1
|
Cígler P, Kozísek M, Rezácová P, Brynda J, Otwinowski Z, Pokorná J, Plesek J, Grüner B, Dolecková-Maresová L, Mása M, Sedlácek J, Bodem J, Kräusslich HG, Král V, Konvalinka J. From nonpeptide toward noncarbon protease inhibitors: metallacarboranes as specific and potent inhibitors of HIV protease. Proc Natl Acad Sci U S A 2005; 102:15394-9. [PMID: 16227435 PMCID: PMC1255736 DOI: 10.1073/pnas.0507577102] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Indexed: 11/18/2022] Open
Abstract
HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a K(i) value of 2.2 nM and a submicromolar EC(50) in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 A resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3' subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition.
Collapse
|
research-article |
20 |
257 |
2
|
Schmidt N, Lareau CA, Keshishian H, Ganskih S, Schneider C, Hennig T, Melanson R, Werner S, Wei Y, Zimmer M, Ade J, Kirschner L, Zielinski S, Dölken L, Lander ES, Caliskan N, Fischer U, Vogel J, Carr SA, Bodem J, Munschauer M. The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat Microbiol 2021; 6:339-353. [PMID: 33349665 PMCID: PMC7906908 DOI: 10.1038/s41564-020-00846-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023]
Abstract
Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spectrometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome proteins to cellular pathways relevant to SARS-CoV-2 infections. We demonstrated by genetic perturbation that cellular nucleic acid-binding protein (CNBP) and La-related protein 1 (LARP1), two of the most strongly enriched viral RNA binders, restrict SARS-CoV-2 replication in infected cells and provide a global map of their direct RNA contact sites. Pharmacological inhibition of three other RNA interactome members, PPIA, ATP1A1, and the ARP2/3 complex, reduced viral replication in two human cell lines. The identification of host dependency factors and defence strategies as presented in this work will improve the design of targeted therapeutics against SARS-CoV-2.
Collapse
|
research-article |
4 |
204 |
3
|
Sticht J, Humbert M, Findlow S, Bodem J, Müller B, Dietrich U, Werner J, Kräusslich HG. A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 2005; 12:671-7. [PMID: 16041387 DOI: 10.1038/nsmb964] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 06/20/2005] [Indexed: 01/05/2023]
Abstract
Formation of infectious HIV-1 involves assembly of Gag polyproteins into immature particles and subsequent assembly of mature capsids after proteolytic disassembly of the Gag shell. We report a 12-mer peptide, capsid assembly inhibitor (CAI), that binds the capsid (CA) domain of Gag and inhibits assembly of immature- and mature-like capsid particles in vitro. CAI was identified by phage display screening among a group of peptides with similar sequences that bind to a single reactive site in CA. Its binding site was mapped to CA residues 169-191, with an additional contribution from the last helix of CA. This result was confirmed by a separate X-ray structure analysis showing that CAI inserts into a conserved hydrophobic groove and alters the CA dimer interface. The CAI binding site is a new target for antiviral development, and CAI is the first known inhibitor directed against assembly of immature HIV-1.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
183 |
4
|
Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, Appelt-Menzel A, Cubukova A, Barenberg J, Leu J, Hartmann K, Thies E, Littau JL, Sepulveda-Falla D, Zhang L, Ton K, Liang Y, Matschke J, Ricklefs F, Sauvigny T, Sperhake J, Fitzek A, Gerhartl A, Brachner A, Geiger N, König EM, Bodem J, Franzenburg S, Franke A, Moese S, Müller FJ, Geisslinger G, Claussen C, Kannt A, Zaliani A, Gribbon P, Ondruschka B, Neuhaus W, Friese MA, Glatzel M, Pless O. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports 2022; 17:307-320. [PMID: 35063125 PMCID: PMC8772030 DOI: 10.1016/j.stemcr.2021.12.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients’ brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.
