1
|
Huang XP, Karpiak J, Kroeze WK, Zhu H, Chen X, Moy SS, Saddoris KA, Nikolova VD, Farrell MS, Wang S, Mangano TJ, Deshpande DA, Jiang A, Penn RB, Jin J, Koller BH, Kenakin T, Shoichet BK, Roth BL. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 2015; 527:477-83. [PMID: 26550826 DOI: 10.1038/nature15699] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023]
Abstract
At least 120 non-olfactory G-protein-coupled receptors in the human genome are 'orphans' for which endogenous ligands are unknown, and many have no selective ligands, hindering the determination of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Using yeast-based screens against GPR68, here we identify the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. More than 3,000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators, many of which were confirmed in functional assays. One potent GPR68 modulator, ogerin, suppressed recall in fear conditioning in wild-type but not in GPR68-knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
206 |
2
|
Cao C, Kang HJ, Singh I, Chen H, Zhang C, Ye W, Hayes BW, Liu J, Gumpper RH, Bender BJ, Slocum ST, Krumm BE, Lansu K, McCorvy JD, Kroeze WK, English JG, DiBerto JF, Olsen RHJ, Huang XP, Zhang S, Liu Y, Kim K, Karpiak J, Jan LY, Abraham SN, Jin J, Shoichet BK, Fay JF, Roth BL. Structure, function and pharmacology of human itch GPCRs. Nature 2021; 600:170-175. [PMID: 34789874 PMCID: PMC9150435 DOI: 10.1038/s41586-021-04126-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/ultrastructure
- Humans
- Models, Molecular
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/ultrastructure
- Pruritus/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/ultrastructure
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/ultrastructure
Collapse
|
Research Support, N.I.H., Extramural |
4 |
131 |
3
|
Hu J, Wang Y, Zhang X, Lloyd JR, Li J, Karpiak J, Costanzi S, Wess J. Structural basis of G protein-coupled receptor-G protein interactions. Nat Chem Biol 2010; 6:541-8. [PMID: 20512139 PMCID: PMC3104732 DOI: 10.1038/nchembio.385] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/30/2010] [Indexed: 01/31/2023]
Abstract
The interaction of G protein-coupled receptors (GPCRs) with heterotrimeric G proteins represents one of the most fundamental biological processes. However, the molecular architecture of the GPCR-G protein complex remains poorly defined. In the present study, we applied a comprehensive GPCR-G protein alpha subunit (Galpha) chemical cross-linking strategy to map a receptor-Galpha interface, both before and after agonist-induced receptor activation. Using the M(3) muscarinic acetylcholine receptor (M3R)-Galpha(q) system as a model system, we examined the ability of approximately 250 combinations of cysteine-substituted M3R and Galpha(q) proteins to undergo cross-link formation. We identified many specific M3R-Galpha(q) contact sites, in both the inactive and active receptor conformations, allowing us to draw conclusions regarding the basic architecture of the M3R-Galpha(q) interface and the nature of the conformational changes following receptor activation. As heterotrimeric G proteins as well as most GPCRs share a high degree of structural homology, our findings should be of broad general relevance.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
65 |
4
|
Avasthi P, Onishi M, Karpiak J, Yamamoto R, Mackinder L, Jonikas MC, Sale WS, Shoichet B, Pringle JR, Marshall WF. Actin is required for IFT regulation in Chlamydomonas reinhardtii. Curr Biol 2014; 24:2025-32. [PMID: 25155506 DOI: 10.1016/j.cub.2014.07.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/10/2014] [Accepted: 07/15/2014] [Indexed: 11/26/2022]
Abstract
Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
51 |
5
|
