1
|
Bueno-Gonzalez V, Brady C, Denman S, Plummer S, Allainguillaume J, Arnold D. Corrigendum: Pseudomonas daroniae sp. nov. and Pseudomonas dryadis sp. nov., isolated from pedunculate oak affected by acute oak decline in the UK. Int J Syst Evol Microbiol 2020; 70:704. [PMID: 32019663 DOI: 10.1099/ijsem.0.003940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
2
|
Webber AD, Solofondranohatra JS, Razafindramoana S, Fernández D, Parker CA, Steer M, Abrahams M, Allainguillaume J. Lemurs in Cacao: Presence and Abundance within the Shade Plantations of Northern Madagascar. Folia Primatol (Basel) 2019; 91:96-107. [PMID: 31574526 DOI: 10.1159/000501987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/08/2019] [Indexed: 11/19/2022]
Abstract
The recognition that much biodiversity exists outside protected areas is driving research to understand how animals survive in anthropogenic landscapes. In Madagascar, cacao (Theobroma cacao) is grown under a mix of native and exotic shade trees, and this study sought to understand whether lemurs were present in these agroecosystems. Between November 2016 and March 2017, discussions with farmers, nocturnal reconnaissance surveys and camera traps were used to confirm the presence of lemurs in the Cokafa and Mangabe plantations near Ambanja, north-west Madagascar. Four species of lemur were encountered in nocturnal surveys: Mirza zaza, Phaner parienti, Microcebussp. and Cheirogaleussp. with encounter rates of 1.2, 0.4, 0.4 and 0.3 individuals/km, respectively. The presence of Lepilemur dorsalis was confirmed by camera trap. This is the first time lemurs have been studied in cacao plantations, and understanding how these threatened animals use anthropogenic landscapes is vital for their conservation.
Collapse
|
3
|
Bueno-Gonzalez V, Brady C, Denman S, Plummer S, Allainguillaume J, Arnold D. Pseudomonas daroniae sp. nov. and Pseudomonas dryadis sp. nov., isolated from pedunculate oak affected by acute oak decline in the UK. Int J Syst Evol Microbiol 2019; 69:3368-3376. [PMID: 31391144 DOI: 10.1099/ijsem.0.003615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Twenty-two cream-coloured bacterial strains were isolated from oak trees affected by acute oak decline (AOD) in Southern England. Isolates were Gram-negative, motile, slightly curved rods, aerobic, non-spore-forming, catalase positive and oxidase positive. 16S rRNA gene sequence analysis placed the strains in two separate phylogenetic clusters in the Pseudomonas straminea group, with Pseudomonas flavescens as the closest phylogenetic relative. Multilocus sequence analyses of the gyrB, rpoD and rpoB genes supported the delineation of the strains into two separate taxa, which could be differentiated phenotypically and chemotaxonomically from each other, and their closest relatives. Average nucleotide identity and in silico DNA-DNA hybridization values revealed percentages of genome similarity below the species threshold (95 and 70 %, respectively) between the two taxa and the closest relatives, confirming their novel species status. Therefore, on the basis of this polyphasic approach we propose two novel Pseudomonas species, Pseudomonasdaroniae sp. nov. (type strain FRB 228T=LMG 31087T=NCPPB 4672T) and Pseudomonasdryadis sp. nov. (type strain FRB 230T=LMG 31087T=NCPPB 4673T).