IFNγ signaling is upregulated in COVID-19 human neurovascular unit SARS-CoV-2-infected hiPS-BCECs display similar upregulation of IFNγ signaling SARS-CoV-2 replicates in hiPS-BCECs and is released while barrier remains intact SARS-CoV-2 infection of hiPS-BCECs is decreased by antibodies and protease inhibitors
Collapse
|
|
3 |
155 |
5
|
Gottwein E, Bodem J, Müller B, Schmechel A, Zentgraf H, Kräusslich HG. The Mason-Pfizer monkey virus PPPY and PSAP motifs both contribute to virus release. J Virol 2003; 77:9474-85. [PMID: 12915562 PMCID: PMC187385 DOI: 10.1128/jvi.77.17.9474-9485.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Late (L) domains are required for the efficient release of several groups of enveloped viruses. Three amino acid motifs have been shown to provide L-domain function, namely, PPXY, PT/SAP, or YPDL. The retrovirus Mason-Pfizer monkey virus (MPMV) carries closely spaced PPPY and PSAP motifs. Mutation of the PPPY motif results in a complete loss of virus release. Here, we show that the PSAP motif acts as an additional L domain and promotes the efficient release of MPMV but requires an intact PPPY motif to perform its function. Examination of HeLaP4 cells expressing PSAP mutant virus by electron microscopy revealed mostly late budding structures and chains of viruses accumulating at the cell surface with little free virus. In the case of the PPPY mutant virus, budding appeared to be mostly arrested at an earlier stage before induction of membrane curvature. The cellular protein TSG101, which interacts with the human immunodeficiency virus type 1 (HIV-1) PTAP L domain, was packaged into MPMV in a PSAP-dependent manner. Since TSG101 is crucial for HIV-1 release, this result suggests that the Gag-TSG101 interaction is responsible for the virus release function of the MPMV PSAP motif. Nedd4, which has been shown to interact with viral PPPY motifs, was also detected in MPMV particles, albeit at much lower levels. Consistent with a role of VPS4A in the budding of both PPPY and PTAP motif-containing viruses, the overexpression of ATPase-defective GFP-VPS4A fusion proteins blocked both wild-type and PSAP mutant virus release.
Collapse
|
research-article |
22 |
109 |
6
|
Bodem J, Dobreva G, Hoffmann-Rohrer U, Iben S, Zentgraf H, Delius H, Vingron M, Grummt I. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p. EMBO Rep 2000; 1:171-5. [PMID: 11265758 PMCID: PMC1084264 DOI: 10.1093/embo-reports/kvd032] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2000] [Revised: 06/19/2000] [Accepted: 06/28/2000] [Indexed: 11/13/2022] Open
Abstract
Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth-dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF-IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide-treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF-IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF-IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth-arrested cells in vitro.
Collapse
|
other |
25 |
107 |
7
|
Liu F, Han K, Blair R, Kenst K, Qin Z, Upcin B, Wörsdörfer P, Midkiff CC, Mudd J, Belyaeva E, Milligan NS, Rorison TD, Wagner N, Bodem J, Dölken L, Aktas BH, Vander Heide RS, Yin XM, Kolls JK, Roy CJ, Rappaport J, Ergün S, Qin X. SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro. Front Cell Infect Microbiol 2021; 11:701278. [PMID: 34307198 PMCID: PMC8292147 DOI: 10.3389/fcimb.2021.701278] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
100 |
8
|
Breidenbach J, Lemke C, Pillaiyar T, Schäkel L, Al Hamwi G, Diett M, Gedschold R, Geiger N, Lopez V, Mirza S, Namasivayam V, Schiedel AC, Sylvester K, Thimm D, Vielmuth C, Phuong Vu L, Zyulina M, Bodem J, Gütschow M, Müller CE. Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Angew Chem Int Ed Engl 2021; 60:10423-10429. [PMID: 33655614 PMCID: PMC8014119 DOI: 10.1002/anie.202016961] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The main protease of SARS-CoV-2 (Mpro ), the causative agent of COVID-19, constitutes a significant drug target. A new fluorogenic substrate was kinetically compared to an internally quenched fluorescent peptide and shown to be ideally suitable for high throughput screening with recombinantly expressed Mpro . Two classes of protease inhibitors, azanitriles and pyridyl esters, were identified, optimized and subjected to in-depth biochemical characterization. Tailored peptides equipped with the unique azanitrile warhead exhibited concomitant inhibition of Mpro and cathepsin L, a protease relevant for viral cell entry. Pyridyl indole esters were analyzed by a positional scanning. Our focused approach towards Mpro inhibitors proved to be superior to virtual screening. With two irreversible inhibitors, azanitrile 8 (kinac /Ki =37 500 m-1 s-1 , Ki =24.0 nm) and pyridyl ester 17 (kinac /Ki =29 100 m-1 s-1 , Ki =10.0 nm), promising drug candidates for further development have been discovered.
