1
|
Liu X, Kent N, Ceballos A, Streubel R, Jiang Y, Chai Y, Kim PY, Forth J, Hellman F, Shi S, Wang D, Helms BA, Ashby PD, Fischer P, Russell TP. Reconfigurable ferromagnetic liquid droplets. Science 2020; 365:264-267. [PMID: 31320536 DOI: 10.1126/science.aaw8719] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 11/02/2022]
Abstract
Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving the magnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic field, inspiring studies on active matter, energy-dissipative assemblies, and programmable liquid constructs.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
170 |
2
|
Forth J, Liu X, Hasnain J, Toor A, Miszta K, Shi S, Geissler PL, Emrick T, Helms BA, Russell TP. Reconfigurable Printed Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707603. [PMID: 29573293 DOI: 10.1002/adma.201707603] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all-liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues. Potential applications include biphasic reaction vessels, liquid electronics, novel media for the encapsulation of cells and active matter, and dynamic constructs that both alter, and are altered by, their external environment.
Collapse
|
|
7 |
121 |
3
|
Huang C, Forth J, Wang W, Hong K, Smith GS, Helms BA, Russell TP. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. NATURE NANOTECHNOLOGY 2017; 12:1060-1063. [PMID: 28945242 DOI: 10.1038/nnano.2017.182] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/21/2017] [Indexed: 05/21/2023]
Abstract
Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil-water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. Here, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) that bind to one another at the oil-water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m-1. Furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.
Collapse
|
|
8 |
117 |
4
|
Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806370. [PMID: 30828869 DOI: 10.1002/adma.201806370] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Liquid-fluid interfaces provide a platform both for structuring liquids into complex shapes and assembling dimensionally confined, functional nanomaterials. Historically, attention in this area has focused on simple emulsions and foams, in which surface-active materials such as surfactants or colloids stabilize structures against coalescence and alter the mechanical properties of the interface. In recent decades, however, a growing body of work has begun to demonstrate the full potential of the assembly of nanomaterials at liquid-fluid interfaces to generate functionally advanced, biomimetic systems. Here, a broad overview is given, from fundamentals to applications, of the use of liquid-fluid interfaces to generate complex, all-liquid devices with a myriad of potential applications.
Collapse
|
Review |
6 |
101 |
5
|
Shi S, Liu X, Li Y, Wu X, Wang D, Forth J, Russell TP. Liquid Letters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705800. [PMID: 29334135 DOI: 10.1002/adma.201705800] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/02/2017] [Indexed: 05/21/2023]
Abstract
Using the interfacial jamming of cellulose nanocrystal (CNC) surfactants, a new concept, termed all-liquid molding, is introduced to produce all-liquid objects that retain the shape and details of the mold with high fidelity, yet remain all liquid and are responsive to external stimuli. This simple process, where the viscosity of the CNC dispersion can range from that of water to a crosslinked gel, opens tremendous opportunities for encapsulation, delivery systems, and unique microfluidic devices. The process described is generally applicable to any functionalized nanoparticles dispersed in one liquid and polymer ligands having complementary functionality dissolved in a second immiscible liquid. Such sculpted liquids retain all the characteristics of the liquids but retain shape indefinitely, very much like a solid, and provide a new platform for next-generation soft materials.