Collapse
|
4
|
Williams E, Whiteman M, Wood ME, Wilson ID, Ladomery MR, Allainguillaume J, Teklic T, Lisjak M, Hancock JT. Investigating ROS, RNS, and H 2S-Sensitive Signaling Proteins. Methods Mol Biol 2019; 1990:27-42. [PMID: 31148060 DOI: 10.1007/978-1-4939-9463-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The modification of proteins is a key way to alter their activity and function. Often thiols, cysteine residues, on proteins are attractive targets for such modification. Assuming that the thiol group is accessible then reactions may take place with a range of chemicals found in cells. These may include reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), reactive nitrogen species such as nitric oxide (NO), hydrogen sulfide (H2S), or glutathione. Such modifications often are instrumental to important cellular signaling processes, which ultimately result in modification of physiology of the organism. Therefore, there is a need to be able to identify such modifications. There are a variety of techniques to find proteins which may be altered in this way but here the focus is on two approaches: firstly, the use of fluorescent thiol derivatives and the subsequent use of mass spectrometry to identify the thiols involved; secondly the confirmation of such changes using biochemical assays and genetic mutants. The discussion will be based on the use of two model organisms: firstly the plant Arabidopsis thaliana (both as cell cultures and whole plants) and secondly the nematode worm Caenorhabditis elegans. However, these tools, as described, may be used in a much wider range of biological systems, including human and human tissue cultures.
Collapse
|
5
|
Muller E, Ravel S, Agret C, Abrokwah F, Dzahini-Obiatey H, Galyuon I, Kouakou K, Jeyaseelan EC, Allainguillaume J, Wetten A. Next generation sequencing elucidates cacao badnavirus diversity and reveals the existence of more than ten viral species. Virus Res 2017; 244:235-251. [PMID: 29169831 DOI: 10.1016/j.virusres.2017.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 11/18/2022]
Abstract
Cacao swollen shoot virus is a member of the family Caulimoviridae, genus Badnavirus and is naturally transmitted to Theobroma cacao (L.) by several mealybug species. CSSV populations in West African countries are highly variable and genetically structured into several different groups based on the diversity in the first part of ORF3 which encodes the movement protein. To unravel the extent of isolate diversity and address the problems of low titer and mixed viral sequences in samples, we used Illumina MiSeq and HiSeq technology. We were able to reconstruct de novo 20 new complete genomes from cacao samples collected in the Cocoa Research Institute of Ghana (CRIG) Museum and from the field samples collected in Côte d'Ivoire or Ghana. Based on the 20% threshold of nucleotide divergence in the reverse transcriptase/ribonuclease H (RT/RNase H) region which denotes species demarcation, we conclude there exist seven new species associated with the cacao swollen shoot disease. These new species along with the three already described leads to ten, the total number of the complex of viral species associated with the disease. A sample from Sri Lanka exhibiting similar leaf symptomology to West African CSSD-affected plants was also included in the study and the corresponding sequence represents the genome of a new virus named cacao bacilliform SriLanka virus (CBSLV).
Collapse
|
6
|
Hopewell H, Floyd KG, Burnell D, Hancock JT, Allainguillaume J, Ladomery MR, Wilson ID. Residual ground-water levels of the neonicotinoid thiacloprid perturb chemosensing of Caenorhabditis elegans. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:981-990. [PMID: 28643160 PMCID: PMC5563336 DOI: 10.1007/s10646-017-1826-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2017] [Indexed: 05/05/2023]
Abstract
This study investigated the neurological effects of residual ground-water levels of thiacloprid on the non-target organism Caenorhabditis elegans. Nematodes treated with thiacloprid showed a dose-dependent and significantly increased twitch response at concentrations above 50 ng mL-1 that disabled their forward locomotion in liquid culture. In comparison with untreated controls, 10 ng mL-1 thiacloprid perturbed the chemosensory ability of C. elegans such that the nematodes no longer demonstrated positive chemotaxis towards a NaCl chemo-attractant, reducing their chemotaxis index from +0.48 to near to zero. Nematodes also exhibited a locomotion characteristic of those devoid of chemo-attraction, making significantly more pirouetting turns of ≥90° than the untreated controls. Compared to the untreated controls, expression of the endocytosis-associated gene, Rab-10, was also increased in C. elegans that had developed to adulthood in the presence of 10 ng mL-1 thiacloprid, suggesting their active engagement in increased recycling of affected cellular components, such as their nAChRs. Thus, even residual, low levels of this less potent neonicotinoid that may be found in field ground-water had measurable effects on a beneficial soil organism which may have environmental and ecological implications that are currently poorly understood.
