1
|
MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 2014; 102:3586-616. [PMID: 24889800 DOI: 10.1021/jp973084f] [Citation(s) in RCA: 11127] [Impact Index Per Article: 1011.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent-solvent, solvent-solute, and solute-solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volumes, and crystal pressures and structures were used in the optimization. The resulting protein parameters were tested by applying them to noncyclic tripeptide crystals, cyclic peptide crystals, and the proteins crambin, bovine pancreatic trypsin inhibitor, and carbonmonoxy myoglobin in vacuo and in crystals. A detailed analysis of the relationship between the alanine dipeptide potential energy surface and calculated protein φ, χ angles was made and used in optimizing the peptide group torsional parameters. The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals. Extensive comparisons between molecular dynamics simulations and experimental data for polypeptides and proteins were performed for both structural and dynamic properties. Energy minimization and dynamics simulations for crystals demonstrate that the latter are needed to obtain meaningful comparisons with experimental crystal structures. The presented parameters, in combination with the previously published CHARMM all-atom parameters for nucleic acids and lipids, provide a consistent set for condensed-phase simulations of a wide variety of molecules of biological interest.
Collapse
|
Journal Article |
11 |
11127 |
2
|
Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995. [DOI: 10.1126/science.270.5243.1789] [Citation(s) in RCA: 8612] [Impact Index Per Article: 287.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
30 |
8612 |
3
|
Brooks B, Brooks C, MacKerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York D, Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545-614. [PMID: 19444816 PMCID: PMC2810661 DOI: 10.1002/jcc.21287] [Citation(s) in RCA: 6372] [Impact Index Per Article: 398.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
6372 |
4
|
Sohrabi K, Gao J, Ailawadhi V, Pottie G. Protocols for self-organization of a wireless sensor network. ACTA ACUST UNITED AC 2000. [DOI: 10.1109/98.878532] [Citation(s) in RCA: 1170] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
25 |
1170 |
5
|
Abstract
A tissue engineering approach was developed to produce arbitrary lengths of vascular graft material from smooth muscle and endothelial cells that were derived from a biopsy of vascular tissue. Bovine vessels cultured under pulsatile conditions had rupture strengths greater than 2000 millimeters of mercury, suture retention strengths of up to 90 grams, and collagen contents of up to 50 percent. Cultured vessels also showed contractile responses to pharmacological agents and contained smooth muscle cells that displayed markers of differentiation such as calponin and myosin heavy chains. Tissue-engineered arteries were implanted in miniature swine, with patency documented up to 24 days by digital angiography.
Collapse
|
|
26 |
1120 |
6
|
Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 2000; 97:13354-9. [PMID: 11078524 PMCID: PMC27228 DOI: 10.1073/pnas.240347797] [Citation(s) in RCA: 714] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2000] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disorder in which familial-linked genes have provided novel insights into the pathogenesis of this disorder. Mutations in Parkin, a ring-finger-containing protein of unknown function, are implicated in the pathogenesis of autosomal recessive familial Parkinson's disease. Here, we show that Parkin binds to the E2 ubiquitin-conjugating human enzyme 8 (UbcH8) through its C-terminal ring-finger. Parkin has ubiquitin-protein ligase activity in the presence of UbcH8. Parkin also ubiquitinates itself and promotes its own degradation. We also identify and show that the synaptic vesicle-associated protein, CDCrel-1, interacts with Parkin through its ring-finger domains. Furthermore, Parkin ubiquitinates and promotes the degradation of CDCrel-1. Familial-linked mutations disrupt the ubiquitin-protein ligase function of Parkin and impair Parkin and CDCrel-1 degradation. These results suggest that Parkin functions as an E3 ubiquitin-protein ligase through its ring domains and that it may control protein levels via ubiquitination. The loss of Parkin's ubiquitin-protein ligase function in familial-linked mutations suggests that this may be the cause of familial autosomal recessive Parkinson's disease.