Collapse
|
|
7 |
78 |
6
|
Liu X, Shi S, Li Y, Forth J, Wang D, Russell TP. Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. Angew Chem Int Ed Engl 2017; 56:12594-12598. [PMID: 28795521 DOI: 10.1002/anie.201706839] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/08/2017] [Indexed: 11/10/2022]
Abstract
Structured liquids, generated by the interfacial formation, assembly, and jamming of nanoparticle (NP)-surfactants at liquid/liquid interfaces, maintain all the desirable characteristics of each liquid, while providing a spatially structured framework. Herein, we show that rod-like cellulose nanocrystal (CNC)-based NP-surfactants, termed CNC-surfactants, are formed rapidly at the liquid/liquid interface, assemble into a monolayer, and, when jammed, offer a robust assembly with exceptional mechanical properties. Plateau-Rayleigh (PR) instabilities of a free-falling jet of an aqueous medium containing the CNCs into a toluene solution of amine end-functionalized polystyrene are completely suppressed, allowing the jetting of aqueous tubules that are stabilized when the CNC-surfactants are jammed at the interface. These results open a new platform for the additive manufacturing techniques, for example, three-dimensional (3D) printing, of all-liquid constructs.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
63 |
7
|
Tian X, Leite DM, Scarpa E, Nyberg S, Fullstone G, Forth J, Matias D, Apriceno A, Poma A, Duro-Castano A, Vuyyuru M, Harker-Kirschneck L, Šarić A, Zhang Z, Xiang P, Fang B, Tian Y, Luo L, Rizzello L, Battaglia G. On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias. SCIENCE ADVANCES 2020; 6:6/48/eabc4397. [PMID: 33246953 PMCID: PMC7695481 DOI: 10.1126/sciadv.abc4397] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/02/2020] [Indexed: 05/20/2023]
Abstract
The blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor-related protein 1 (LRP1) to investigate the mechanisms of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modeling of transport kinetics and membrane-bound interactions to elucidate the role of membrane-sculpting protein syndapin-2 on fast transport via tubule formation. We show that high-avidity cargo biases the LRP1 toward internalization associated with fast degradation, while mid-avidity augments the formation of syndapin-2 tubular carriers promoting a fast shuttling across.
Collapse
|
research-article |
5 |
39 |
8
|
Liu X, Shi S, Li Y, Forth J, Wang D, Russell TP. Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706839] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
8 |
38 |
9
|
Hou H, Hu K, Lin H, Forth J, Zhang W, Russell TP, Yin J, Jiang X. Reversible Surface Patterning by Dynamic Crosslink Gradients: Controlling Buckling in 2D. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803463. [PMID: 30066441 DOI: 10.1002/adma.201803463] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Harnessing the self-organization of soft materials to make complex, well-ordered surface patterns in a noninvasive manner is challenging. The wrinkling of thin films provides a compelling strategy to achieve this. Despite much attention, however, a simple, single-step, reversible method that gives rise to controlled, two-dimensional (2D) ordered, continuous, and discontinuous patterns has proven to be elusive. Here a novel, robust method is described to achieve this using an ultraviolet-light-sensitive anthracene-containing polymer thin film. The origin of the patterns is the local buckling of the thin film, where the control over the topology is given by laterally patterning out-of-plane gradients in the crosslink density of the film. The underlying buckling mechanics and formation of the surface features are well-described by finite element analysis. By illuminating the film with a photomask, local and long-range patterns that can be both continuous and discontinuous are able to be written. Furthermore, the patterning is fully reversible over multiple cycles. The results demonstrate a simple strategy for erasable storage of information in a surface topography that has applications in memory, anticounterfeiting, and plasmonics.
Collapse
|
|
7 |
28 |
10
|
Smellie WSA, Forth J, Bareford D, Twomey P, Galloway MJ, Logan ECM, Smart SRS, Reynolds TM, Waine C. Best practice in primary care pathology: review 3. J Clin Pathol 2006; 59:781-9. [PMID: 16873560 PMCID: PMC1860461 DOI: 10.1136/jcp.200x.033944] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2005] [Indexed: 01/13/2023]
Abstract
This best practice review examines four series of common primary care questions in laboratory medicine: (i) "minor" blood platelet count and haemoglobin abnormalities; (ii) diagnosis and monitoring of anaemia caused by iron deficiency; (iii) secondary hyperlipidaemia and hypertriglyceridaemia; and (iv) glycated haemoglobin and microalbumin use in diabetes. The review is presented in question-answer format, referenced for each question series. The recommendations represent a précis of guidance found using a standardised literature search of national and international guidance notes, consensus statements, health policy documents and evidence-based medicine reviews, supplemented by Medline Embase searches to identify relevant primary research documents. They are not standards, but form a guide to be set in the clinical context. Most of the recommendations are based on consensus rather than evidence. They will be updated periodically to take account of new information.