Collapse
|
7
|
Brady C, Allainguillaume J, Denman S, Arnold D. Rapid identification of bacteria associated with Acute Oak Decline by high-resolution melt analysis. Lett Appl Microbiol 2017; 63:89-95. [PMID: 27227694 DOI: 10.1111/lam.12593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022]
Abstract
UNLABELLED Two Gram-negative Enterobacteriaceae, Gibbsiella quercinecans and Brenneria goodwinii, are frequently isolated from oak suffering from Acute Oak Decline. These two species are difficult to identify based on colony morphology, carbohydrate utilization or 16S rRNA gene sequence, and identification using gyrB gene sequencing is time-consuming and laborious. A rapid identification technique, based on high-resolution melt analysis of the atpD gene, was designed to efficiently process numerous isolates from an increasing number of affected woodlands and parks. Principal component analysis of the resulting melt curves from strains of G. quercinecans, B. goodwinii and their close phylogenetic relatives allowed differentiation into distinct clusters based on species or subspecies identity. SIGNIFICANCE AND IMPACT OF THE STUDY Acute Oak Decline is an increasing threat to Britain's native oak population. Two novel bacterial species both belonging to the family Enterobacteriaceae, Gibbsiella quercinecans and Brenneria goodwinii, are thought to play an important role in symptom development. Here, we describe a rapid identification technique using high-resolution melt analysis of the atpD gene able to assign isolates to either G. quercinecans or B. goodwinii in a single assay, greatly reducing the time taken to identify if either or both of these species are present in symptomatic oak.
Collapse
|
8
|
Hawkins J, de Vere N, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, Baillie L, Adams-Groom B. Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences. PLoS One 2015; 10:e0134735. [PMID: 26308362 PMCID: PMC4550469 DOI: 10.1371/journal.pone.0134735] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Identifying the floral composition of honey provides a method for investigating the plants that honey bees visit. We compared melissopalynology, where pollen grains retrieved from honey are identified morphologically, with a DNA metabarcoding approach using the rbcL DNA barcode marker and 454-pyrosequencing. We compared nine honeys supplied by beekeepers in the UK. DNA metabarcoding and melissopalynology were able to detect the most abundant floral components of honey. There was 92% correspondence for the plant taxa that had an abundance of over 20%. However, the level of similarity when all taxa were compared was lower, ranging from 22-45%, and there was little correspondence between the relative abundance of taxa found using the two techniques. DNA metabarcoding provided much greater repeatability, with a 64% taxa match compared to 28% with melissopalynology. DNA metabarcoding has the advantage over melissopalynology in that it does not require a high level of taxonomic expertise, a greater sample size can be screened and it provides greater resolution for some plant families. However, it does not provide a quantitative approach and pollen present in low levels are less likely to be detected. We investigated the plants that were frequently used by honey bees by examining the results obtained from both techniques. Plants with a broad taxonomic range were detected, covering 46 families and 25 orders, but a relatively small number of plants were consistently seen across multiple honey samples. Frequently found herbaceous species were Rubus fruticosus, Filipendula ulmaria, Taraxacum officinale, Trifolium spp., Brassica spp. and the non-native, invasive, Impatiens glandulifera. Tree pollen was frequently seen belonging to Castanea sativa, Crataegus monogyna and species of Malus, Salix and Quercus. We conclude that although honey bees are considered to be supergeneralists in their foraging choices, there are certain key species or plant groups that are particularly important in the honey bees environment. The reasons for this require further investigation in order to better understand honey bee nutritional requirements. DNA metabarcoding can be easily and widely used to investigate floral visitation in honey bees and can be adapted for use with other insects. It provides a starting point for investigating how we can better provide for the insects that we rely upon for pollination.