Collapse
|
research-article |
4 |
96 |
9
|
de Sousa LRF, Wu H, Nebo L, Fernandes JB, da Silva MFDGF, Kiefer W, Kanitz M, Bodem J, Diederich WE, Schirmeister T, Vieira PC. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies. Bioorg Med Chem 2014; 23:466-70. [PMID: 25564380 DOI: 10.1016/j.bmc.2014.12.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/02/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
96 |
10
|
Winkler I, Bodem J, Haas L, Zemba M, Delius H, Flower R, Flügel RM, Löchelt M. Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses. J Virol 1997; 71:6727-41. [PMID: 9261397 PMCID: PMC191953 DOI: 10.1128/jvi.71.9.6727-6741.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genome of the feline foamy virus (FeFV) isolate FUV was characterized by molecular cloning and nucleotide sequence analysis of subgenomic proviral DNA. The overall genetic organization of FeFV and protein sequence comparisons of different FeFV genes with their counterparts from other known foamy viruses confirm that FeFV is a complex foamy virus. However, significant differences exist when FeFV is compared with primate foamy viruses. The FeFV Gag protein is smaller than that of the primate spumaviruses, mainly due to additional MA/CA sequences characteristic of the primate viruses only. Gag protein sequence motifs of the NC domain of primate foamy viruses assumed to be involved in genome encapsidation are not conserved in FeFV. FeFV Gag and Pol proteins were detected with monospecific antisera directed against Gag and Pol domains of the human foamy virus and with antisera from naturally infected cats. Proteolytic processing of the FeFV Gag precursor was incomplete, whereas more efficient proteolytic cleavage of the pre125Pro-Pol protein was observed. The active center of the FeFV protease contains a Gln that replaces an invariant Gly residue at this position in other retroviral proteases. Functional studies on FeFV gene expression directed by the promoter of the long terminal repeat showed that FeFV gene expression was strongly activated by the Bell/Tas transactivator protein. The FeFV Bell/Tas transactivator is about one-third smaller than its counterpart of primate spumaviruses. This difference is also reflected by a limited sequence similarity and only a moderate conservation of structural motifs of the different foamy virus transactivators analyzed.
Collapse
|
research-article |
28 |
83 |
11
|
Bodem J, Löchelt M, Winkler I, Flower RP, Delius H, Flügel RM. Characterization of the spliced pol transcript of feline foamy virus: the splice acceptor site of the pol transcript is located in gag of foamy viruses. J Virol 1996; 70:9024-7. [PMID: 8971036 PMCID: PMC191004 DOI: 10.1128/jvi.70.12.9024-9027.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Foamy viruses, or spumaviruses, are distinct members of the Retroviridae. Here we have characterized the long terminal repeat of the feline, or cat, foamy virus by determining the locations of the transcriptional start site and the poly(A) addition site. The splice donor and splice acceptor sites of the subgenomic mRNA responsible for Pro-Pol protein expression were identified by nucleotide sequencing of the corresponding cDNAs. The leader exon of the feline foamy virus is 57 nucleotides long. The splice acceptor of the subgenomic pol mRNA was found to be located in gag. The location of the splice acceptor of the human foamy virus pol mRNA was confirmed to map in gag. The pol splice acceptor site in gag of the cat foamy virus is located further downstream than that of human foamy virus.
Collapse
|
research-article |
29 |
64 |
12
|
Rethwilm A, Bodem J. Evolution of foamy viruses: the most ancient of all retroviruses. Viruses 2013; 5:2349-74. [PMID: 24072062 PMCID: PMC3814592 DOI: 10.3390/v5102349] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/27/2013] [Accepted: 09/18/2013] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed.