Collapse
|
Review |
19 |
27 |
11
|
Xie G, Forth J, Zhu S, Helms BA, Ashby PD, Shum HC, Russell TP. Hanging droplets from liquid surfaces. Proc Natl Acad Sci U S A 2020; 117:8360-8365. [PMID: 32220955 PMCID: PMC7165464 DOI: 10.1073/pnas.1922045117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Natural and man-made robotic systems use the interfacial tension between two fluids to support dense objects on liquid surfaces. Here, we show that coacervate-encased droplets of an aqueous polymer solution can be hung from the surface of a less dense aqueous polymer solution using surface tension. The forces acting on and the shapes of the hanging droplets can be controlled. Sacs with homogeneous and heterogeneous surfaces are hung from the surface and, by capillary forces, form well-ordered arrays. Locomotion and rotation can be achieved by embedding magnetic microparticles within the assemblies. Direct contact of the droplet with air enables in situ manipulation and compartmentalized cascading chemical reactions with selective transport. Applications including functional microreactors, motors, and biomimetic robots are evident.
Collapse
|
research-article |
5 |
20 |
12
|
Smellie WSA, Forth J, Coleman JJ, Irvine W, Dore PC, Handley G, Williams DG, Galloway PJ, Kerr KG, Herriot R, Spickett GP, Reynolds TM. Best practice in primary care pathology: review 6. J Clin Pathol 2007; 60:225-34. [PMID: 16822875 PMCID: PMC1860559 DOI: 10.1136/jcp.2006.040014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2006] [Indexed: 12/22/2022]
Abstract
This sixth best practice review examines four series of common primary care questions in laboratory medicine: (1) laboratory monitoring in hypertension and heart failure abnormalities; (2) markers of inflammatory joint disease; (3) laboratory investigation of chronic diarrhoea; and (4) mumps and chickenpox. The review is presented in question-answer format, referenced for each question series. The recommendations represent a precis of guidance found using a standardised literature search of national and international guidance notes, consensus statements, health policy documents and evidence-based medicine reviews, supplemented by Medline Embase searches to identify relevant primary research documents. They are not standards but form a guide to be set in the clinical context. Most are consensus based rather than evidence based. They will be updated periodically to take account of new information.
Collapse
|
Review |
18 |
19 |
13
|
Hou H, Li J, Li X, Forth J, Yin J, Jiang X, Helms BA, Russell TP. Interfacial Activity of Amine-Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS): A Simple Strategy To Structure Liquids. Angew Chem Int Ed Engl 2019; 58:10142-10147. [PMID: 31099947 DOI: 10.1002/anie.201903420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/06/2019] [Indexed: 11/08/2022]
Abstract
Amine-functionalized polyhedral oligomeric silsesquioxane (POSS), the smallest, monodisperse cage-shaped silica cubic nanoparticle, is exceptionally interfacially active and can form assemblies that jam the toluene/water interface, locking in non-equilibrium shapes of one liquid phase in another. The packing density of the amine-functionalized POSS assembly at the water/toluene interface can be tuned by varying the concentration, the pH value, and the degree of POSS functionalization. Functionalized POSS gives a higher interface coverage, and hence a lower interfacial tension, than nanoparticle surfactants formed by interactions between functionalized nanoparticles and polymeric ligands. Hydrogen-bonded POSS surfactants are more stable at the interface, offering some unique advantages for generating Pickering emulsions over typical micron-sized colloidal particles and ligand-stabilized nanoparticle surfactants.
Collapse
|
Journal Article |
6 |
18 |
14
|
Toor A, Forth J, Bochner de Araujo S, Merola MC, Jiang Y, Liu X, Chai Y, Hou H, Ashby PD, Fuller GG, Russell TP. Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13340-13350. [PMID: 31536356 DOI: 10.1021/acs.langmuir.9b01575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of polymer surfactant structure and concentration on the self-assembly, mechanical properties, and solidification of nanoparticle surfactants (NPSs) at the oil-water interface was studied. The surface tension of the oil-water interface was found to depend strongly on the choice of the polymer surfactant used to assemble the NPSs, with polymer surfactants bearing multiple polar groups being the most effective at reducing interfacial tension and driving the NPS assembly. By contrast, only small variations in the shear modulus of the system were observed, suggesting that it is determined largely by particle density. In the presence of polymer surfactants bearing multiple functional groups, NPS assemblies on pendant drop surfaces were observed to spontaneously solidify above a critical polymer surfactant concentration. Interfacial solidification accelerated rapidly as polymer surfactant concentration was increased. On long timescales after solidification, pendant drop interfaces were observed to spontaneously wrinkle at sufficiently low surface tensions (approximately 5 mN m-1). Interfacial shear rheology of the NPS assemblies was elastic-dominated, with the shear modulus ranging from 0.1 to 1 N m-1, comparable to values obtained for nanoparticle monolayers elsewhere. Our work paves the way for the development of designer, multicomponent oil-water interfaces with well-defined mechanical, structural, and functional properties.
