1
|
McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD. Motor skill learning requires active central myelination. Science 2014; 346:318-22. [PMID: 25324381 PMCID: PMC6324726 DOI: 10.1126/science.1254960] [Citation(s) in RCA: 818] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills.
Collapse
|
research-article |
11 |
818 |
2
|
Lourenço T, Paes de Faria J, Bippes CA, Maia J, Lopes-da-Silva JA, Relvas JB, Grãos M. Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues. Sci Rep 2016; 6:21563. [PMID: 26879561 PMCID: PMC4754901 DOI: 10.1038/srep21563] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/25/2016] [Indexed: 01/17/2023] Open
Abstract
Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein — MBP — and proteolipid protein — PLP — (respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
72 |
3
|
Liberman H, Faria J, Ternent CA, Blatchford GJ, Christensen MA, Thorson AG. A prospective evaluation of the value of anorectal physiology in the management of fecal incontinence. Dis Colon Rectum 2001; 44:1567-74. [PMID: 11711725 DOI: 10.1007/bf02234373] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE This study was designed to determine whether anorectal physiology testing significantly altered patient management in the setting of fecal incontinence. METHODS Patients referred to the anorectal physiology laboratory for evaluation of fecal incontinence were prospectively interviewed and examined by a colon and rectal surgeon. A decision to treat either medically or surgically was reached. The patients underwent physiologic testing with transanal ultrasound, pudendal nerve terminal motor latency, and anorectal manometry. A panel of board-certified colon and rectal surgeons then reviewed the history and physical examination, as well as the anorectal physiology tests, of each patient and reached a consensus on management. Management plans before and after physiologic evaluation were compared. RESULTS Ninety patients (6 males) were entered into the study. The patients were divided in two groups: those with pretest medical management plans (n = 45) and those with pretest surgical management plans (n = 45). A change in management was noted in nine patients (10 percent). In the medical management group, the management changed from medical to surgical therapy in five patients. Transanal ultrasound detected anal sphincter defects in all patients who changed from medical to surgical management but in only 10 percent of those who remained under medical management (P = 0.0001). In the surgical management group, three patients (7 percent) changed from surgical to medical therapy and one patient (2 percent) changed from sphincteroplasty to neosphincter. Transanal ultrasound detected a limited anal sphincter defect in one patient (33 percent) who changed from surgical to medical management and a significant defect in all 41 patients (100 percent) who remained under surgical management (P = 0.003). CONCLUSIONS Anorectal physiology testing is useful in the evaluation of patients with fecal incontinence. Without the information obtained from physiologic testing, 11 percent of patients who may have benefited from surgery would not have been given this option, and 7 percent of patients could have potentially undergone unnecessary surgery. Transanal ultrasound is the study most likely to change a patient's management plan.
Collapse
|
|
24 |
68 |
4
|
Pereira DM, Ferreres F, Oliveira JMA, Gaspar L, Faria J, Valentão P, Sottomayor M, Andrade PB. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:646-52. [PMID: 19962870 DOI: 10.1016/j.phymed.2009.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 08/25/2009] [Accepted: 10/09/2009] [Indexed: 05/20/2023]
Abstract
The leaves of Catharanthus roseus constitute the only source of the well known indolomonoterpenic alkaloids vincristine and vinblastine. In this work we studied the biological potential of the roots, which are used in several countries as decocts or hot water extracts for the treatment of a number of conditions. The aqueous extract strongly inhibited acetylcholinesterase (AchE) in an in vitro microassay, an effect ascribable mainly to serpentine (IC(50) = 0.775 microM vs physostigmine IC(50) = 6.45 microM) as assessed with the pure compound. Pure alkaloids were tested for muscarinic and nicotinic antagonism using rat ex-vivo preparations, namely, ileum and diaphragm/phrenic-nerve, respectively. Serpentine competitively blocked muscarinic receptors with a pA(2) of 5.2, whereas the precursor ajmalicine up to 80 microM was undistinguishable from control, and catharanthine exhibited an unsurmountable muscarinic antagonism at greater than 10 microM concentrations. Nicotinic receptor mediated diaphragm contractions were fully inhibited by catharanthine (IC(50) = 59.6 microM) and ajmalicine (IC(50) = 72.3 microM), in a reversible but non-competitive manner, unlike the more potent nicotinic antagonist tubocurarine (IC(50) = 0.35 microM) whose competitive blockade was overcome by a physostigmine-induced increase in acetylcholine. Serpentine up to 100 microM did not change diaphragm contractions suggesting reduced affinity for neuromuscular nicotinic receptors. Despite strong in vitro AchE inhibition, serpentine failed to restore diaphragm contractions upon submaximal tubocurarine blockade, suggesting that poor tissue penetration may prevent serpentine from inhibiting AchE in deep neuromuscular synapses in the ex-vivo preparation. To our knowledge, the present study is the first to assess the effect of C. roseus root extracts, as well as of serpentine, ajmalicine and catharanthine on AchE. The results described herein suggest that the currently overlooked C. roseus roots may constitute a promising source of compounds with pharmaceutical interest. Moreover, given serpentine's potent in vitro AchE inhibitory activity and low cholinergic receptor affinity, it is conceivable that minor structural modifications may yield a potent and selective AchE inhibitor, potentially useful for the pharmacological management of conditions such as Alzheimer's disease and/or myasthenia gravis.