Collapse
|
9
|
Consuegra S, Ellison A, Allainguillaume J, Pachebat J, Peat KM, Wright P. Balancing selection and the maintenance of MHC supertype variation in a selfing vertebrate. Proc Biol Sci 2013; 280:20122854. [DOI: 10.1098/rspb.2012.2854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10
|
Ellison A, Allainguillaume J, Girdwood S, Pachebat J, Peat KM, Wright P, Consuegra S. Maintaining functional major histocompatibility complex diversity under inbreeding: the case of a selfing vertebrate. Proc Biol Sci 2012; 279:5004-13. [PMID: 23075838 PMCID: PMC3497237 DOI: 10.1098/rspb.2012.1929] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/24/2012] [Indexed: 01/17/2023] Open
Abstract
Major histocompatibility complex (MHC) genes encode proteins that present pathogen-derived antigens to T-cells, initiating the adaptive immune response in vertebrates. Although populations with low MHC diversity tend to be more susceptible to pathogens, some bottlenecked populations persist and even increase in numbers despite low MHC diversity. Thus, the relative importance of MHC diversity versus genome-wide variability for the long-term viability of populations after bottlenecks and/or under high inbreeding is controversial. We tested the hypothesis that genome-wide inbreeding (estimated using microsatellites) should be more critical than MHC diversity alone in determining pathogen resistance in the self-fertilizing fish Kryptolebias marmoratus by analysing MHC diversity and parasite loads in natural and laboratory populations with different degrees of inbreeding. Both MHC and neutral diversities were lost after several generations of selfing, but we also found evidence of parasite selection acting on MHC diversity and of non-random loss of alleles, suggesting a possible selective advantage of those individuals with functionally divergent MHC, in accordance with the hypothesis of divergent allele advantage. Moreover, we found that parasite loads were better explained by including MHC diversity in the model than by genome-wide (microsatellites) heterozygosity alone. Our results suggest that immune-related overdominance could be the key in maintaining variables rates of selfing and outcrossing in K. marmoratus and other mixed-mating species.
Collapse
|
11
|
de Vere N, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite D, Davies H, Allainguillaume J, Ronca S, Tatarinova T, Garbett H, Walker K, Wilkinson MJ. DNA barcoding the native flowering plants and conifers of Wales. PLoS One 2012; 7:e37945. [PMID: 22701588 PMCID: PMC3368937 DOI: 10.1371/journal.pone.0037945] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.
Collapse
|
12
|
Aggarwal RK, Allainguillaume J, Bajay MM, Barthwal S, Bertolino P, Chauhan P, Consuegra S, Croxford A, Dalton DL, den Belder E, Díaz-Ferguson E, Douglas MR, Drees M, Elderson J, Esselink GD, Fernández-Manjarrés JF, Frascaria-Lacoste N, Gäbler-Schwarz S, Garcia de Leaniz C, Ginwal HS, Goodisman MAD, Guo B, Hamilton MB, Hayes PK, Hong Y, Kajita T, Kalinowski ST, Keller L, Koop BF, Kotzé A, Lalremruata A, Leese F, Li C, Liew WY, Martinelli S, Matthews EA, Medlin LK, Messmer AM, Meyer EI, Monteiro M, Moyer GR, Nelson RJ, Nguyen TTT, Omoto C, Ono J, Pavinato VAC, Pearcy M, Pinheiro JB, Power LD, Rawat A, Reusch TBH, Sanderson D, Sannier J, Sathe S, Sheridan CK, Smulders MJM, Sukganah A, Takayama K, Tamura M, Tateishi Y, Vanhaecke D, Vu NV, Wickneswari R, Williams AS, Wimp GM, Witte V, Zucchi MI. Permanent genetic resources added to Molecular Ecology Resources Database 1 August 2010-30 September 2010. Mol Ecol Resour 2011; 11:219-22. [PMID: 21429127 DOI: 10.1111/j.1755-0998.2010.02944.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis × Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.