Collapse
|
Review |
12 |
45 |
13
|
Zemba M, Alke A, Bodem J, Winkler IG, Flower RL, Pfrepper K, Delius H, Flügel RM, Löchelt M. Construction of infectious feline foamy virus genomes: cat antisera do not cross-neutralize feline foamy virus chimera with serotype-specific Env sequences. Virology 2000; 266:150-6. [PMID: 10612669 DOI: 10.1006/viro.1999.0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Full-length genomes of the feline foamy virus (FFV or FeFV) isolate FUV were constructed. DNA clone pFeFV-7 stably directed the expression of infectious FFV progeny virus indistinguishable from wild-type, uncloned FFV isolate FUV. The env and bel 1 genes of pFeFV-7 were substituted for by corresponding sequences of the FFV serotype 951 since previous studies implicated a defined part of FFV Env protein as responsible for serotype-specific differences in serum neutralization (I. G. Winkler, R. M. Flügel, M. Löchelt, and R. L. P. Flower, 1998. Virology 247: 144-151). Recombinant virus derived from chimeric plasmid pFeFV-7/951 containing the hybrid env gene and the parental clone pFeFV-7 were used for neutralization studies. By means of a rapid titration assay for FFV infectivity, we show that progeny virus derived from plasmid pFeFV-7 was neutralized by FUV- but not by 951-specific antisera, whereas pFeFV-7/951-derived chimeric virus was neutralized by 951-specific antisera only. Both recombinant proviruses will be useful for repeated delivery of foreign genes for therapeutic gene applications into cats.
Collapse
|
|
25 |
44 |
14
|
Millies B, von Hammerstein F, Gellert A, Hammerschmidt S, Barthels F, Göppel U, Immerheiser M, Elgner F, Jung N, Basic M, Kersten C, Kiefer W, Bodem J, Hildt E, Windbergs M, Hellmich UA, Schirmeister T. Proline-Based Allosteric Inhibitors of Zika and Dengue Virus NS2B/NS3 Proteases. J Med Chem 2019; 62:11359-11382. [DOI: 10.1021/acs.jmedchem.9b01697] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
|
6 |
41 |
15
|
Khan AS, Bodem J, Buseyne F, Gessain A, Johnson W, Kuhn JH, Kuzmak J, Lindemann D, Linial ML, Löchelt M, Materniak-Kornas M, Soares MA, Switzer WM. Spumaretroviruses: Updated taxonomy and nomenclature. Virology 2018; 516:158-164. [PMID: 29407373 PMCID: PMC11318574 DOI: 10.1016/j.virol.2017.12.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 01/28/2023]
Abstract
Spumaretroviruses, commonly referred to as foamy viruses, are complex retroviruses belonging to the subfamily Spumaretrovirinae, family Retroviridae, which naturally infect a variety of animals including nonhuman primates (NHPs). Additionally, cross-species transmissions of simian foamy viruses (SFVs) to humans have occurred following exposure to tissues of infected NHPs. Recent research has led to the identification of previously unknown exogenous foamy viruses, and to the discovery of endogenous spumaretrovirus sequences in a variety of host genomes. Here, we describe an updated spumaretrovirus taxonomy that has been recently accepted by the International Committee on Taxonomy of Viruses (ICTV) Executive Committee, and describe a virus nomenclature that is generally consistent with that used for other retroviruses, such as lentiviruses and deltaretroviruses. This taxonomy can be applied to distinguish different, but closely related, primate (e.g., human, ape, simian) foamy viruses as well as those from other hosts. This proposal accounts for host-virus co-speciation and cross-species transmission.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
39 |
16
|
Kasang C, Kalluvya S, Majinge C, Stich A, Bodem J, Kongola G, Jacobs GB, Mlewa M, Mildner M, Hensel I, Horn A, Preiser W, van Zyl G, Klinker H, Koutsilieri E, Rethwilm A, Scheller C, Weissbrich B. HIV drug resistance (HIVDR) in antiretroviral therapy-naïve patients in Tanzania not eligible for WHO threshold HIVDR survey is dramatically high. PLoS One 2011; 6:e23091. [PMID: 21886779 PMCID: PMC3158766 DOI: 10.1371/journal.pone.0023091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022] Open
Abstract