Collapse
|
research-article |
25 |
714 |
7
|
Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001; 169:12-20. [PMID: 11340257 DOI: 10.1159/000047856] [Citation(s) in RCA: 687] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate along different mesenchymal lineages including those forming bone, cartilage, tendon, fat, muscle and marrow stroma that supports hematopoiesis. This differentiation potential makes MSCs candidates for cell-based therapeutic strategies for mesenchymal tissue injuries and for hematopoietic disorders by both local and systemic application. In the present study, rat marrow-derived MSCs were ex vivo culture-expanded, labeled with (111)In-oxine, and infused into syngeneic rats via intra-artery (i.a.), intravenous (i.v.) and intraperitoneal cavity (i.p.) infusions. In addition, for i.a. and i.v. infusions, a vasodilator, sodium nitroprusside, was administered prior to the cell infusion and examined for its effect on MSC circulation. The dynamic distribution of infused MSCs was monitored by real-time imaging using a gamma camera immediately after infusion and at 48 h postinfusion. After 48 h, radioactivity in excised organs, including liver, lungs, kidneys, spleen and long bones, was measured in a gamma well counter and expressed as a percentage of injected doses. After both i.a. and i.v. infusion, radioactivity associated with MSCs was detected primarily in the lungs and then secondarily in the liver and other organs. When sodium nitroprusside was used, more labeled MSCs cleared the lungs resulting in a larger proportion detected in the liver. Most importantly, the homing of labeled MSCs to the marrow of long bones was significantly increased by the pretreatment with vasodilator. These results indicate multiple homing sites for injected MSCs and that the distribution of MSCs can be influenced by administration of vasodilator.
Collapse
|
|
24 |
687 |
8
|
Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X, Wu H. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 1999; 96:6199-204. [PMID: 10339565 PMCID: PMC26859 DOI: 10.1073/pnas.96.11.6199] [Citation(s) in RCA: 595] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1998] [Accepted: 03/29/1999] [Indexed: 11/18/2022] Open
Abstract
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
Collapse
|
research-article |
26 |
595 |
9
|
Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea 1998; 17:584-9. [PMID: 9820935 DOI: 10.1097/00003226-199811000-00002] [Citation(s) in RCA: 544] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Most dry-eye symptoms result from an abnormal, nonlubricative ocular surface that increases shear forces under the eyelids and diminishes the ability of the ocular surface to respond to environmental challenges. This ocular-surface dysfunction may result from immunocompromise due to systemic autoimmune disease or may occur locally from a decrease in systemic androgen support to the lacrimal gland as seen in aging, most frequently in the menopausal female. HYPOTHESIS Components of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland, and interconnecting innervation act as a functional unit. When one portion is compromised, normal lacrimal support of the ocular surface is impaired. Resulting immune-based inflammation can lead to lacrimal gland and neural dysfunction. This progression yields the OS symptoms associated with dry eye. THERAPY Restoration of lacrimal function involves resolution of lymphocytic activation and inflammation. This has been demonstrated in the MRL/lpr mouse using systemic androgens or cyclosporine and in the dry-eye dog using topical cyclosporine. The efficacy of cyclosporine may be due to its immunomodulatory and antiinflammatory (phosphatase inhibitory capability) functions on the ocular surface, resulting in a normalization of nerve traffic. CONCLUSION Although the etiologies of dry eye are varied, common to all ocular-surface disease is an underlying cytokine/receptor-mediated inflammatory process. By treating this process, it may be possible to normalize the ocular surface/lacrimal neural reflex and facilitate ocular surface healing.
Collapse
|
Comparative Study |
27 |
544 |
10
|
Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 2001; 7:1144-50. [PMID: 11590439 DOI: 10.1038/nm1001-1144] [Citation(s) in RCA: 543] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkinson disease is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of intracytoplasmic-ubiquitinated inclusions (Lewy bodies). Mutations in alpha-synuclein (A53T, A30P) and parkin cause familial Parkinson disease. Both these proteins are found in Lewy bodies. The absence of Lewy bodies in patients with parkin mutations suggests that parkin might be required for the formation of Lewy bodies. Here we show that parkin interacts with and ubiquitinates the alpha-synuclein-interacting protein, synphilin-1. Co-expression of alpha-synuclein, synphilin-1 and parkin result in the formation of Lewy-body-like ubiquitin-positive cytosolic inclusions. We further show that familial-linked mutations in parkin disrupt the ubiquitination of synphilin-1 and the formation of the ubiquitin-positive inclusions. These results provide a molecular basis for the ubiquitination of Lewy-body-associated proteins and link parkin and alpha-synuclein in a common pathogenic mechanism through their interaction with synphilin-1.