Eidam O, Romagnoli C, Caselli E, Babaoglu K, Pohlhaus DT, Karpiak J, Bonnet R, Shoichet BK, Prati F. Design, synthesis, crystal structures, and antimicrobial activity of sulfonamide boronic acids as β-lactamase inhibitors. J Med Chem 2010; 53:7852-63. [PMID: 20945905 DOI: 10.1021/jm101015z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated a series of sulfonamide boronic acids that resulted from the merging of two unrelated AmpC β-lactamase inhibitor series. The new boronic acids differed in the replacement of the canonical carboxamide, found in all penicillin and cephalosporin antibiotics, with a sulfonamide. Surprisingly, these sulfonamides had a highly distinct structure-activity relationship from the previously explored carboxamides, high ligand efficiencies (up to 0.91), and K(i) values down to 25 nM and up to 23 times better for smaller analogues. Conversely, K(i) values were 10-20 times worse for larger molecules than in the carboxamide congener series. X-ray crystal structures (1.6-1.8 Å) of AmpC with three of the new sulfonamides suggest that this altered structure-activity relationship results from the different geometry and polarity of the sulfonamide versus the carboxamide. The most potent inhibitor reversed β-lactamase-mediated resistance to third generation cephalosporins, lowering their minimum inhibitory concentrations up to 32-fold in cell culture.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
46 |
6
|
Vilar S, Karpiak J, Berk B, Costanzi S. In silico analysis of the binding of agonists and blockers to the β2-adrenergic receptor. J Mol Graph Model 2011; 29:809-17. [PMID: 21334234 DOI: 10.1016/j.jmgm.2011.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Activation of G protein-coupled receptors (GPCRs) is a complex phenomenon. Here, we applied Induced Fit Docking (IFD) in tandem with linear discriminant analysis (LDA) to generate hypotheses on the conformational changes induced to the β(2)-adrenergic receptor by agonist binding, preliminary to the sequence of events that characterize activation of the receptor. This analysis, corroborated by a follow-up molecular dynamics study, suggested that agonists induce subtle movements to the fifth transmembrane domain (TM5) of the receptor. Furthermore, molecular dynamics also highlighted a correlation between movements of TM5 and the second extracellular loop (EL2), suggesting that freedom of motion of EL2 is required for the agonist-induced TM5 displacement. Importantly, we also showed that the IFD/LDA procedure can be used as a computational means to distinguish agonists from blockers on the basis of the differential conformational changes induced to the receptor. In particular, the two most predictive models obtained are based on the RMSD induced to Ser207 and on the counterclockwise rotation induced to TM5.
Collapse
|
Research Support, N.I.H., Intramural |
14 |
34 |
7
|
Weiss D, Karpiak J, Huang XP, Sassano MF, Lyu J, Roth BL, Shoichet BK. Selectivity Challenges in Docking Screens for GPCR Targets and Antitargets. J Med Chem 2018; 61:6830-6845. [PMID: 29990431 PMCID: PMC6105036 DOI: 10.1021/acs.jmedchem.8b00718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 12/14/2022]
Abstract
To investigate large library docking's ability to find molecules with joint activity against on-targets and selectivity versus antitargets, the dopamine D2 and serotonin 5-HT2A receptors were targeted, seeking selectivity against the histamine H1 receptor. In a second campaign, κ-opioid receptor ligands were sought with selectivity versus the μ-opioid receptor. While hit rates ranged from 40% to 63% against the on-targets, they were just as good against the antitargets, even though the molecules were selected for their putative lack of binding to the off-targets. Affinities, too, were often as good or better for the off-targets. Even though it was occasionally possible to find selective molecules, such as a mid-nanomolar D2/5-HT2A ligand with 21-fold selectivity versus the H1 receptor, this was the exception. Whereas false-negatives are tolerable in docking screens against on-targets, they are intolerable against antitargets; addressing this problem may demand new strategies in the field.