Background The World Health Organization (WHO) has recommended guidelines for a HIV drug resistance (HIVDR) survey for resource-limited countries. Eligibility criteria for patients include age below 25 years in order to focus on the prevalence of transmitted HIVDR (tHIVDR) in newly-infected individuals. Most of the participating sites across Africa have so far reported tHIVDR prevalences of below 5%. In this study we investigated whether the rate of HIVDR in patients <25 years is representative for HIVDR in the rest of the therapy-naïve population. Methods and Findings HIVDR was determined in 88 sequentially enrolled ART-naïve patients from Mwanza, Tanzania (mean age 35.4 years). Twenty patients were aged <25 years and 68 patients were aged 25–63 years. The frequency of HIVDR in the study population was 14.8% (95%; CI 0.072–0.223) and independent of NVP-resistance induced by prevention of mother-to-child transmission programs. Patients >25 years had a significantly higher HIVDR frequency than younger patients (19.1%; 95% CI 0.095–0.28) versus 0%, P = 0.0344). In 2 out of the 16 patients with HIVDR we found traces of antiretrovirals (ARVs) in plasma. Conclusions ART-naïve patients aged over 25 years exhibited significantly higher HIVDR than younger patients. Detection of traces of ARVs in individuals with HIVDR suggests that besides transmission, undisclosed misuse of ARVs may constitute a significant factor in the generation of the observed high HIVDR rate. The current WHO tHIVDR survey that is solely focused on the transmission of HIVDR and that excludes patients over 25 years of age may therefore result in substantial underestimation of the prevalence of HIVDR in the therapy-naïve population. Similar studies should be performed also in other areas to test whether the so far reported optimistic picture of low HIVDR prevalence in young individuals is really representative for the rest of the ART-naïve HIV-infected population.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
38 |
17
|
Schlosser A, Bodem J, Bossemeyer D, Grummt I, Lehmann WD. Identification of protein phosphorylation sites by combination of elastase digestion, immobilized metal affinity chromatography, and quadrupole-time of flight tandem mass spectrometry. Proteomics 2002; 2:911-8. [PMID: 12124936 DOI: 10.1002/1615-9861(200207)2:7<911::aid-prot911>3.0.co;2-k] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using the combination of in-gel elastase digestion, immobilized metal affinity chromatography and high resolution electrospray tandem mass spectrometry, the phosphorylation sites of two phosphoproteins were determined. Complete coverage of all phosphorylation sites (Ser10, Ser139, Thr197, Ser338) of the model phosphoprotein protein kinase A C(alpha)-subunit could be achieved by this strategy in the low picomole range. In addition, three previously unknown phosphorylation sites of the human transcription initiation factor TIF-IA (Ser44, Ser170, Ser172) were determined in this way. Both phosphoproteins could be identified in a protein database on the basis of their elastase generated phosphopeptides alone. The data of seven phosphopeptides were used for identification of protein kinase A, and those of two phosphopeptides for TIF-IA, respectively. The accurate mass data of the electrospray mass spectra recorded at high resolution are extremely useful for sequencing of the elastase generated phosphopeptides and for protein identification by database searching.
Collapse
|
|
23 |
35 |
18
|
Jacobs GB, Laten A, van Rensburg EJ, Bodem J, Weissbrich B, Rethwilm A, Preiser W, Engelbrecht S. Phylogenetic diversity and low level antiretroviral resistance mutations in HIV type 1 treatment-naive patients from Cape Town, South Africa. AIDS Res Hum Retroviruses 2008; 24:1009-12. [PMID: 18593350 DOI: 10.1089/aid.2008.0028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We analyzed the HIV-1 pol gene from patients in Cape Town to determine the genetic diversity of HIV-1 in the region and to assess the baseline HIV-1 resistance level of treatment-naive patients. Plasma was collected prior to the national antiretroviral therapy (ART) program. RNA was extracted, followed by RT-PCR and automated DNA sequencing of the viral protease (PR) and reverse transcriptase (RT) coding region. Genotyping was done through phylogenetic analysis. The sequences were inspected for resistance-associated mutations against PR and RT inhibitors. A total of 140 pol sequences were analyzed, of which 133 (95%) belong to HIV-1 subtype C, five (3.6%) were subtype B, and one each was subtype G and CRF02_AG. Five sequences (3.6%) had resistance-associated mutations. These include three (2.1%) NNRTI mutations. With the progression of the national ART program, it is important to monitor the resistance profile of naive and treatment-experienced patients.