Collapse
|
13
|
Mur LAJ, Allainguillaume J, Catalán P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J. Exploiting the Brachypodium Tool Box in cereal and grass research. THE NEW PHYTOLOGIST 2011; 191:334-347. [PMID: 21623796 DOI: 10.1111/j.1469-8137.2011.03748.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is now a decade since Brachypodium distachyon (Brachypodium) was suggested as a model species for temperate grasses and cereals. Since then transformation protocols, large expressed sequence tag (EST) databases, tools for forward and reverse genetic screens, highly refined cytogenetic probes, germplasm collections and, recently, a complete genome sequence have been generated. In this review, we will describe the current status of the Brachypodium Tool Box and how it is beginning to be applied to study a range of biological traits. Further, as genomic analysis of larger cereals and forage grasses genomes are becoming easier, we will re-evaluate Brachypodium as a model species. We suggest that there remains an urgent need to employ reverse genetic and functional genomic approaches to identify the functionality of key genetic elements, which could be employed subsequently in plant breeding programmes; and a requirement for a Pooideae reference genome to aid assembling large pooid genomes. Brachypodium is an ideal system for functional genomic studies, because of its easy growth requirements, small physical stature, and rapid life cycle, coupled with the resources offered by the Brachypodium Tool Box.
Collapse
|
14
|
Allainguillaume J, Harwood T, Ford CS, Cuccato G, Norris C, Allender CJ, Welters R, King GJ, Wilkinson MJ. Rapeseed cytoplasm gives advantage in wild relatives and complicates genetically modified crop biocontainment. THE NEW PHYTOLOGIST 2009; 183:1201-1211. [PMID: 19496946 DOI: 10.1111/j.1469-8137.2009.02877.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biocontainment methods for genetically modified crops closest to commercial reality (chloroplast transformation, male sterility) would be compromised (in absolute terms) by seed-mediated gene flow leading to chloroplast capture. Even in these circumstances, however, it can be argued that biocontainment still represses transgene movement, with the efficacy depending on the relative frequency of seed- and pollen-mediated gene flow. In this study, we screened for crop-specific chloroplast markers from rapeseed (Brassica napus) amongst sympatric and allopatric populations of wild B. oleracea in natural cliff-top populations and B. rapa in riverside and weedy populations. We found only modest crop chloroplast presence in wild B. oleracea and in weedy B. rapa, but a surprisingly high incidence in sympatric (but not in allopatric) riverside B. rapa populations. Chloroplast inheritance models indicate that elevated crop chloroplast acquisition is best explained if crop cytoplasm confers selective advantage in riverside B. rapa populations. Our results therefore imply that chloroplast transformation may slow transgene recruitment in two settings, but actually accelerate transgene spread in a third. This finding suggests that the appropriateness of chloroplast transformation for biocontainment policy depends on both context and geographical location.
Collapse
|
15
|
Haider N, Allainguillaume J, Wilkinson MJ. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment. Curr Genet 2009; 55:139-50. [PMID: 19198841 DOI: 10.1007/s00294-009-0230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/13/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
Environmental concerns over the cultivation of Genetically Modified (GM) crops largely centre on the ecological consequences following gene flow to wild relatives. One attractive solution is to deploy biocontainment measures that prevent hybridization. Chloroplast transformation is the most advanced biocontainment method but is compromised by chloroplast capture (hybridization through the maternal lineage). To date, however, there is a paucity of information on the frequency of chloroplast capture in the wild. Oilseed rape (Brassica napus, AACC) frequently hybridises with wild Brassica rapa (AA, as paternal parent) and yields B. rapa-like introgressed individuals after only two generations. In this study we used chloroplast CAPS markers that differentiate between the two species to survey wild and weedy populations of B. rapa for the capture of B. napus chloroplasts. A total of 464 B. rapa plants belonging to 14 populations growing either in close proximity to B. napus (i.e. sympatric <5 m) or else were allopatric from the crop (>1 km) were assessed for chloroplast capture using PCR (trnL-F) and CAPS (trnT-L-Xba I) markers. The screen revealed that two sympatric B. rapa populations included 53 plants that possessed the chloroplast of B. napus. In order to discount these B. rapa plants as F(1) crop-wild hybrids, we used a C-genome-specific marker and found that 45 out of 53 plants lacked the C-genome and so were at least second generation introgressants. The most plausible explanation is that these individuals represent multiple cases of chloroplast capture following introgressive hybridisation through the female germ line from the crop. The abundance of such plants in sympatric sites thereby questions whether the use of chloroplast transformation would provide a sufficient biocontainment for GM oilseed rape in the United Kingdom.