Collapse
|
|
15 |
60 |
5
|
Faria J, Negalha G, Azevedo A, Martel F. Metformin and Breast Cancer: Molecular Targets. J Mammary Gland Biol Neoplasia 2019; 24:111-123. [PMID: 30903363 DOI: 10.1007/s10911-019-09429-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Metformin has been the first-line drug for the treatment of type II diabetes mellitus for decades, being presently the most widely prescribed antihyperglycemic drug. Retrospective studies associate the use of metformin with a reduction in cancer incidence and cancer-related death. However, despite extensive research about the molecular effects of metformin in cancer cells, its mode of action remains controversial. The major molecular targets of metformin include complex I of the mitochondrial electron transport chain, adenosine monophosphate (AMP)-activated protein kinase (AMPK), and mechanistic target of rapamycin complex 1 (mTORC1), but AMPK-independent effects of metformin have also been described. Breast cancer is one of the leading causes of cancer-related morbidity and mortality among women worldwide. Several studies have reinforced a link between breast cancer risk and diabetes. Moreover, metformin significantly reduces breast cancer risk, compared to patients who are not using metformin and is independent of diabetes status. In this review, we summarize the current molecular evidence to elucidate metformin's mode of action against breast cancer cells.
Collapse
|
Review |
6 |
56 |
6
|
Abstract
Protein abundance differs from a few to millions of copies per cell. Trypanosoma brucei presents an excellent model for studies on codon bias and differential gene expression because transcription is broadly unregulated and uniform across the genome. T. brucei is also a major human and animal protozoal pathogen. Here, an experimental assessment, using synthetic reporter genes, revealed that GC3 codons have a major positive impact on both mRNA and protein abundance. Our estimates of relative expression, based on coding sequences alone (codon usage and sequence length), are within 2-fold of the observed values for the majority of measured cellular mRNAs (n > 7000) and proteins (n > 2000). Our estimates also correspond with expression measures from published transcriptome and proteome datasets from other trypanosomatids. We conclude that codon usage is a key factor affecting global relative mRNA and protein expression in trypanosomatids and that relative abundance can be effectively estimated using only protein coding sequences.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
54 |
7
|
Faria J, Barbosa J, Moreira R, Queirós O, Carvalho F, Dinis-Oliveira RJ. Comparative pharmacology and toxicology of tramadol and tapentadol. Eur J Pain 2018; 22:827-844. [PMID: 29369473 DOI: 10.1002/ejp.1196] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/18/2022]
Abstract
Moderate-to-severe pain represents a heavy burden in patients' quality of life, and ultimately in the society and in healthcare costs. The aim of this review was to summarize data on tramadol and tapentadol adverse effects, toxicity, potential advantages and limitations according to the context of clinical use. We compared data on the pharmacological and toxicological profiles of tramadol and tapentadol, after an extensive literature search in the US National Library of Medicine (PubMed). Tramadol is a prodrug that acts through noradrenaline and serotonin reuptake inhibition, with a weak opioid component added by its metabolite O-desmethyltramadol. Tapentadol does not require metabolic activation and acts mainly through noradrenaline reuptake inhibition and has a strong opioid activity. Such features confer tapentadol potential advantages, namely lower serotonergic, dependence and abuse potential, more linear pharmacokinetics, greater gastrointestinal tolerability and applicability in the treatment of chronic and neuropathic pain. Although more studies are needed to provide clear guidance on the opioid of choice, tapentadol shows some advantages, as it does not require CYP450 system activation and has minimal serotonergic effects. In addition, it leads to less side effects and lower abuse liability. However, in vivo and in vitro studies have shown that tramadol and tapentadol cause similar toxicological damage. In this context, it is important to underline that the choice of opioid should be individually balanced and a tailored decision, based on previous experience and on the patient's profile, type of pain and context of treatment. SIGNIFICANCE This review underlines the need for a careful prescription of tramadol and tapentadol. Although both are widely prescribed synthetic opioid analgesics, their toxic effects and potential dependence are not completely understood yet. In particular, concerning tapentadol, further research is needed to better assess its toxic effects.