Collapse
|
Multicenter Study |
17 |
33 |
19
|
Bodem J, Schied T, Gabriel R, Rammling M, Rethwilm A. Foamy virus nuclear RNA export is distinct from that of other retroviruses. J Virol 2011; 85:2333-41. [PMID: 21159877 PMCID: PMC3067772 DOI: 10.1128/jvi.01518-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/07/2010] [Indexed: 01/09/2023] Open
Abstract
Most retroviruses express all of their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. Two pathways have been described that explain how retroviruses circumvent this nuclear export inhibition. One involves a constitutive transport element in the viral RNA that interacts with the cellular mRNA transporter proteins NXF1 and NXT1 to facilitate nuclear export. The other pathway relies on the recognition of a viral RNA element by a virus-encoded protein that interacts with the karyopherin CRM1. In this report, we analyze the protein factors required for the nuclear export of unspliced foamy virus (FV) mRNA. We show that this export is CRM1 dependent. In contrast to other complex retroviruses, FVs do not encode an export-mediating protein. Cross-linking experiments indicated that the cellular protein HuR binds to the FV RNA. Inhibition studies showed that both ANP32A and ANP32B, which are known to bridge HuR and CRM1, are essential for FV RNA export. By using this export pathway, FVs solve a central problem of viral replication.
Collapse
|
Comparative Study |
14 |
32 |
20
|
Bodem J, Löchelt M, Delius H, Flügel RM. Detection of subgenomic cDNAs and mapping of feline foamy virus mRNAs reveals complex patterns of transcription. Virology 1998; 244:417-26. [PMID: 9601510 DOI: 10.1006/viro.1998.9113] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feline foamy virus (FeFV) belongs to the group of spumaretroviruses that contain in addition to gag, pol, and env accessory genes collectively called bel genes. Primate FVs have been shown to utilize internal promoters in addition to the 5' LTR promoters. In contrast to other known retroviruses, the FV pol genes are expressed via spliced transcripts. Northern blot analysis and reverse transcription-coupled polymerase chain reactions (RT-PCR) were used to amplify, clone, and characterize cDNAs generated from subgenomic viral transcripts. Sequencing of the splice site junctions of the different FeFV mRNAs showed that singly and multiply spliced subgenomic transcripts were expressed in virus-infected cells. The relative amount of the spliced pol-specific transcripts was quantitated and FeFV pol mRNA found to be expressed at about one-half of that of the genomic mRNA. The major FeFV internal start site of transcription was identified at RNA position 7925. Comparison of the FeFV transcriptional patterns to those of the human foamy virus revealed that the FeFV bel 1 mRNA was expressed exclusively from the internal promoter in contrast to primate foamy viruses that use both the LTR and the internal promoter for Bel 1 expression. Unexpectedly, an env-bel 2 mRNA was identified in FeFV-infected cells. In addition, cDNAs from FeFV-infected cells were directly amplified by PCR without RT reactions and found to correspond to genomic and to a subset of different subgenomic FeFV mRNAs.
Collapse
|
Comparative Study |
27 |
30 |
21
|
Thümer L, Rethwilm A, Holmes EC, Bodem J. The complete nucleotide sequence of a New World simian foamy virus. Virology 2007; 369:191-7. [PMID: 17765280 DOI: 10.1016/j.virol.2007.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 06/29/2007] [Accepted: 07/11/2007] [Indexed: 11/25/2022]
Abstract
We determined the complete nucleotide sequence of the New World simian foamy virus (FV) from spider monkey (SFVspm). Starting from a conserved region in the integrase (IN) domain of the pol gene we cloned fragments of the genome up to the 5' end of the long terminal repeat (LTR) into plasmid vectors and elucidated their nucleotide sequence. The 3' end of the genome was determined by direct nucleotide sequencing of PCR products. Each nucleotide of the genome was determined at least two times from both strands. All protein motifs described to be conserved among primate FVs were found in SFVspm. At both the nucleotide and protein levels SFVspm is the most divergent primate FV described to date, reflecting the long-term phylogenetic separation between Old World and New World primate host species (Catarrhini and Platyrrhini, respectively). The molecular probes developed for SFVspm will allow the investigation of trans-species transmissions of this New World foamy virus to humans by serological assays.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
27 |
22
|
Bodem J, Zemba M, Flügel RM. Nuclear localization of the functional Bel 1 transactivator but not of the gag proteins of the feline foamy virus. Virology 1998; 251:22-7. [PMID: 9813199 DOI: 10.1006/viro.1998.9369] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between host cells and foamy or spumaretroviruses are different from those of other known retroviruses. Previous work has suggested that the Gag and high-affinity DNA-binding Bel 1 transactivator of human foamy virus are localized in the nuclei of infected cells. Using two independent detection methods, we show here that the functionally active Bel 1 transactivator protein of feline foamy virus is of nuclear localization. In contrast to that reported for the human foamy virus Gag protein, the cat foamy virus Gag proteins exclusively localized in the cytoplasm close to perinuclear regions.