Collapse
|
16
|
Quainoo AK, Wetten AC, Allainguillaume J. Transmission of cocoa swollen shoot virus by seeds. J Virol Methods 2008; 150:45-9. [PMID: 18433889 DOI: 10.1016/j.jviromet.2008.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/01/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
A study was undertaken to determine whether cocoa swollen shoot virus is transmitted by seeds, to improve the robustness of quarantine procedures for international exchange and long term conservation of cocoa germplasm. PCR/capillary electrophoresis, using cocoa swollen shoot virus primers designed from the most conserved regions of the six published cocoa genome sequences, allowed the detection of cocoa swollen shoot virus in all the component parts of cocoa seeds from cocoa swollen shoot virus-infected trees. PCR/capillary electrophoresis revealed the presence of cocoa swollen shoot virus in seedlings raised from seeds obtained from cocoa swollen shoot virus-infected trees. The high frequency with which the virus was transmitted through the seedlings suggested that cocoa swollen shoot virus is transmitted by seeds. This has serious implications for cocoa germplasm conservation and distribution.
Collapse
|
17
|
Allender CJ, Allainguillaume J, Lynn J, King GJ. Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (n = 9) wild relatives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:609-18. [PMID: 17143649 DOI: 10.1007/s00122-006-0461-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 11/06/2006] [Indexed: 05/12/2023]
Abstract
Diversity in the chloroplast genome of 171 accessions representing the Brassica 'C' (n = 9) genome, including domesticated and wild B. oleracea and nine inter-fertile related wild species, was investigated using six chloroplast SSR (microsatellite) markers. The lack of diversity detected among 105 cultivated and wild accessions of B. oleracea contrasted starkly with that found within its wild relatives. The vast majority of B. oleracea accessions shared a single haplotype, whereas as many as six haplotypes were detected in two wild species, B. villosa Biv. and B. cretica Lam.. The SSRs proved to be highly polymorphic across haplotypes, with calculated genetic diversity values (H) of 0.23-0.87. In total, 23 different haplotypes were detected in C genome species, with an additional five haplotypes detected in B. rapa L. (A genome n = 10) and another in B. nigra L. (B genome, n = 8). The low chloroplast diversity of B. oleracea is not suggestive of multiple domestication events. The predominant B. oleracea haplotype was also common in B. incana Ten. and present in low frequencies in B. villosa, B. macrocarpa Guss, B. rupestris Raf. and B. cretica. The chloroplast SSRs reveal a wealth of diversity within wild Brassica species that will facilitate further evolutionary and phylogeographic studies of this important crop genus.
Collapse
|
18
|
Allainguillaume J, Alexander M, Bullock JM, Saunders M, Allender CJ, King G, Ford CS, Wilkinson MJ. Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats. Mol Ecol 2006; 15:1175-84. [PMID: 16599976 DOI: 10.1111/j.1365-294x.2006.02856.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fitness of hybrids between genetically modified (GM) crops and wild relatives influences the likelihood of ecological harm. We measured fitness components in spontaneous (non-GM) rapeseed x Brassica rapa hybrids in natural populations. The F1 hybrids yielded 46.9% seed output of B. rapa, were 16.9% as effective as males on B. rapa and exhibited increased self-pollination. Assuming 100% GM rapeseed cultivation, we conservatively predict < 7000 second-generation transgenic hybrids annually in the United Kingdom (i.e. approximately 20% of F1 hybrids). Conversely, whilst reduced hybrid fitness improves feasibility of bio-containment, stage projection matrices suggests broad scope for some transgenes to offset this effect by enhancing fitness.