Collapse
|
|
24 |
543 |
11
|
Klein EA, Richards D, Cohn A, Tummala M, Lapham R, Cosgrove D, Chung G, Clement J, Gao J, Hunkapiller N, Jamshidi A, Kurtzman KN, Seiden MV, Swanton C, Liu MC. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann Oncol 2021; 32:1167-1177. [PMID: 34176681 DOI: 10.1016/j.annonc.2021.05.806] [Citation(s) in RCA: 476] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A multi-cancer early detection (MCED) test used to complement existing screening could increase the number of cancers detected through population screening, potentially improving clinical outcomes. The Circulating Cell-free Genome Atlas study (CCGA; NCT02889978) was a prospective, case-controlled, observational study and demonstrated that a blood-based MCED test utilizing cell-free DNA (cfDNA) sequencing in combination with machine learning could detect cancer signals across multiple cancer types and predict cancer signal origin (CSO) with high accuracy. The objective of this third and final CCGA substudy was to validate an MCED test version further refined for use as a screening tool. PATIENTS AND METHODS This pre-specified substudy included 4077 participants in an independent validation set (cancer: n = 2823; non-cancer: n = 1254, non-cancer status confirmed at year-one follow-up). Specificity, sensitivity, and CSO prediction accuracy were measured. RESULTS Specificity for cancer signal detection was 99.5% [95% confidence interval (CI): 99.0% to 99.8%]. Overall sensitivity for cancer signal detection was 51.5% (49.6% to 53.3%); sensitivity increased with stage [stage I: 16.8% (14.5% to 19.5%), stage II: 40.4% (36.8% to 44.1%), stage III: 77.0% (73.4% to 80.3%), stage IV: 90.1% (87.5% to 92.2%)]. Stage I-III sensitivity was 67.6% (64.4% to 70.6%) in 12 pre-specified cancers that account for approximately two-thirds of annual USA cancer deaths and was 40.7% (38.7% to 42.9%) in all cancers. Cancer signals were detected across >50 cancer types. Overall accuracy of CSO prediction in true positives was 88.7% (87.0% to 90.2%). CONCLUSION In this pre-specified, large-scale, clinical validation substudy, the MCED test demonstrated high specificity and accuracy of CSO prediction and detected cancer signals across a wide diversity of cancers. These results support the feasibility of this blood-based MCED test as a complement to existing single-cancer screening tests. CLINICAL TRIAL NUMBER NCT02889978.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
476 |
12
|
Gao J, Xia X. A priori evaluation of aqueous polarization effects through Monte Carlo QM-MM simulations. Science 1992; 258:631-5. [PMID: 1411573 DOI: 10.1126/science.1411573] [Citation(s) in RCA: 457] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Monte Carlo quantum mechanical-molecular mechanical (QM-MM) simulation method was used to determine the contributions of the solvent polarization effect to the total interaction energies between solute and solvent for amino acid side chains and nucleotide bases in aqueous solution. In the present AM1-TIP3P approach, the solute molecule is characterized by valence electrons and nucleus cores with Hartree-Fock theory incorporating explicit solvent effects into the total Hamiltonian, while the solvent is approximated by the three-point charge TIP3P model. The polarization energy contributes 10 to 20 percent of the total electrostatic energy in these systems. The performance of the hybrid AM1-TIP3P model was further validated by consideration of bimolecular complexes with water and by computation of the free energies of solvation of organic molecules using statistical perturbation theory. Excellent agreement with ab initio 6-31G(d) results and experimental solvation free energies was obtained.