Collapse
|
|
6 |
17 |
15
|
Huang C, Chai Y, Jiang Y, Forth J, Ashby PD, Arras MML, Hong K, Smith GS, Yin P, Russell TP. The Interfacial Assembly of Polyoxometalate Nanoparticle Surfactants. NANO LETTERS 2018; 18:2525-2529. [PMID: 29558625 DOI: 10.1021/acs.nanolett.8b00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyoxometalates (POMs) using {Mo72V30} as an example, dissolved in water, can interact with amine-terminated polydimethylsiloxane (PDMS-NH2) dissolved in toluene at the water/toluene interface to form POM-surfactants that significantly lower the interfacial tension and can be used to stabilize liquids via interfacial elasticity. The jamming of the POM-surfactants at the water/oil interface with consequent wrinkling occurs with a decrease in the interfacial area. The packing density of the POM-surfactants at the interface can be tuned by varying the strength of screening with the addition of cations with differing hydrated radii.
Collapse
|
|
7 |
16 |
16
|
Smellie WSA, Forth J, Ryder S, Galloway MJ, Wood AC, Watson ID. Best practice in primary care pathology: review 5. J Clin Pathol 2006; 59:1229-37. [PMID: 16644875 PMCID: PMC1860526 DOI: 10.1136/jcp.2006.037754] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2006] [Indexed: 12/31/2022]
Abstract
This fifth best practice review examines three series of common primary care questions in laboratory medicine: (1) minor liver function test abnormalities; (2) laboratory monitoring of patients receiving lithium; and (3) investigation of possible venous thromboembolism. The review is presented in question-answer format, referenced for each question series. The recommendations represent a precis of guidance found using a standardised literature search of national and international guidance notes, consensus statements, health policy documents and evidence-based medicine reviews, supplemented by Medline Embase searches to identify relevant primary research documents. They are not standards but form a guide to be set in the clinical context. Most are consensus-based rather than evidence-based. They will be updated periodically to take account of new information.
Collapse
|
Review |
19 |
15 |
17
|
Graužinytė M, Forth J, Rumble KA, Clegg PS. Particle-stabilized water droplets that sprout millimeter-scale tubes. Angew Chem Int Ed Engl 2014; 54:1456-60. [PMID: 25488306 DOI: 10.1002/anie.201408365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/10/2014] [Indexed: 11/12/2022]
Abstract
Millimeter-scale tubes are observed to sprout from water droplets injected into a bath of toluene containing ethanol and silica colloids. This phenomenon requires that first a membrane is formed by the colloids which self-assemble at the droplet interface, and second, that the ethanol preferentially partitions into the aqueous phase leading to an internal over-pressure. Tube growth, eruption, and shuffling droplets are subsequently observed, depending on the concentration of ethanol and colloids selected. This work opens many possibilities in the field of biomimetic droplets for fundamental studies of artificial growth at the microscale and for emulsion-related applications.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
14 |
18
|
Zhu S, Forth J, Xie G, Chao Y, Tian J, Russell TP, Shum HC. Rapid Multilevel Compartmentalization of Stable All-Aqueous Blastosomes by Interfacial Aqueous-Phase Separation. ACS NANO 2020; 14:11215-11224. [PMID: 32515582 DOI: 10.1021/acsnano.0c02923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Producing artificial multicellular structures to process multistep cascade reactions and mimic the fundamental aspects of living systems is an outstanding challenge. Highly biocompatible, artificial systems consisting of all-aqueous, compartmentalized multicellular systems have yet to be realized. Here, a rapid multilevel compartmentalization of an all-aqueous system where a 3D sheet of subcolloidosomes encloses a mother colloidosome by interfacial phase separation is demonstrated. These spatially organized multicellular structures are termed "blastosomes" since they are similar to blastula in appearance. The barrier to nanoparticle assembly at the water-water interface is overcome using oppositely charged polyelectrolytes that form a coacervate-nanoparticle-composite network. The conditions required to trigger interfacial phase separation and form blastosomes are quantified in a mapped state diagram. We show a versatile model for constructing artificial multicellular spheroids in all-aqueous systems. The rapid interfacial assembly of charged particles and polyelectrolytes can lock in nonequilibrium shapes of water, which also enables top-down technologies, such as 3D printing and microfluidics, to program flexible compartmentalized structures.