Collapse
|
Review |
7 |
54 |
8
|
Silva P, Barbosa J, Nascimento AV, Faria J, Reis R, Bousbaa H. Monitoring the fidelity of mitotic chromosome segregation by the spindle assembly checkpoint. Cell Prolif 2011; 44:391-400. [PMID: 21951282 DOI: 10.1111/j.1365-2184.2011.00767.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Accurate chromosome segregation relies on activity of the spindle assembly checkpoint, a surveillance mechanism that prevents premature anaphase onset until all chromosomes are properly attached to the mitotic spindle apparatus and aligned at the metaphase plate. Defects in this mechanism contribute to chromosome instability and aneuploidy, a hallmark of malignant cells. Here, we review the molecular mechanisms of activation and silencing of the spindle assembly checkpoint and its relationship to tumourigenesis.
Collapse
|
Review |
14 |
51 |
9
|
Faria J, Glover L, Hutchinson S, Boehm C, Field MC, Horn D. Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nat Commun 2019; 10:3023. [PMID: 31289266 PMCID: PMC6617441 DOI: 10.1038/s41467-019-10823-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
The largest gene families in eukaryotes are subject to allelic exclusion, but mechanisms underpinning single allele selection and inheritance remain unclear. Here, we describe a protein complex sustaining variant surface glycoprotein (VSG) allelic exclusion and antigenic variation in Trypanosoma brucei parasites. The VSG-exclusion-1 (VEX1) protein binds both telomeric VSG-associated chromatin and VEX2, an ortholog of nonsense-mediated-decay helicase, UPF1. VEX1 and VEX2 assemble in an RNA polymerase-I transcription-dependent manner and sustain the active, subtelomeric VSG-associated transcription compartment. VSG transcripts and VSG coats become highly heterogeneous when VEX proteins are depleted. Further, the DNA replication-associated chromatin assembly factor, CAF-1, binds to and specifically maintains VEX1 compartmentalisation following DNA replication. Thus, the VEX-complex controls VSG-exclusion, while CAF-1 sustains VEX-complex inheritance in association with the active-VSG. Notably, the VEX2-orthologue and CAF-1 in mammals are also implicated in exclusion and inheritance functions. In trypanosomes, these factors sustain a highly effective and paradigmatic immune evasion strategy.
Collapse
|
research-article |
6 |
45 |
10
|
Ferreres F, Pereira DM, Valentão P, Oliveira JMA, Faria J, Gaspar L, Sottomayor M, Andrade PB. Simple and reproducible HPLC-DAD-ESI-MS/MS analysis of alkaloids in Catharanthus roseus roots. J Pharm Biomed Anal 2009; 51:65-9. [PMID: 19720492 DOI: 10.1016/j.jpba.2009.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/29/2009] [Accepted: 08/01/2009] [Indexed: 11/16/2022]
Abstract
Catharanthus roseus is one of the most important medicinal plants worldwide. The leaves of this species are the only source of the indolomonoterpenic alkaloids vincristin (leurocristine) and vinblastin (vincaleucoblastine), whose anticancer activity represents powerful therapeutics to many diseases, such as Hodgkin lymphoma. Usually, the remaining plant parts go to waste. Here we describe a phytochemical study on this species roots. Alkaloids in aqueous extracts, the usual form of consumption of this matrix, were studied using HPLC-DAD-ESI-MS/MS, which allowed the identification of 19-S-vindolinine, vindolinine, ajmalicine and an ajmalicine isomer, tabersonine, catharanthine, serpentine and a serpentine isomer. Quantification of the identified compounds revealed that serpentine and its isomer were predominant (64.7%) over the other alkaloids, namely vindolinine and its isomer (23.9%), catharanthine (7.7%) and ajmalicine (3.8%). The used procedure revealed to be simple, sensitive and reproducible.