Collapse
|
19
|
Renau-Morata B, Nebauer SG, Sales E, Allainguillaume J, Caligari P, Segura J. Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. AMERICAN JOURNAL OF BOTANY 2005; 92:875-884. [PMID: 21652469 DOI: 10.3732/ajb.92.5.875] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cedrus atlantica (Pinaceae) is a large and exceptionally long-lived conifer native to the Rif and Atlas Mountains of North Africa. To assess levels and patterns of genetic diversity of this species, samples were obtained throughout the natural range in Morocco and from a forest plantation in Arbúcies, Girona (Spain) and analyzed using RAPD markers. Within-population genetic diversity was high and comparable to that revealed by isozymes. Managed populations harbored levels of genetic variation similar to those found in their natural counterparts. Genotypic analyses of molecular variance (AMOVA) found that most variation was within populations, but significant differentiation was also found between populations, particularly in Morocco. Bayesian estimates of F(ST) corroborated the AMOVA partitioning and provided evidence for population differentiation in C. atlantica. Both distance- and Bayesian-based clustering methods revealed that Moroccan populations comprise two genetically distinct groups. Within each group, estimates of population differentiation were close to those previously reported in other gymnosperms. These results are interpreted in the context of the postglacial history of the species and human impact. The high degree of among-group differentiation recorded here highlights the need for additional conservation measures for some Moroccan populations of C. atlantica.
Collapse
|
20
|
Wilkinson MJ, Davenport IJ, Charters YM, Jones AE, Allainguillaume J, Butler HT, Mason DC, Raybould AF. A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progenitors. Mol Ecol 2000; 9:983-91. [PMID: 10886660 DOI: 10.1046/j.1365-294x.2000.00986.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the major environmental concerns over genetically modified (GM) crops relates to transgene movement into wild relatives. The pattern of hybridization ultimately affects the scale and rapidity of ecological change and the feasibility of containment. A new procedure for quantifying hybrid formation over large areas is described. Remote sensing was used to identify possible sites of sympatry between Brassica napus and its progenitor species across 15 000 km2 of south-east England in 1998. Two sympatric populations with B. rapa and one with B. oleracea were found over the entire survey area. Every newly recruited plant in these populations in 1999 was screened for hybrid status using flow cytometry and molecular analyses. One hybrid was observed from the 505 plants screened in the B. rapa populations but none of the nine B. oleracea recruits were hybrids. Measures to minimize gene flow are suggested, and a procedure for the post-release evaluation and containment of GM cultivars is proposed.
Collapse
|
21
|
Wilkinson MJ, Bennett ST, Clulow SA, Allainguillaume J, Harding K, Bennett MD. Evidence for somatic translocation during potato dihaploid induction. Heredity (Edinb) 1995; 74 ( Pt 2):146-51. [PMID: 7706107 DOI: 10.1038/hdy.1995.21] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Potato dihaploid PDH55 (Solanum tuberosum) is exclusively euploid (2n = 24) but apparently contains and expresses DNA from dihaploid inducer IVP48 (S. phureja). Genomic in situ hybridization (GISH) suggested IVP48 DNA incorporated stably into PDH55 by somatic translocation. This finding has two important implications. Firstly, the long-held implicit assumption that euploid dihaploids produced by dihaploid inducers are pure S. tuberosum seems incorrect. This may complicate meiotic, genetical and molecular studies involving potato dihaploids. Secondly, if such translocations are not rare, the phenomenon may offer a novel way to introduce useful traits directly from wild dihaploid-inducing species into S. tuberosum.
Collapse
|