulate transcriptional elongation by RNA polymerase II. SPT4 and SPT5 are involved in both 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB)-mediated transcriptional inhibition and the activation of transcriptional elongation by the human immunodeficiency virus type 1 (HIV-1) Tat protein. Recent data suggest that P-TEFb, which is composed of CDK9 and cyclin T1, is also critical in regulating transcriptional elongation by SPT4 and SPT5. In this study, we analyze the domains of SPT5 that regulate transcriptional elongation in the presence of either DRB or the HIV-1 Tat protein. We demonstrate that SPT5 domains that bind SPT4 and RNA polymerase II, in addition to a region in the C terminus of SPT5 that contains multiple heptad repeats and is designated CTR1, are critical for in vitro transcriptional repression by DRB and activation by the Tat protein. Furthermore, the SPT5 CTR1 domain is a substrate for P-TEFb phosphorylation. These results suggest that C-terminal repeats in SPT5, like those in the RNA polymerase II C-terminal domain, are sites for P-TEFb phosphorylation and function in modulating its transcriptional elongation properties.
Collapse
|
research-article |
25 |
176 |
18
|
Geiss G, Jin G, Guo J, Bumgarner R, Katze MG, Sen GC. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem 2001; 276:30178-82. [PMID: 11487589 DOI: 10.1074/jbc.c100137200] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double-stranded (ds) RNA, a common component of virus-infected cells, is a potent inducer of the type I interferon and other cellular genes. For identifying the full repertoire of human dsRNA-regulated genes, a cDNA microarray hybridization screening was conducted using mRNA from dsRNA-treated GRE cells. Because these cells lack all type I interferon genes, the possibility of gene induction by autocrine actions of interferon was eliminated. Our screen identified 175 dsRNA-stimulated genes (DSG) and 95 dsRNA-repressed genes. A subset of the DSGs was also induced by different inflammatory cytokines and viruses demonstrating interconnections among disparate signaling pathways. Functionally, the DSGs encode proteins involved in signaling, apoptosis, RNA synthesis, protein synthesis and processing, cell metabolism, transport, and structure. Induction of such a diverse family of genes by dsRNA has major implications in host-virus interactions and in the use of RNA(i) technology for functional ablation of specific genes.
Collapse
|
|
24 |
176 |
19
|
Turner J, Anderson R, Guo J, Beraud C, Fletterick R, Sakowicz R. Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker. J Biol Chem 2001; 276:25496-502. [PMID: 11328809 DOI: 10.1074/jbc.m100395200] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Success of mitosis depends upon the coordinated and regulated activity of many cellular factors, including kinesin motor proteins, which are required for the assembly and function of the mitotic spindle. Eg5 is a kinesin implicated in the formation of the bipolar spindle and its movement prior to and during anaphase. We have determined the crystal structure of the Eg5 motor domain with ADP-Mg bound. This structure revealed a new intramolecular binding site of the neck-linker. In other kinesins, the neck-linker has been shown to be a critical mechanical element for force generation. The neck-linker of conventional kinesin is believed to undergo an ordered-to-disordered transition as it translocates along a microtubule. The structure of Eg5 showed an ordered neck-linker conformation in a position never observed previously. The docking of the neck-linker relies upon residues conserved only in the Eg5 subfamily of kinesin motors. Based on this new information, we suggest that the neck-linker of Eg5 may undergo an ordered-to-ordered transition during force production. This ratchet-like mechanism is consistent with the biological activity of Eg5.
Collapse
|
|
24 |
175 |
20
|
Gao B, Guo J, She C, Shu A, Yang M, Tan Z, Yang X, Guo S, Feng G, He L. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. Nat Genet 2001; 28:386-388. [PMID: 11455389 DOI: 10.1038/ng577] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brachydactyly type A-1 (BDA-1; MIM 112500) is characterized by shortening or missing of the middle phalanges (Fig. 1a). It was first identified by Farabee in 1903 (ref. 2), is the first recorded example of a human anomaly with Mendelian autosomal-dominant inheritance and, as such, is cited in most genetic and biological textbooks. Here we show that mutations in IHH, which encodes Indian hedgehog, cause BDA-1. We have identified three heterozygous missense mutations in the region encoding the amino-terminal signaling domain in all affected members of three large, unrelated families. The three mutant amino acids, which are conserved across all vertebrates and invertebrates studied so far, are predicted to be adjacent on the surface of IHH.