Collapse
|
|
33 |
457 |
13
|
Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. PLANT PHYSIOLOGY 2001; 126:1438-48. [PMID: 11500543 PMCID: PMC117144 DOI: 10.1104/pp.126.4.1438] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2001] [Revised: 04/11/2001] [Accepted: 05/15/2001] [Indexed: 05/18/2023]
Abstract
One of the most important functions of the plant hormone abscisic acid (ABA) is to induce stomatal closure by reducing the turgor of guard cells under water deficit. Under environmental stresses, hydrogen peroxide (H(2)O(2)), an active oxygen species, is widely generated in many biological systems. Here, using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide evidence that H(2)O(2) may function as an intermediate in ABA signaling in Vicia faba guard cells. H(2)O(2) inhibited induced closure of stomata, and this effect was reversed by ascorbic acid at concentrations lower than 10(-5) M. Further, ABA-induced stomatal closure also was abolished partly by addition of exogenous catalase (CAT) and diphenylene iodonium (DPI), which are an H(2)O(2) scavenger and an NADPH oxidase inhibitor, respectively. Time course experiments of single-cell assays based on the fluorescent probe dichlorofluorescein showed that the generation of H(2)O(2) was dependent on ABA concentration and an increase in the fluorescence intensity of the chloroplast occurred significantly earlier than within the other regions of guard cells. The ABA-induced change in fluorescence intensity in guard cells was abolished by the application of CAT and DPI. In addition, ABA microinjected into guard cells markedly induced H(2)O(2) production, which preceded stomatal closure. These effects were abolished by CAT or DPI micro-injection. Our results suggest that guard cells treated with ABA may close the stomata via a pathway with H(2)O(2) production involved, and H(2)O(2) may be an intermediate in ABA signaling.
Collapse
|
research-article |
24 |
399 |
14
|
Ren J, Semenkovich C, Gulve E, Gao J, Holloszy J. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36636-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
|
31 |
284 |
15
|
Cohen H, Levy RJ, Gao J, Fishbein I, Kousaev V, Sosnowski S, Slomkowski S, Golomb G. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 2000; 7:1896-905. [PMID: 11127577 DOI: 10.1038/sj.gt.3301318] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sustained release polymeric gene delivery systems offer increased resistance to nuclease degradation, increased amounts of plasmid DNA (pDNA) uptake, and the possibility of control in dosing and sustained duration of pDNA administration. Furthermore, such a system lacks the inherent problems associated with viral vectors. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) polymer was used to enacapsulate pDNA (alkaline phosphatase, AP, a reporter gene) in submicron size particles. Gene expression mediated by the nanoparticles (NP) was evaluated in vitro and in vivo in comparison to cationic-liposome delivery. Nano size range (600 nm) pDNA-loaded in poly(DL-lactide-co-glycolide) polymer particles with high encapsulation efficiency (70%) were formulated, exhibiting sustained release of pDNA of over a month. The entrapped plasmid maintained its structural and functional integrity. In vitro transfection by pDNA-NP resulted in significantly higher expression levels in comparison to naked pDNA. Furthermore, AP levels increased when the transfection time was extended, indicating sustained activity of pDNA. However, gene expression was significantly lower in comparison with standard liposomal transfection. Seven days after i.m. injections in rats, naked pDNA and pDNA-NP were found to be significantly more potent (1-2 orders of magnitude) than liposomal pDNA. Plasmid DNA-NP treatment exhibited increased AP expression after 7 and 28 days indicating sustained activity of the NP.