Collapse
|
Validation Study |
16 |
39 |
11
|
Montani L, Buerki-Thurnherr T, de Faria JP, Pereira JA, Dias NG, Fernandes R, Gonçalves AF, Braun A, Benninger Y, Böttcher RT, Costell M, Nave KA, Franklin RJM, Meijer D, Suter U, Relvas JB. Profilin 1 is required for peripheral nervous system myelination. Development 2014; 141:1553-61. [PMID: 24598164 DOI: 10.1242/dev.101840] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelination allows rapid saltatory propagation of action potentials along the axon and is an essential prerequisite for the normal functioning of the nervous system. During peripheral nervous system (PNS) development, myelin-forming Schwann cells (SCs) generate radial lamellipodia to sort and ensheath axons. This process requires controlled cytoskeletal remodeling, and we show that SC lamellipodia formation depends on the function of profilin 1 (Pfn1), an actin-binding protein involved in microfilament polymerization. Pfn1 is inhibited upon phosphorylation by ROCK, a downstream effector of the integrin linked kinase pathway. Thus, a dramatic reduction of radial lamellipodia formation is observed in SCs lacking integrin-linked kinase or treated with the Rho/ROCK activator lysophosphatidic acid. Knocking down Pfn1 expression by lentiviral-mediated shRNA delivery impairs SC lamellipodia formation in vitro, suggesting a direct role for this protein in PNS myelination. Indeed, SC-specific gene ablation of Pfn1 in mice led to profound radial sorting and myelination defects, confirming a central role for this protein in PNS development. Our data identify Pfn1 as a key effector of the integrin linked kinase/Rho/ROCK pathway. This pathway, acting in parallel with integrin β1/LCK/Rac1 and their effectors critically regulates SC lamellipodia formation, radial sorting and myelination during peripheral nervous system maturation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
36 |
12
|
Kovářová J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D. Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog 2018; 14:e1007475. [PMID: 30589893 PMCID: PMC6307712 DOI: 10.1371/journal.ppat.1007475] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Bloodstream form African trypanosomes are thought to rely exclusively upon glycolysis, using glucose as a substrate, for ATP production. Indeed, the pathway has long been considered a potential therapeutic target to tackle the devastating and neglected tropical diseases caused by these parasites. However, plasma membrane glucose and glycerol transporters are both expressed by trypanosomes and these parasites can infiltrate tissues that contain glycerol. Here, we show that bloodstream form trypanosomes can use glycerol for gluconeogenesis and for ATP production, particularly when deprived of glucose following hexose transporter depletion. We demonstrate that Trypanosoma brucei hexose transporters 1 and 2 (THT1 and THT2) are localized to the plasma membrane and that knockdown of THT1 expression leads to a growth defect that is more severe when THT2 is also knocked down. These data are consistent with THT1 and THT2 being the primary routes of glucose supply for the production of ATP by glycolysis. However, supplementation of the growth medium with glycerol substantially rescued the growth defect caused by THT1 and THT2 knockdown. Metabolomic analyses with heavy-isotope labelled glycerol demonstrated that trypanosomes take up glycerol and use it to synthesize intermediates of gluconeogenesis, including fructose 1,6-bisphosphate and hexose 6-phosphates, which feed the pentose phosphate pathway and variant surface glycoprotein biosynthesis. We used Cas9-mediated gene knockout to demonstrate a gluconeogenesis-specific, but fructose-1,6-bisphosphatase (Tb927.9.8720)-independent activity, converting fructose 1,6-bisphosphate into fructose 6-phosphate. In addition, we observed increased flux through the tricarboxylic acid cycle and the succinate shunt. Thus, contrary to prior thinking, gluconeogenesis can operate in bloodstream form T. brucei. This pathway, using glycerol as a physiological substrate, may be required in mammalian host tissues.