Collapse
|
|
24 |
171 |
21
|
Guo J, Hui DJ, Merrick WC, Sen GC. A new pathway of translational regulation mediated by eukaryotic initiation factor 3. EMBO J 2000; 19:6891-9. [PMID: 11118224 PMCID: PMC305884 DOI: 10.1093/emboj/19.24.6891] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We report a new pathway of translation regulation that may operate in interferon-treated or virus-infected mammalian cells. This pathway is activated by P56, a protein whose synthesis is strongly induced by interferons or double-stranded RNA. Using a yeast two-hybrid screen, we identified the P48 subunit of the mammalian translation initiation factor eIF-3 as a protein that interacts with P56. The P56-P48 interaction was confirmed in human cells by co-immunoprecipitation assays and confocal microscopy. Gel filtration assays revealed that P56 binds to the large eIF-3 complex that contains P48. Purified recombinant P56 inhibited in vitro translation of reporter mRNAs in a dose-dependent fashion, and that inhibition was reversed by the addition of purified eIF-3. In vivo, expression of transfected P56 or induction of the endogenous P56 by interferon caused an inhibition of overall cellular protein synthesis and the synthesis of a transfected reporter protein. As expected, a P56 mutant that does not interact with P48 and eIF-3 failed to inhibit protein synthesis in vitro and in vivo.
Collapse
|
research-article |
25 |
169 |
22
|
Guo J, Henderson LE, Bess J, Kane B, Levin JG. Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA. J Virol 1997; 71:5178-88. [PMID: 9188585 PMCID: PMC191753 DOI: 10.1128/jvi.71.7.5178-5188.1997] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During the first strand transfer in reverse transcription, minus-strand strong-stop DNA [(-) SSDNA] is annealed to the 3' end of the acceptor RNA in a reaction mediated by base-pairing between terminal repeat sequences in the RNA and their complement in the DNA. The large stem-loop structure in the repeat region known as TAR could interfere with this annealing reaction. We have developed an in vitro human immunodeficiency virus type 1 (HIV-1) system to investigate the effect of TAR on strand transfer. Mutational analysis demonstrates that the presence of TAR in the donor and acceptor templates inhibits strand transfer and is correlated with extensive synthesis of heterogeneous DNAs formed by self-priming from (-) SSDNA. These DNAs are not precursors to the transfer product. Interestingly, products of self-priming are not detected in HIV-1 endogenous reactions; this suggests that virions contain a component which prevents self-priming. Our results show that the viral nucleocapsid protein (NC), which can destabilize secondary structures, drastically reduces self-priming and dramatically increases the efficiency of strand transfer. In addition, the data suggest that the ability to eliminate self-priming is a general property of NC which is manifested during reverse transcriptase pausing at sites of secondary structure in the template. We conclude that this activity of NC is critical for achieving highly efficient and specific viral DNA synthesis. Our findings raise the possibility that inactivation of NC could provide a new approach for targeting reverse transcription in anti-HIV therapy.
Collapse
|
research-article |
28 |
169 |
23
|
Guo J, Wu T, Anderson J, Kane BF, Johnson DG, Gorelick RJ, Henderson LE, Levin JG. Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. J Virol 2000; 74:8980-8. [PMID: 10982342 PMCID: PMC102094 DOI: 10.1128/jvi.74.19.8980-8988.2000] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) has two zinc fingers, each containing the invariant metal ion binding residues CCHC. Recent reports indicate that mutations in the CCHC motifs are deleterious for reverse transcription in vivo. To identify reverse transcriptase (RT) reactions affected by such changes, we have probed zinc finger functions in NC-dependent RT-catalyzed HIV-1 minus- and plus-strand transfer model systems. Our approach was to examine the activities of wild-type NC and a mutant in which all six cysteine residues were replaced by serine (SSHS NC); this mutation severely disrupts zinc coordination. We find that the zinc fingers contribute to the role of NC in complete tRNA primer removal from minus-strand DNA during plus-strand transfer. Annealing of the primer binding site sequences in plus-strand strong-stop DNA [(+) SSDNA] to its complement in minus-strand acceptor DNA is not dependent on NC zinc fingers. In contrast, the rate of annealing of the complementary R regions in (-) SSDNA and 3' viral RNA during minus-strand transfer is approximately eightfold lower when SSHS NC is used in place of wild-type NC. Moreover, unlike wild-type NC, SSHS NC has only a small stimulatory effect on minus-strand transfer and is essentially unable to block TAR-induced self-priming from (-) SSDNA. Our results strongly suggest that NC zinc finger structures are needed to unfold highly structured RNA and DNA strand transfer intermediates. Thus, it appears that in these cases, zinc finger interactions are important components of NC nucleic acid chaperone activity.