Collapse
|
research-article |
7 |
25 |
8
|
Salas-Sarduy E, Landaburu LU, Karpiak J, Madauss KP, Cazzulo JJ, Agüero F, Alvarez VE. Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci Rep 2017; 7:12073. [PMID: 28935948 PMCID: PMC5608908 DOI: 10.1038/s41598-017-12170-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
American Trypanosomiasis or Chagas disease is a prevalent, neglected and serious debilitating illness caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The current chemotherapy is limited only to nifurtimox and benznidazole, two drugs that have poor efficacy in the chronic phase and are rather toxic. In this scenario, more efficacious and safer drugs, preferentially acting through a different mechanism of action and directed against novel targets, are particularly welcome. Cruzipain, the main papain-like cysteine peptidase of T. cruzi, is an important virulence factor and a chemotherapeutic target with excellent pre-clinical validation evidence. Here, we present the identification of new Cruzipain inhibitory scaffolds within the GlaxoSmithKline HAT (Human African Trypanosomiasis) and Chagas chemical boxes, two collections grouping 404 non-cytotoxic compounds with high antiparasitic potency, drug-likeness, structural diversity and scientific novelty. We have adapted a continuous enzymatic assay to a medium-throughput format and carried out a primary screening of both collections, followed by construction and analysis of dose-response curves of the most promising hits. Using the identified compounds as a starting point a substructure directed search against CHEMBL Database revealed plausible common scaffolds while docking experiments predicted binding poses and specific interactions between Cruzipain and the novel inhibitors.
Collapse
|
research-article |
8 |
25 |
9
|
Vilar S, Karpiak J, Costanzi S. Ligand and structure-based models for the prediction of ligand-receptor affinities and virtual screenings: Development and application to the beta(2)-adrenergic receptor. J Comput Chem 2010; 31:707-20. [PMID: 19569204 PMCID: PMC2818076 DOI: 10.1002/jcc.21346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, we evaluated the applicability of ligand-based and structure-based models to quantitative affinity predictions and virtual screenings for ligands of the beta(2)-adrenergic receptor, a G protein-coupled receptor (GPCR). We also devised and evaluated a number of consensus models obtained through partial least square regressions, to combine the strengths of the individual components. In all cases, the bioactive conformation of each ligand was derived from molecular docking at the crystal structure of the receptor. We identified the most effective models applicable to the different scenarios, in the presence or in the absence of a training set. For ranking the affinity of closely related analogs when a training set is available, a ligand-based consensus model (LI-CM) seems to be the best choice, while the structure-based MM-GBSA score seems the best alternative in the absence of a training set. For virtual screening purposes, the structure-based MM-GBSA score was found to be the method of choice. Consensus models consistently had performances superior or close to those of the best individual components, and were endowed with a significantly increased robustness. Given multiple models with no a priori knowledge of their predictive capabilities, constructing a consensus model ensures results very close to those that the best model alone would have yielded.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
21 |
10
|
Rettenmaier TJ, Fan H, Karpiak J, Doak A, Sali A, Shoichet BK, Wells JA. Small-Molecule Allosteric Modulators of the Protein Kinase PDK1 from Structure-Based Docking. J Med Chem 2015; 58:8285-8291. [PMID: 26443011 DOI: 10.1021/acs.jmedchem.5b01216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Finding small molecules that target allosteric sites remains a grand challenge for ligand discovery. In the protein kinase field, only a handful of highly selective allosteric modulators have been found. Thus, more general methods are needed to discover allosteric modulators for additional kinases. Here, we use virtual screening against an ensemble of both crystal structures and comparative models to identify ligands for an allosteric peptide-binding site on the protein kinase PDK1 (the PIF pocket). We optimized these ligands through an analog-by-catalog search that yielded compound 4, which binds to PDK1 with 8 μM affinity. We confirmed the docking poses by determining a crystal structure of PDK1 in complex with 4. Because the PIF pocket appears to be a recurring structural feature of the kinase fold, known generally as the helix αC patch, this approach may enable the discovery of allosteric modulators for other kinases.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
20 |
11
|
Pooput C, Rosemond E, Karpiak J, Deflorian F, Vilar S, Costanzi S, Wess J, Kirk KL. Structural basis of the selectivity of the beta(2)-adrenergic receptor for fluorinated catecholamines. Bioorg Med Chem 2009; 17:7987-92. [PMID: 19857969 DOI: 10.1016/j.bmc.2009.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 11/25/2022]
Abstract
The important and diverse biological functions of adrenergic receptors, a subclass of G protein-coupled receptors (GPCRs), have made the search for compounds that selectively stimulate or inhibit the activity of different adrenergic receptor subtypes an important area of medicinal chemistry. We previously synthesized 2-, 5-, and 6-fluoronorepinehprine (FNE) and 2-, 5-, and 6-fluoroepinephrine (FEPI) and found that 2FNE and 2FEPI were selective beta-adrenergic agonists and that 6FNE and 6FEPI were selective alpha-adrenergic agonists, while 5FNE and 5FEPI were unselective. Agonist potencies correlated well with receptor binding affinities. Here, through a combination of molecular modeling and site-directed mutagenesis, we have identified N293 in the beta(2)-adrenergic receptor as a crucial residue for the selectivity of the receptor for catecholamines fluorinated at different positions.