Collapse
|
research-article |
7 |
28 |
13
|
Pereira DM, Faria J, Gaspar L, Valentão P, de Pinho PG, Andrade PB. Boerhaavia diffusa: metabolite profiling of a medicinal plant from Nyctaginaceae. Food Chem Toxicol 2009; 47:2142-9. [PMID: 19500634 DOI: 10.1016/j.fct.2009.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/19/2022]
Abstract
Boerhaavia diffusa is a plant which is extensively used in folk medicine. However, when it comes to its phytochemical characterization, little attention has been given to secondary metabolites other than rotenoids and alkaloids. A metabolite profiling and biological study was undertaken in this species' leaves and roots and substantial differences were found between the two parts of the plant. The volatile composition was analysed for the first time using HS-SPME-GC-MS and several compounds, including terpenes, phenylpropanoids, indol compounds, norisoprenoids, among others, were identified. Organic acid analysis was also performed, allowing their characterization in this species for the first time, and oxalic, ketoglutaric, pyruvic, quinic and fumaric acids were identified. Quantitative differences between the two vegetal materials were found. Additionally, several flavonoids and one phenolic acid were also confirmed. Concerning the biological potential, the aqueous extract of each plant part was tested against DPPH radical, one reactive oxygen species (O(2)(-)) and one reactive nitrogen species (()NO). Moreover, activity against acetylcholinesterase, an enzyme with a well-known role in several physio-pathological processes, was assayed. When possible, the relation between the chemistry and activity displayed was established. Leaves revealed stronger antioxidant activity than roots, and acetylcholinesterase inhibition was not found in neither plant part.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
27 |
14
|
Faria J, Moraes CB, Song R, Pascoalino BS, Lee N, Siqueira-Neto JL, Cruz DJM, Parkinson T, Ioset JR, Cordeiro-da-Silva A, Freitas-Junior LH. Drug discovery for human African trypanosomiasis: identification of novel scaffolds by the newly developed HTS SYBR Green assay for Trypanosoma brucei. ACTA ACUST UNITED AC 2014; 20:70-81. [PMID: 25342146 DOI: 10.1177/1087057114556236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human African trypanosomiasis (HAT) is a vector-transmitted tropical disease caused by the protozoan parasite Trypanosoma brucei. High-throughput screening (HTS) of small-molecule libraries in whole-cell assays is one of the most frequently used approaches in drug discovery for infectious diseases. To aid in drug discovery efforts for HAT, the SYBR Green assay was developed for T. brucei in a 384-well format. This semi-automated assay is cost- and time-effective, robust, and reproducible. The SYBR Green assay was compared to the resazurin assay by screening a library of 4000 putative kinase inhibitors, revealing a superior performance in terms of assay time, sensitivity, simplicity, and reproducibility, and resulting in a higher hit confirmation rate. Although the resazurin assay allows for comparatively improved detection of slow-killing compounds, it also has higher false-positive rates that are likely to arise from the assay experimental conditions. The compounds with the most potent antitrypanosomal activity were selected in both screens and grouped into 13 structural clusters, with 11 new scaffolds as antitrypanosomal agents. Several of the identified compounds had IC50 <1 µM coupled with high selectivity toward the parasite. The core structures of the scaffolds are shown, providing promising new starting points for drug discovery for HAT.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
26 |
15
|
Seixas JM, Faria J, Souza Filho JBO, Vieira AFM, Kritski A, Trajman A. Artificial neural network models to support the diagnosis of pleural tuberculosis in adult patients. Int J Tuberc Lung Dis 2013; 17:682-6. [PMID: 23575336 DOI: 10.5588/ijtld.12.0829] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinicians in countries with high tuberculosis (TB) prevalence often treat pleural TB based on clinical grounds, as the availability and sensitivity of diagnostic tests are poor. OBJECTIVE To evaluate the role of artificial neural networks (ANN) as an aid for the non-invasive diagnosis of pleural TB. These tools can be used in simple computer devices (tablets) without remote internet connection. METHODS The clinical history and human immunodeficiency virus (HIV) status of 137 patients were prospectively entered in a database. Both non-linear ANN and the linear Fisher discriminant were used to