Collapse
|
Comparative Study |
25 |
277 |
16
|
Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 1998; 193 ( Pt 2):161-78. [PMID: 9827632 PMCID: PMC1467836 DOI: 10.1046/j.1469-7580.1998.19320161.x] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The menisci and their insertions into bone (entheses) represent a functional unit. Thanks to their firm entheses, the menisci are able to distribute loads and therefore reduce the stresses on the tibia, a function which is regarded essential for cartilage protection and prevention of osteoarthrosis. The tissue of the hypocellular meniscal body consists mainly of water and a dense elaborate type I collagen network with a predominantly circumferential alignment. The content of different collagens, proteoglycans and nonproteoglycan proteins shows significant regional variations probably reflecting functional adaptation. The meniscal horns are attached via meniscal insertional ligaments mainly to tibial bone. At the enthesis, the fibres of the insertional ligaments attach to bone via uncalcified and calcified fibrocartilages. This anatomical configuration of gradual transition from soft to hard tissue, which is identical to other ligament entheses, is certainly essential for normal mechanical function and probably protects this vulnerable transition between 2 biomechanically different tissues from failure. Clinical treatment of meniscal tears needs to be based on these special anatomical and functional characteristics. Partial meniscectomy will preserve some of the load distribution function of the meniscus only when the meniscal body enthesis entity is preserved. Repair of peripheral longitudinal tears will heal and probably preserve the load distribution function of the meniscus, whereas radial tears through the whole meniscal periphery or more central and complex tears may be induced to heal, but probably do not preserve the load distribution function. There is no proof that replacement of the meniscus with an allograft can reestablish some of the important meniscal functions, and thereby prevent or reduce the development of osteoarthrosis which is common after meniscectomy. After implantation, major problems are the remodelling of the graft to inferior structural, biochemical and mechanical properties and its insufficient fixation to bone which fails to duplicate a normal anatomical configuration and therefore a functional meniscal enthesis.
Collapse
|
review-article |
27 |
265 |
17
|
Wickham LA, Gao J, Toda I, Rocha EM, Ono M, Sullivan DA. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. ACTA OPHTHALMOLOGICA SCANDINAVICA 2000; 78:146-53. [PMID: 10794246 DOI: 10.1034/j.1600-0420.2000.078002146.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE Previous research has demonstrated that sex steroids exert a significant influence on the structure and function of numerous ocular tissues. To begin to explore the underlying basis of this hormone action, we examined whether various anterior and posterior tissues of the eye contain androgen, estrogen and progesterone receptor mRNAs. METHODS Tissue samples were obtained from adult male and female rats, rabbits and humans, processed for the isolation of total RNA and analyzed by RT-PCR, agarose gel electrophoresis and Southern blot hybridization. All PCR amplifications included positive and negative controls. RESULTS Our findings showed that androgen, estrogen and/or progesterone receptor mRNAs are present in the lacrimal gland, lacrimal gland acinar epithelial cells, meibomian gland, lid, palpebral and bulbar conjunctivae, cornea, iris/ciliary body, lens, retina/uvea, retina/choroid and retinal pigment epithelial cells of rats, rabbits or humans. CONCLUSIONS Our findings demonstrate that sex steroid receptor mRNAs exist in a variety of ocular tissues and suggest that these sites may represent target organs for androgens, estrogens and/or progestins.
Collapse
|
|
25 |
247 |
18
|
Gao J, Morrison DC, Parmely TJ, Russell SW, Murphy WJ. An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem 1997; 272:1226-30. [PMID: 8995425 DOI: 10.1074/jbc.272.2.1226] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mouse macrophages can be stimulated by interferon (IFN)-gamma and bacterial lipopolysaccharide (LPS) to produce nitric oxide (NO) as the result of expression of the inducible NO synthase (iNOS; EC 1.14.13.39) gene. The iNOS gene promoter contains a candidate gamma-interferon-activated site (GAS). In transfection studies reported here, it was demonstrated that a luciferase reporter-gene construct, containing four synthetic copies of the iNOS GAS, was inducible when transfected macrophages were stimulated with either IFN-gamma, LPS, or a combination of the two. Consistent with this finding were other transfection analyses, which showed that responsiveness of the intact iNOS promoter to these same agents was significantly reduced when two conserved nucleotide positions within the GAS were mutated. Oligonucleotide probes, which mimicked the iNOS GAS, formed a complex with proteins that appeared in the nuclei of IFN-gamma or IFN-gamma + LPS-treated macrophages within 30 min of stimulation, as shown by electrophoretic mobility shift assay. LPS alone also caused the the appearance of a nuclear protein capable of binding the iNOS GAS-containing oligonucleotide; however, in contrast to binding induced by IFN-gamma, approximately 2 h of stimulation with LPS were required. The protein bound to the iNOS GAS-containing oligonucleotide reacted specifically with an antibody raised against Stat1a, regardless of the stimulus used. These data collectively support the conclusion that binding of Stat1 alpha to the iNOS promoter's GAS is required for optimal induction of the iNOS gene by IFN-gamma and LPS.