Collapse
|
|
27 |
22 |
23
|
Winkler IG, Löchelt M, Levesque JP, Bodem J, Flügel RM, Flower RL. A rapid streptavidin-capture ELISA specific for the detection of antibodies to feline foamy virus. J Immunol Methods 1997; 207:69-77. [PMID: 9328588 DOI: 10.1016/s0022-1759(97)00109-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a simple procedure for the rapid development of an ELISA with the potential for wide application to any defined protein antigen. The procedure involves the expression of protein encoded by a PCR product, using a commercially available T-vector that adds a biotin tag, and a single step purification by affinity for streptavidin for direct use in ELISA. In our experiments, a recombinant protein from the nucleocapsid domain of the feline foamy virus gag gene was expressed as a fusion protein with a biotin tag and then applied directly to streptavidin-coated ELISA wells. An extract from a clone with the insert in antisense orientation was used as a control. Non-specific reactions with antigen extracts from both sense and antisense clones were observed in 6 of the 376 (1.6%) sera tested. Antibody to feline foamy virus, which forms a stable persistent infection in cats, was detected in 107 of 201 (53%) Australian cats, but none of 175 sera from veterinarians. There was a 100% correlation between FeFV antibody detected by ELISA, immunoblot, serum neutralisation and virus isolation, confirming that this test is sensitive and specific.
Collapse
|
Comparative Study |
28 |
21 |
24
|
Langemeier J, Schrom EM, Rabner A, Radtke M, Zychlinski D, Saborowski A, Bohn G, Mandel-Gutfreund Y, Bodem J, Klein C, Bohne J. A complex immunodeficiency is based on U1 snRNP-mediated poly(A) site suppression. EMBO J 2012; 31:4035-44. [PMID: 22968171 DOI: 10.1038/emboj.2012.252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/10/2012] [Indexed: 01/01/2023] Open
Abstract
Biallelic mutations in the untranslated regions (UTRs) of mRNAs are rare causes for monogenetic diseases whose mechanisms remain poorly understood. We investigated a 3'UTR mutation resulting in a complex immunodeficiency syndrome caused by decreased mRNA levels of p14/robld3 by a previously unknown mechanism. Here, we show that the mutation creates a functional 5' splice site (SS) and that its recognition by the spliceosomal component U1 snRNP causes p14 mRNA suppression in the absence of splicing. Histone processing signals are able to rescue p14 expression. Therefore, the mutation interferes only with canonical poly(A)-site 3' end processing. Our data suggest that U1 snRNP inhibits cleavage or poly(A) site recognition. This is the first description of a 3'UTR mutation that creates a functional 5'SS causative of a monogenetic disease. Moreover, our data endorse the recently described role of U1 snRNP in suppression of intronic poly(A) sites, which is here deleterious for p14 mRNA biogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
21 |
25
|
Schneider A, Corona A, Spöring I, Jordan M, Buchholz B, Maccioni E, Di Santo R, Bodem J, Tramontano E, Wöhrl BM. Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors. Nucleic Acids Res 2016; 44:2310-22. [PMID: 26850643 PMCID: PMC4797301 DOI: 10.1093/nar/gkw060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/24/2016] [Indexed: 11/27/2022] Open
Abstract
We analyzed a multi-drug resistant (MR) HIV-1 reverse transcriptase (RT), subcloned from a patient-derived subtype CRF02_AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azidothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to antagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most significant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimination, indicating that the two mechanisms are mutually exclusive and that the Q151M pathway is obviously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, additionally harboring the TAM K70R and the reversions M151Q as well as R65K since K65R antagonizes excision. MR-R65K-K70R-M151Q was competent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still promoted discrimination. To tackle the multi-drug resistance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors belonging to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
18 |