calculate performance indexes based on clinical grounds. The same procedure was performed including pleural fluid test results (smear, culture, adenosine deaminase, serology and nucleic acid amplification test). The gold standard was any positive test for TB. RESULTS In pre-test modelling, the neural model reached >90% accuracy (Fisher discriminant 74.5%). Under pre-test conditions, ANN had better accuracy compared to each test considered separately. CONCLUSIONS ANN are highly reliable for diagnosing pleural TB based on clinical grounds and HIV status only, and are useful even in remote conditions lacking access to sophisticated medical or computer infrastructure. In other better-equipped scenarios, these tools should be evaluated as substitutes for thoracocentesis and pleural biopsy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
25 |
16
|
Faria J, Loureiro I, Santarém N, Cecílio P, Macedo-Ribeiro S, Tavares J, Cordeiro-da-Silva A. Disclosing the essentiality of ribose-5-phosphate isomerase B in Trypanosomatids. Sci Rep 2016; 6:26937. [PMID: 27230471 PMCID: PMC4882579 DOI: 10.1038/srep26937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/10/2016] [Indexed: 01/31/2023] Open
Abstract
Ribose-5-phosphate isomerase (RPI) belongs to the non-oxidative branch of the pentose phosphate pathway, catalysing the inter-conversion of D-ribose-5-phosphate and D-ribulose-5-phosphate. Trypanosomatids encode a type B RPI, whereas humans have a structurally unrelated type A, making RPIB worthy of exploration as a potential drug target. Null mutant generation in Leishmania infantum was only possible when an episomal copy of RPIB gene was provided, and the latter was retained both in vitro and in vivo in the absence of drug pressure. This suggests the gene is essential for parasite survival. Importantly, the inability to remove the second allele of RPIB gene in sKO mutants complemented with an episomal copy of RPIB carrying a mutation that abolishes isomerase activity suggests the essentiality is due to its metabolic function. In vitro, sKO promastigotes exhibited no defect in growth, metacyclogenesis or macrophage infection, however, an impairment in intracellular amastigotes' replication was observed. Additionally, mice infected with sKO mutants rescued by RPIB complementation had a reduced parasite burden in the liver. Likewise, Trypanosoma brucei is resistant to complete RPIB gene removal and mice infected with sKO mutants showed prolonged survival upon infection. Taken together our results genetically validate RPIB as a potential drug target in trypanosomatids.
Collapse
|
research-article |
9 |
23 |
17
|
Paes de Faria J, Kessaris N, Andrew P, Richardson WD, Li H. New Olig1 null mice confirm a non-essential role for Olig1 in oligodendrocyte development. BMC Neurosci 2014; 15:12. [PMID: 24423059 PMCID: PMC3904929 DOI: 10.1186/1471-2202-15-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022] Open
Abstract
Background Olig1 and Olig2, encoding closely related basic helix-loop-helix transcription factors, were originally identified in screens for glial-specific genes. Olig1 and Olig2 are both expressed in restricted parts of the neuroepithelium of the embryonic spinal cord and telencephalon and subsequently in oligodendrocyte lineage cells throughout life. In the spinal cord, Olig2 plays a crucial role in the development of oligodendrocytes and motor neurons, and both cell types are lost from Olig2 null mutant mice. The role of Olig1 has been more cryptic. It was initially reported that Olig1 null mice (with a Cre-Pgk-Neo cassette at the Olig1 locus) have a mild developmental phenotype characterized by a slight delay in oligodendrocyte differentiation. However, a subsequent study of the same line following removal of Pgk-Neo (leaving Olig1-Cre) found severe disruption of oligodendrocyte production, myelination failure and early postnatal lethality. A plausible explanation was proposed, that the highly expressed Pgk-Neo cassette in the original line might have up-regulated the neighbouring Olig2 gene, compensating for loss of Olig1. However, this was not tested, so the importance of Olig1 for oligodendrocyte development has remained unclear. Results We generated two independent lines of Olig1 null mice. Both lines had a mild phenotype featuring slightly delayed oligodendrocyte differentiation and maturation but no long-term effect. In addition, we found that Olig2 transcripts were not up-regulated in our Olig1 null mice. Conclusions Our findings support the original conclusion that Olig1 plays a minor and non-essential role in oligodendrocyte development and have implications for the interpretation of studies based on Olig1 deficient mice (and perhaps Olig1-Cre mice) from different sources.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |
18
|
Loureiro I, Faria J, Clayton C, Macedo-Ribeiro S, Santarém N, Roy N, Cordeiro-da-Siva A, Tavares J. Ribose 5-phosphate isomerase B knockdown compromises Trypanosoma brucei bloodstream form infectivity. PLoS Negl Trop Dis 2015; 9:e3430. [PMID: 25568941 PMCID: PMC4287489 DOI: 10.1371/journal.pntd.0003430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022] Open
Abstract
Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites' in vitro growth, and more importantly, bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the pentose phosphate pathway in the context of Trypanosoma brucei infection. Within the non-oxidative branch of the pentose phosphate pathway, ribose 5-phosphate isomerase catalyzes the inter-conversion of ribose 5-phosphate and ribulose 5-phosphate. There are two types of ribose 5-phosphate isomerase, namely A and B. The presence of type B in Trypanosoma brucei, and its absence in humans, make this protein a promising drug target. African sleeping sickness is a serious parasitic disease that relies on limited chemotherapeutic options for control. In our study, a functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B is reported. Biochemical studies confirmed enzyme isomerase activity and its downregulation by RNAi affected mainly parasites infectivity in vivo. Overall this study shows that ribose 5-phosphate isomerase depletion is detrimental for parasites infectivity under host pressure.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
17 |
19
|
Loureiro I, Faria J, Clayton C, Ribeiro SM, Roy N, Santarém N, Tavares J, Cordeiro-da-Silva A. Knockdown of asparagine synthetase A renders Trypanosoma brucei auxotrophic to asparagine. PLoS Negl Trop Dis 2013; 7:e2578. [PMID: 24340117 PMCID: PMC3854871 DOI: 10.1371/journal.pntd.0002578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022] Open
Abstract
Asparagine synthetase (AS) catalyzes the ATP-dependent conversion of aspartate into asparagine using ammonia or glutamine as nitrogen source. There are two distinct types of AS, asparagine synthetase A (AS-A), known as strictly ammonia-dependent, and asparagine synthetase B (AS-B), which can use either ammonia or glutamine. The absence of AS-A in humans, and its presence in trypanosomes, suggested AS-A as a potential drug target that deserved further investigation. We report the presence of functional AS-A in Trypanosoma cruzi (TcAS-A) and Trypanosoma brucei (TbAS-A): the purified enzymes convert L-aspartate into L-asparagine in the presence of ATP, ammonia and Mg2+. TcAS-A and TbAS-A use preferentially ammonia as a nitrogen donor, but surprisingly, can also use glutamine, a characteristic so far never described for any AS-A. TbAS-A knockdown by RNAi didn't affect in vitro growth of bloodstream forms of the parasite. However, growth was significantly impaired when TbAS-A knockdown parasites were cultured in medium with reduced levels of asparagine. As expected, mice infections with induced and non-induced T. brucei RNAi clones were similar to those from wild-type parasites. However, when induced T. brucei RNAi clones were injected in mice undergoing asparaginase treatment, which depletes blood asparagine, the mice exhibited lower parasitemia and a prolonged survival in comparison to similarly-treated mice infected with control parasites. Our results show that TbAS-A can be important under in vivo conditions when asparagine is limiting, but is unlikely to be suitable as a drug target. The amino acid asparagine is important not only for protein biosynthesis, but also for nitrogen homeostasis. Asparagine synthetase catalyzes the synthesis of this amino acid. There are two forms of asparagine synthetase, A and B. The presence of type A in trypanosomes, and its absence in humans, makes this protein a potential drug target. Trypanosomes are responsible for serious parasitic diseases that rely on limited drug therapeutic options for control. In our study we present a functional characterization of trypanosomes asparagine synthetase A. We describe that Trypanosoma brucei and Trypanosoma cruzi type A enzymes are able to use either ammonia or glutamine as a nitrogen donor, within the conversion of aspartate into asparagine. Furthermore, we show that asparagine synthetase A knockdown renders Trypanosoma brucei auxotrophic to asparagine. Overall, this study demonstrates that interfering with asparagine metabolism represents a way to control parasite growth and infectivity.