Collapse
|
|
28 |
241 |
19
|
Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 1999; 126:3597-605. [PMID: 10409505 DOI: 10.1242/dev.126.16.3597] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erythropoietin is an essential growth factor that promotes survival, proliferation, and differentiation of mammalian erythroid progenitor cells. Erythropoietin(−/−) and erythropoietin receptor(−/−) mouse embryos die around embryonic day 13.5 due, in part, to failure of erythropoiesis in the fetal liver. In this study, we demonstrated a novel role of erythropoietin and erythropoietin receptor in cardiac development in vivo. We found that erythropoietin receptor is expressed in the developing murine heart in a temporal and cell type-specific manner: it is initially detected by embryonic day 10.5 and persists until day 14.5. Both erythropoietin(−/−) and erythropoietin receptor(−/−) embryos suffered from ventricular hypoplasia at day 12–13 of gestation. This defect appears to be independent from the general state of hypoxia and is likely due to a reduction in the number of proliferating cardiac myocytes in the ventricular myocardium. Cell proliferation assays revealed that erythropoietin acts as a mitogen in cells isolated from erythropoietin(−/−) mice, while it has no effect in hearts from erythropoietin receptor(−/−) animals. Erythropoietin(−/−) and erythropoietin receptor(−/−) embryos also suffered from epicardium detachment and abnormalities in the vascular network. Finally, through a series of chimeric analysis, we provided evidence that erythropoietin acts in a manner which is non-cell-autonomous. Our results elucidate a novel role of erythropoietin in cardiac morphogenesis and suggest a combination of anemia and cardiac failure as the cause of embryonic lethality in the erythropoietin(−/−) and erythropoietin receptor(−/−) animals.
Collapse
|
|
26 |
239 |
20
|
Gao J, Niklason L, Langer R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 42:417-24. [PMID: 9788505 DOI: 10.1002/(sici)1097-4636(19981205)42:3<417::aid-jbm11>3.0.co;2-d] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A procedure for surface hydrolysis of poly(glycolic acid) (PGA) meshes was developed to increase cell seeding density and improve attachment of vascular smooth muscle cells. Hydrolysis of PGA in 1N NaOH transformed ester groups on the surface of PGA fibers to carboxylic acid and hydroxyl groups. After hydrolysis, the polymer scaffold retained its original gross appearance and dimensions while the fiber diameter decreased. A plot of fiber diameter versus the hydrolysis time showed a linear relationship, with a rate of decrease in fiber diameter of 0.65 microm/min. The molecular weight and thermal properties of the polymer did not change significantly following surface hydrolysis. In cell seeding experiments, surface-hydrolyzed mesh was seeded with more than twice as many cells as unmodified PGA mesh. Vascular smooth muscle cells attached to the surface-hydrolyzed PGA mesh both as individual cells and as cell aggregates while only cell aggregates were observed on the unmodified mesh. Control experiments indicated that adsorption of serum proteins onto the surface-hydrolyzed PGA fibers was correlated with the increase in cell seeding density. These results demonstrate that optimization of biomaterial-cell interactions provides a strategy for increasing the initial cell seeding density for the engineering of tissues of high cell density.