Collapse
|
Research Support, N.I.H., Intramural |
16 |
15 |
12
|
|
|
34 |
11 |
13
|
Salas-Sarduy E, Landaburu LU, Karpiak J, Madauss KP, Cazzulo JJ, Agüero F, Alvarez VE. Author Correction: Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci Rep 2018; 8:8743. [PMID: 29867193 PMCID: PMC5986737 DOI: 10.1038/s41598-018-26961-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
Collapse
|
Published Erratum |
7 |
1 |
14
|
Lovinger G, Karpiak J. Developing effective DNR policies. TRUSTEE : THE JOURNAL FOR HOSPITAL GOVERNING BOARDS 1991; 44:20-1. [PMID: 10109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
|
34 |
|
15
|
Rutkowska A, Eberl HC, Werner T, Hennrich ML, Sévin DC, Petretich M, Reddington JP, Pocha S, Gade S, Martinez-Segura A, Dvornikov D, Karpiak J, Sweetman GM, Fufezan C, Duempelfeld B, Braun F, Schofield C, Keles H, Alvarado D, Wang Z, Jansson KH, Faelth-Savitski M, Curry E, Remlinger K, Stronach EA, Feng B, Sharma G, Coleman K, Grandi P, Bantscheff M, Bergamini G. Synergistic Effects of PARP Inhibition and Cholesterol Biosynthesis Pathway Modulation. CANCER RESEARCH COMMUNICATIONS 2024; 4:2427-2443. [PMID: 39028932 PMCID: PMC11403291 DOI: 10.1158/2767-9764.crc-23-0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
An in-depth multiomic molecular characterization of PARP inhibitors revealed a distinct poly-pharmacology of niraparib (Zejula) mediated by its interaction with lanosterol synthase (LSS), which is not observed with other PARP inhibitors. Niraparib, in a similar way to the LSS inhibitor Ro-48-8071, induced activation of the 24,25-epoxysterol shunt pathway, which is a regulatory signaling branch of the cholesterol biosynthesis pathway. Interestingly, the combination of an LSS inhibitor with a PARP inhibitor that does not bind to LSS, such as olaparib, had an additive effect on killing cancer cells to levels comparable with niraparib as a single agent. In addition, the combination of PARP inhibitors and statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an enzyme catalyzing the rate-limiting step in the mevalonate pathway, had a synergistic effect on tumor cell killing in cell lines and patient-derived ovarian tumor organoids. These observations suggest that concomitant inhibition of the cholesterol biosynthesis pathway and PARP activity might result in stronger efficacy of these inhibitors against tumor types highly dependent on cholesterol metabolism. SIGNIFICANCE The presented data indicate, to our knowledge, for the first time, the potential benefit of concomitant modulation of cholesterol biosynthesis pathway and PARP inhibition and highlight the need for further investigation to assess its translational relevance.
Collapse
|
research-article |
1 |
|
16
|
Hu J, Wang Y, Zhang X, Lloyd JR, Li J, Karpiak J, Costanzi S, Wess J. Crosslinking Analysis of the M3 Muscarinic Acetylcholine Receptor/G alpha q Interface in Both the Inactive and Active States. FASEB J 2010. [DOI: 10.1096/fasebj.24.1_supplement.lb479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
15 |
|