Collapse
|
|
5 |
14 |
19
|
Smellie WSA, Forth J, Sundar S, Kalu E, McNulty CAM, Sherriff E, Watson ID, Croucher C, Reynolds TM, Carey PJ. Best practice in primary care pathology: review 4. J Clin Pathol 2006; 59:893-902. [PMID: 16714397 PMCID: PMC1860479 DOI: 10.1136/jcp.2005.035212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2006] [Indexed: 11/04/2022]
Abstract
This fourth best practice review examines four series of common primary care questions in laboratory medicine are examined in this review: (1) safety monitoring for three common drugs; (2) use of prostate-specific antigen; (3) investigation of vaginal discharge; and (4) investigation of subfertility. The review is presented in question-answer format, referenced for each question series. The recommendations represent a precis of the guidance found using a standardised literature search of national and international guidance notes, consensus statements, health policy documents and evidence-based medicine reviews, supplemented by Medline Embase searches to identify relevant primary research documents. They are not standards but form a guide to be set in the clinical context. Most of them are consensus based rather than evidence based. They will be updated periodically to take account of new information.
Collapse
|
Review |
19 |
12 |
20
|
Forth J, French DJ, Gromov AV, King S, Titmuss S, Lord KM, Ridout MJ, Wilde PJ, Clegg PS. Temperature- and pH-Dependent Shattering: Insoluble Fatty Ammonium Phosphate Films at Water-Oil Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9312-9324. [PMID: 26263177 DOI: 10.1021/acs.langmuir.5b01981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study the films formed by tetradecylamine (TDA) at the water-dodecane interface in the presence of hydrogen phosphate ions. Using Fourier transform infrared spectroscopy (FTIR), interfacial shear rheology, confocal fluorescence microscopy, cryo-scanning electron microscopy (cryo-SEM), and small-angle neutron scattering (SANS), we find that between pH 5 and 8 tetradecylammonium cations bind to hydrogen phosphate anions to form needle-shaped crystallites of tetradecylammonium hydrogen phosphate (TAHP). These crystallites self-assemble into films with a range of morphologies; below pH 7, they form brittle, continuous sheets, and at pH 8, they form lace-like networks that deform plastically under shear. They are also temperature-responsive: when the system is heated, the film thins and its rheological moduli drop. We find that the temperature response is caused by dissolution of the film in to the bulk fluid phases. Finally, we show that these films can be used to stabilize temperature-responsive water-in-oil emulsions with potential applications in controlled release of active molecules.
Collapse
|
|
10 |
11 |
21
|
Smellie WSA, Forth J, Smart SRS, Galloway MJ, Irving W, Bareford D, Collinson PO, Kerr KG, Summerfield G, Carey PJ, Minhas R. Best practice in primary care pathology: review 7. J Clin Pathol 2007; 60:458-65. [PMID: 17046843 PMCID: PMC1994553 DOI: 10.1136/jcp.2006.042994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2006] [Indexed: 11/04/2022]
Abstract
This seventh best-practice review examines four series of common primary care questions in laboratory medicine: (1) blood count abnormalities 2; (2) cardiac troponins; (3) high-density lipoprotein cholesterol; and (4) viral diseases 2. The review is presented in a question-answer format, with authorship attributed for each question series. The recommendations are a précis of guidance found using a standardised literature search of national and international guidance notes, consensus statements, health policy documents and evidence-based medicine reviews, supplemented by Medline Embase searches to identify relevant primary research documents. The recommendations are not standards, but form a guide to be set in the clinical context. Most are consensus based rather than evidence based. They will be updated periodically to take account of new information.