Collapse
|
|
27 |
224 |
21
|
Kobashigawa JA, Miller LW, Russell SD, Ewald GA, Zucker MJ, Goldberg LR, Eisen HJ, Salm K, Tolzman D, Gao J, Fitzsimmons W, First R. Tacrolimus with mycophenolate mofetil (MMF) or sirolimus vs. cyclosporine with MMF in cardiac transplant patients: 1-year report. Am J Transplant 2006; 6:1377-86. [PMID: 16686761 DOI: 10.1111/j.1600-6143.2006.01290.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The most advantageous combination of immunosuppressive agents for cardiac transplant recipients has not yet been established. Between November 2001 and June 2003, 343 de novo cardiac transplant recipients were randomized to receive steroids and either tacrolimus (TAC) + sirolimus (SRL), TAC + mycophenolate mofetil (MMF) or cyclosporine (CYA) + MMF. Antilymphocyte induction therapy was allowed for up to 5 days. The primary endpoint of >/=3A rejection or hemodynamic compromise rejection requiring treatment showed no significant difference at 6 months (TAC/MMF 22.4%, TAC/SRL 24.3%, CYA/MMF 31.6%, p = 0.271) and 1 year (p = 0.056), but it was significantly lower in the TAC/MMF group when compared only to the CYA/MMF group at 1 year (23.4% vs. 36.8%; p = 0.029). Differences in the incidence of any treated rejection were significant (TAC/SRL = 35%, TAC/MMF = 42%, CYA/MMF = 59%; p < 0.001), as were median levels of serum creatinine (TAC/SRL = 1.5 mg/dL, TAC/MMF = 1.3 mg/dL, CYA/MMF = 1.5 mg/dL; p = 0.032) and triglycerides (TAC/SRL = 162 mg/dL, TAC/MMF = 126 mg/dL, CYA/MMF = 154 mg/dL; p = 0.028). The TAC/SRL group encountered fewer viral infections but more fungal infections and impaired wound healing. These secondary endpoints suggest that the TAC/MMF combination appears to offer more advantages than TAC/SRL or CYA/MMF in cardiac transplant patients, including fewer >/=3A rejections or hemodynamic compromise rejections and an improved side-effect profile.
Collapse
|
Multicenter Study |
19 |
219 |
22
|
Gao J, Xu J, Locascio LE, Lee CS. Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem 2001; 73:2648-55. [PMID: 11403312 DOI: 10.1021/ac001126h] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An integrated platform is presented for rapid and sensitive protein identification by on-line protein digestion and analysis of digested proteins using electrospray ionization mass spectrometry or transient capillary isotachophoresis/capillary zone electrophoresis with mass spectrometry detection. A miniaturized membrane reactor is constructed by fabricating the microfluidic channels on a poly(dimethylsiloxane) substrate and coupling the microfluidics to a poly(vinylidene fluoride) porous membrane with the adsorbed trypsin. On the basis of he large surface area-to-volume ratio of porous membrane media, adsorbed trypsin onto the poly(vinylidene fluoride) membrane is employed for achieving ultrahigh catalytic turnover. The extent of protein digestion in a miniaturized membrane reactor can be directly controlled by the residence time of protein analytes inside the trypsin-adsorbed membrane, the reaction temperature, and the protein concentration. The resulting peptide mixtures can either be directly analyzed using electrospray ionization mass spectrometry or further concentrated and resolved by electrophoretic separations prior to the mass spectrometric analysis. This microfluidic system enables rapid identification of proteins in minutes instead of hours, consumes very little sample (nanogram or less), and provides on-line interface with upstream protein separation schemes for the analysis of complex protein mixtures such as cell lysates.