Collapse
|
research-article |
25 |
162 |
24
|
Lee H, Guo J, Li M, Choi JK, DeMaria M, Rosenzweig M, Jung JU. Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus. Mol Cell Biol 1998; 18:5219-28. [PMID: 9710606 PMCID: PMC109107 DOI: 10.1128/mcb.18.9.5219] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/1998] [Accepted: 06/12/1998] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is consistently identified in Kaposi's sarcoma and body cavity-based lymphoma. KSHV encodes a transforming protein called K1 which is structurally similar to lymphocyte receptors. We have found that a highly conserved region of the cytoplasmic domain of K1 resembles the sequence of immunoreceptor tyrosine-based activation motifs (ITAMs). To demonstrate the signal-transducing activity of K1, we constructed a chimeric protein in which the cytoplasmic tail of the human CD8alpha polypeptide was replaced with that of KSHV K1. Expression of the CD8-K1 chimera in B cells induced cellular tyrosine phosphorylation and intracellular calcium mobilization upon stimulation with an anti-CD8 antibody. Mutational analyses showed that the putative ITAM of K1 was required for its signal-transducing activity. Furthermore, tyrosine residues of the putative ITAM of K1 were phosphorylated upon stimulation, and this allowed subsequent binding of SH2-containing proteins. These results demonstrate that the KSHV transforming protein K1 contains a functional ITAM in its cytoplasmic domain and that it can transduce signals to induce cellular activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- COS Cells
- Calcium/metabolism
- Cell Line
- Conserved Sequence
- Herpesvirus 8, Human/metabolism
- Humans
- Models, Biological
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Signal Transduction
- Transfection
- Tyrosine
- Viral Proteins/biosynthesis
- Viral Proteins/chemistry
- Viral Proteins/metabolism
Collapse
|
research-article |
27 |
161 |
25
|
Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci U S A 1996; 93:15233-8. [PMID: 8986793 PMCID: PMC26386 DOI: 10.1073/pnas.93.26.15233] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To determine the role of PTHrP in fetal calcium metabolism, blood calcium was measured in mice homozygous (HOM) for deletion of the PTHrP gene. On day 18.5 of gestation, ionized calcium and the maternal-fetal calcium gradient were significantly reduced in HOM PTHrP-ablated fetuses compared with that of their littermates. To assess the placental contribution to the effect of PTHrP, 45Ca and 51Cr-EDTA (as a blood diffusional marker) were administered by intracardiac injection to pregnant, heterozygous dams on day 17.5 of gestation. Five minutes after the injection, whole fetal 45Ca accumulation was significantly decreased in HOM PTHrP-ablated fetuses compared with that of their littermates. Next, two fetuses from each litter were injected in utero with fragments of PTHrP, PTH, or diluent 1 h before administering 45Ca and 51Cr to the dam. PTHrP-(1-86) and PTHrP-(67-86) significantly increased relative 45Ca accumulation in HOM PTHrP-ablated fetuses, but PTHrP-(1-34), PTH-(1-84), and the diluent had no effect. Finally, similar studies were performed on fetal mice that lacked the PTH/PTHrP receptor gene. Ionized calcium was significantly reduced in HOM PTH/PTHrP receptor-ablated fetuses. However, 5 min after maternal injection of 45Ca and 51Cr, relative accumulation of 45Ca was significantly increased in these fetuses. It was concluded that PTHrP is an important regulator of fetal blood calcium and placental calcium transport. In addition, the bioactivity of PTHrP for placental calcium transport is specified by a mid-molecular region that does not use the PTH/PTHrP receptor.
Collapse
|
research-article |
29 |
159 |