Collapse
|
Review |
18 |
10 |
22
|
Zhu S, Xie G, Cui H, Li Q, Forth J, Yuan S, Tian J, Pan Y, Guo W, Chai Y, Zhang Y, Yang Z, Yu RWH, Yu Y, Liu S, Chao Y, Shen Y, Zhao S, Russell TP, Shum HC. Aquabots. ACS NANO 2022; 16:13761-13770. [PMID: 35904791 DOI: 10.1021/acsnano.2c00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft robots, made from elastomers, easily bend and flex, but deformability constraints severely limit navigation through and within narrow, confined spaces. Using aqueous two-phase systems we print water-in-water constructs that, by aqueous phase-separation-induced self-assembly, produce ultrasoft liquid robots, termed aquabots, comprised of hierarchical structures that span in length scale from the nanoscopic to microsciopic, that are beyond the resolution limits of printing and overcome the deformability barrier. The exterior of the compartmentalized membranes is easily functionalized, for example, by binding enzymes, catalytic nanoparticles, and magnetic nanoparticles that impart sensitive magnetic responsiveness. These ultrasoft aquabots can adapt their shape for gripping and transporting objects and can be used for targeted photocatalysis, delivery, and release in confined and tortuous spaces. These biocompatible, multicompartmental, and multifunctional aquabots can be readily applied to medical micromanipulation, targeted cargo delivery, tissue engineering, and biomimetics.
Collapse
|
|
3 |
10 |
23
|
Forth J, Mariano A, Chai Y, Toor A, Hasnain J, Jiang Y, Feng W, Liu X, Geissler PL, Menon N, Helms BA, Ashby PD, Russell TP. The Buckling Spectra of Nanoparticle Surfactant Assemblies. NANO LETTERS 2021; 21:7116-7122. [PMID: 34448588 DOI: 10.1021/acs.nanolett.1c01454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fine control over the mechanical properties of thin sheets underpins transcytosis, cell shape, and morphogenesis. Applying these principles to artificial, liquid-based systems has led to reconfigurable materials for soft robotics, actuation, and chemical synthesis. However, progress is limited by a lack of synthetic two-dimensional membranes that exhibit tunable mechanical properties over a comparable range to that seen in nature. Here, we show that the bending modulus, B, of thin assemblies of nanoparticle surfactants (NPSs) at the oil-water interface can be varied continuously from sub-kBT to 106kBT, by varying the ligands and particles that comprise the NPS. We find extensive departure from continuum behavior, including enormous mechanical anisotropy and a power law relation between B and the buckling spectrum width. Our findings provide a platform for shape-changing liquid devices and motivate new theories for the description of thin-film wrinkling.
Collapse
|
|
4 |
8 |
24
|
Hasnain J, Jiang Y, Hou H, Yan J, Athanasopoulou L, Forth J, Ashby PD, Helms BA, Russell TP, Geissler PL. Spontaneous emulsification induced by nanoparticle surfactants. J Chem Phys 2020; 153:224705. [PMID: 33317311 DOI: 10.1063/5.0029016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microemulsions, mixtures of oil, water, and surfactant, are thermodynamically stable. Unlike conventional emulsions, microemulsions form spontaneously, have a monodisperse droplet size that can be controlled by adjusting the surfactant concentration, and do not degrade with time. To make microemulsions, a judicious choice of surfactant molecules must be made, which significantly limits their potential use. Nanoparticle surfactants, on the other hand, are a promising alternative because the surface chemistry needed to make them bind to a liquid-liquid interface is both well flexible and understood. Here, we derive a thermodynamic model predicting the conditions in which nanoparticle surfactants drive spontaneous emulsification that agrees quantitatively with experiments using Noria nanoparticles. This new class of microemulsions inherits the mechanical, chemical, and optical properties of the nanoparticles used to form them, leading to novel applications.
Collapse
|
|
5 |
8 |
25
|
Noble Jesus C, Evans R, Forth J, Estarellas C, Gervasio FL, Battaglia G. Amphiphilic Histidine-Based Oligopeptides Exhibit pH-Reversible Fibril Formation. ACS Macro Lett 2021; 10:984-989. [PMID: 34422455 PMCID: PMC8375021 DOI: 10.1021/acsmacrolett.1c00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
![]()
We report the design,
simulation, synthesis, and reversible self-assembly
of nanofibrils using polyhistidine-based oligopeptides. The inclusion
of aromatic amino acids in the histidine block produces distinct antiparallel
β-strands that lead to the formation of amyloid-like fibrils.
The structures undergo self-assembly in response to a change in pH.
This creates the potential to produce well-defined fibrils for biotechnological
and biomedical applications that are pH-responsive in a physiologically
relevant range.
Collapse
|
|
4 |
7 |