Collapse
|
|
24 |
214 |
23
|
Gao J, Zhang HJ, Yu SH, Wu SG, Yoon I, Quigley J, Gao YP, Qi GH. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult Sci 2008; 87:1377-84. [PMID: 18577619 DOI: 10.3382/ps.2007-00418] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A study was conducted to evaluate the effect of supplemental yeast culture (Diamond V XP Yeast Culture; YC) in broiler diets on performance, digestibility, mucosal development, and immunomodulatory functions. One-day-old Arbor Acres chicks (n = 960) were randomly assigned to 1 of 4 dietary treatments based on corn and soybean meal and containing 0, 2.5, 5.0, and 7.5 g/kg of YC in the diet for 42 d. Each treatment consisted of 12 replicates of 20 broilers each. Nutrient digestibility was determined on d 15 and 35 by total fecal collection. On d 21 and 42, 12 birds per treatment were sacrificed to evaluate gut morphology and secretory IgA. Broilers were vaccinated with Newcastle disease vaccine by eye drop on d 7 and 28 and antibody titer was determined on d 14, 21, 35, and 42. Dietary supplemental YC at 2.5 g/kg improved average daily gain and feed conversion during grower and overall periods (P <or= 0.05). Yeast culture supplementation increased digestibility of Ca (linear and quadratic, P = 0.01) and P (linear, P = 0.01) on d 35, but did not affect (P > 0.05) protein retention and energy digestibility. Villus height to crypt depth ratios in the duodenum and jejunum (d 42) and ileum (d 21) were increased (P <or= 0.05) in broilers fed 2.5 g/kg of YC. Yeast culture increased antibody titers to Newcastle disease virus (linear, P <or= 0.05), serum lysozyme activity (linear and cubic, P <or= 0.05), and IgM (linear, P <or= 0.05) and secretary IgA concentrations in the duodenum (linear, P = 0.01). Results of this study indicate that dietary supplemental YC at 2.5 g/kg improved growth performance. Dietary YC affected immune functions, digestibility of Ca and P, and intestinal mucosal morphology of broilers. Growth performance was optimized at 2.5 g/kg of YC in the present study. Immune function could be modified with dietary YC supplementation.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
214 |
24
|
Vertino PM, Yen RW, Gao J, Baylin SB. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol 1996; 16:4555-65. [PMID: 8754856 PMCID: PMC231454 DOI: 10.1128/mcb.16.8.4555] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent studies showing a correlation between the levels of DNA (cytosine-5-)-methyltransferase (DNA MTase) enzyme activity and tumorigenicity have implicated this enzyme in the carcinogenic process. Moreover, hypermethylation of CpG island-containing promoters is associated with the inactivation of genes important to tumor initiation and progression. One proposed role for DNA MTase in tumorigenesis is therefore a direct role in the de novo methylation of these otherwise unmethylated CpG islands. In this study, we sought to determine whether increased levels of DNA MTase could directly affect CpG island methylation. A full-length cDNA for human DNA MTase driven by the cytomegalovirus promoter was constitutively expressed in human fibroblasts. Individual clones derived from cells transfected with DNA MTase (HMT) expressed 1- to 50-fold the level of DNA MTase protein and enzyme activity of the parental cell line or clones transfected with the control vector alone (Neo). To determine the effects of DNA MTase overexpression on CpG island methylation, we examined 12 endogenous CpG island loci in the HMT clones. HMT clones expressing > or = 9-fold the parental levels of DNA MTase activity were significantly hypermethylated relative to at least 11 Neo clones at five CpG island loci. In the HMT clones, methylation reached nearly 100% at susceptible CpG island loci with time in culture. In contrast, there was little change in the methylation status in the Neo clones over the same time frame. Taken together, the data indicate that overexpression of DNA MTase can drive the de novo methylation of susceptible CpG island loci, thus providing support for the idea that DNA MTase can contribute to tumor progression through CpG island methylation-mediated gene inactivation.
Collapse
|
research-article |
29 |
210 |
25
|
Gao J, Kuczera K, Tidor B, Karplus M. Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 1989; 244:1069-72. [PMID: 2727695 DOI: 10.1126/science.2727695] [Citation(s) in RCA: 209] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A molecular dynamics simulation method is used to determine the contributions of individual amino acid residues and solvent molecules to free energy changes in proteins. Its application to the hemoglobin interface mutant Asp G1(99) beta----Ala shows that some of the contributions to the difference in the free energy of cooperativity are as large as 60 kilocalories (kcal) per mole. Since the overall free energy change is only -5.5 kcal/mole (versus the experimental value of -3.4 kcal/mole), essential elements of the thermodynamics are hidden in the measured results. By exposing the individual contributions, the free energy simulation provides new insights into the origin of thermodynamic changes in mutant proteins and demonstrates the role of effects beyond those usually considered in structural analyses.
Collapse
|
|
36 |
209 |