Collapse
|
Journal Article |
12 |
15 |
20
|
Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. PLoS One 2018; 13:e0193602. [PMID: 29543820 PMCID: PMC5854310 DOI: 10.1371/journal.pone.0193602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
14 |
21
|
Teixeira JH, Silva P, Faria J, Ferreira I, Duarte P, Delgado ML, Queirós O, Moreira R, Barbosa J, Lopes CA, do Amaral JB, Monteiro LS, Bousbaa H. Clinicopathologic significance of BubR1 and Mad2 overexpression in oral cancer. Oral Dis 2015; 21:713-20. [PMID: 25754611 DOI: 10.1111/odi.12335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/01/2015] [Accepted: 03/01/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVES BubR1 and Mad2 are central components of the mitotic checkpoint complex that inhibits anaphase onset until all chromosomes are correctly aligned at the metaphase plate. We propose to analyse the combined expression of BubR1 and Mad2 and assess its significance to oral squamous cell carcinoma (OSCC) diagnosis and prognosis. MATERIALS AND METHODS BubR1 and Mad2 expression was assessed by real-time PCR in OSCC cell lines and in normal human oral keratinocytes, and by immunohistochemistry in 65 patients with OSCC. The results were compared regarding clinicopathological parameters, proliferative activity and survival. RESULTS BubR1 and Mad2 transcripts were overexpressed in OSCC cell lines which also exhibited attenuated spindle assembly checkpoint activity. BubR1 and Mad2 were also overexpressed in patients with OSCC. BubR1 expression was associated with advanced stages and larger tumour size in univariate analysis, and with shorter overall survival both in univariate and multivariate analysis. Mad2 overexpression was associated with that of BubR1 and, importantly, high expression of Mad2 and BubR1 was associated with increased cellular proliferation. CONCLUSION Our data propose a role for BubR1 and Mad2 in OSCC cellular proliferation, progression and prognosis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
12 |
22
|
Seixas AI, Azevedo MM, Paes de Faria J, Fernandes D, Mendes Pinto I, Relvas JB. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell Mol Life Sci 2019; 76:1-11. [PMID: 30302529 PMCID: PMC11105620 DOI: 10.1007/s00018-018-2915-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/23/2023]
Abstract
The organization of actin filaments into a wide range of subcellular structures is a defining feature of cell shape and dynamics, important for tissue development and homeostasis. Nervous system function requires morphological and functional plasticity of neurons and glial cells, which is largely determined by the dynamic reorganization of the actin cytoskeleton in response to intrinsic and extracellular signals. Oligodendrocytes are specialized glia that extend multiple actin-based protrusions to form the multilayered myelin membrane that spirally wraps around axons, increasing conduction speed and promoting long-term axonal integrity. Myelination is a remarkable biological paradigm in development, and maintenance of myelin is essential for a healthy adult nervous system. In this review, we discuss how structure and dynamics of the actin cytoskeleton is a defining feature of myelinating oligodendrocytes' biology and function. We also review "old and new" concepts to reflect on the potential role of the cytoskeleton in balancing life and death of myelin membranes and oligodendrocytes in the aging central nervous system.
Collapse
|
Review |
6 |
12 |
23
|
Loureiro I, Faria J, Santarem N, Smith TK, Tavares J, Cordeiro-da-Silva A. Potential Drug Targets in the Pentose Phosphate Pathway of Trypanosomatids. Curr Med Chem 2019; 25:5239-5265. [PMID: 29210635 DOI: 10.2174/0929867325666171206094752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022]
Abstract
The trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp, are causative agents of important human diseases such as African sleeping sickness, Chagas' disease and Leishmaniasis, respectively. The high impact of these diseases on human health and economy worldwide, the unsatisfactory available chemotherapeutic options and the absence of human effective vaccines, strongly justifies the search for new drugs. The pentose phosphate pathway has been proposed to be a viable strategy to defeat several infectious diseases, including those from trypanosomatids, as it includes an oxidative branch, important in the maintenance of cell redox homeostasis, and a non-oxidative branch in which ribose 5-phosphate and erythrose 4-phosphate, precursors of nucleic acids and aromatic amino acids, are produced. This review provides an overview of the available chemotherapeutic options against these diseases and discusses the potential of genetically validated enzymes from the pentose phosphate pathway of trypanosomatids to be explored as potential drug targets.
Collapse
|
Review |
6 |
9 |
24
|
Faria J, Rivas M, Martins GM, Hawkins SJ, Ribeiro P, Pita A, Neto AI, Presa P. A new multiplexed microsatellite tool for metapopulation studies in the overexploited endemic limpet Patella aspera (Röding, 1798). Anim Genet 2014; 46:96-7. [PMID: 25351981 DOI: 10.1111/age.12243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2014] [Indexed: 11/29/2022]
|
Research Support, Non-U.S. Gov't |
11 |
8 |
25
|
Faria J, Loureiro I, Santarém N, Macedo-Ribeiro S, Tavares J, Cordeiro-da-Silva A. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Negl Trop Dis 2016; 10:e0004365. [PMID: 26771178 PMCID: PMC4714757 DOI: 10.1371/journal.pntd.0004365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites.
Collapse
|
research-article |
9 |
8 |