1
|
Abstract
Electrical forces for manipulating cells at the microscale include electrophoresis and dielectrophoresis. Electrophoretic forces arise from the interaction of a cell's charge and an electric field, whereas dielectrophoresis arises from a cell's polarizability. Both forces can be used to create microsystems that separate cell mixtures into its component cell types or act as electrical "handles" to transport cells or place them in specific locations. This review explores the use of these two forces for microscale cell manipulation. We first examine the forces and electrodes used to create them, then address potential impacts on cell health, followed by examples of devices for both separating cells and handling them.
Collapse
|
Review |
19 |
483 |
2
|
Abstract
We have developed a microfabricated device for use in parallel luminescent single-cell assays that can sort populations upon the basis of dynamic functional responses to stimuli. This device is composed of a regular array of noncontact single-cell traps. These traps use dielectrophoresis to stably confine cells and hold them against disrupting fluid flows. Using quantitative modeling, we have designed traps with a novel asymmetric extruded-quadrupole geometry. This new trap can be physically arrayed and electrically addressed, enabling our cytometer. Situating an array of these traps in a microchannel, we have introduced cells into the array and demonstrated observation of fluorescent dynamic responses followed by sorting. Such a device has potential for use in investigating functional processes, as revealed by temporal behavior, in large numbers of single cells.
Collapse
|
|
23 |
264 |
3
|
Abstract
Microfabrication uses integrated-circuit manufacturing technology supplemented by its own processes to create objects with dimensions in the range of micrometers to millimeters. These objects can have miniature moving parts, stationary structures, or both. Microfabrication has been used for many applications in biology and medicine. These applications fall into four domains: tools for molecular biology and biochemistry, tools for cell biology, medical devices, and biosensors. Microfabricated device structures may provide significantly enhanced function with respect to a conventional device. Sometimes microfabrication can enable devices with novel capabilities. These enhancing and enabling qualities are conferred when microfabrication is used appropriately to address the right types of problems. Herein, we describe microfabrication technology and its application to biology and medicine. We detail several classes of advantages conferred by microfabrication and how these advantages have been used to date.
Collapse
|
Review |
23 |
260 |
4
|
Kim L, Toh YC, Voldman J, Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. LAB ON A CHIP 2007; 7:681-94. [PMID: 17538709 DOI: 10.1039/b704602b] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Culturing cells at microscales allows control over microenvironmental cues, such as cell-cell and cell-matrix interactions; the potential to scale experiments; the use of small culture volumes; and the ability to integrate with microsystem technologies for on-chip experimentation. Microfluidic perfusion culture in particular allows controlled delivery and removal of soluble biochemical molecules in the extracellular microenvironment, and controlled application of mechanical forces exerted via fluid flow. There are many challenges to designing and operating a robust microfluidic perfusion culture system for routine culture of adherent mammalian cells. The current literature on microfluidic perfusion culture treats microfluidic design, device fabrication, cell culture, and micro-assays independently. Here we systematically present and discuss important design considerations in the context of the entire microfluidic perfusion culture system. These design considerations include the choice of materials, culture configurations, microfluidic network fabrication and micro-assays. We also present technical issues such as sterilization; seeding cells in both 2D and 3D configurations; and operating the system under optimized mass transport and shear stress conditions, free of air-bubbles. The integrative and systematic treatment of the microfluidic system design and fabrication, cell culture, and micro-assays provides novices with an effective starting point to build and operate a robust microfludic perfusion culture system for various applications.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
225 |
5
|
Vahey MD, Voldman J. An Equilibrium Method for Continuous-Flow Cell Sorting Using Dielectrophoresis. Anal Chem 2008; 80:3135-43. [PMID: 18363383 DOI: 10.1021/ac7020568] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
17 |
164 |
6
|
Abstract
We present a novel microfabricated dielectrophoretic trap designed to pattern large arrays of single cells. Because flowing away untrapped cells is often the rate-limiting step during cell patterning, we designed the trap to be strong enough to hold particles against practical flow rates. We experimentally validated the trap strength by measuring the maximum flow rate that polystyrene beads could withstand while remaining trapped. These bead experiments have shown excellent agreement with our model predictions, without the use of fitting parameters. The model was able to provide us with a fundamental understanding of how the traps work, and additionally allowed us to establish a set of design rules for optimizing the traps for a wide range of cell sizes. We provide the foundations for an enabling technology that can be used to pattern cells in unique ways, allowing us to do novel cell biology experiments at the microscale.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
161 |
7
|
Voldman J, Braff RA, Toner M, Gray ML, Schmidt MA. Holding forces of single-particle dielectrophoretic traps. Biophys J 2001; 80:531-41. [PMID: 11159423 PMCID: PMC1301254 DOI: 10.1016/s0006-3495(01)76035-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We present experimental results and modeling on the efficacy of dielectrophoresis-based single-particle traps. Dielectrophoretic forces, caused by the interaction of nonuniform electric fields with objects, have been used to make planar quadrupole traps that can trap single beads. A simple experimental protocol was then used to measure how well the traps could hold beads against destabilizing fluid flows. These were compared with predictions from modeling and found to be in close agreement, allowing the determination of sub-piconewton forces. This not only validates our ability to model dielectrophoretic forces in these traps but also gives insight into the physical behavior of particles in dielectrophoresis-based traps. Anomalous frequency effects, not explainable by dielectrophoretic forces alone, were also encountered and attributed to electrohydrodynamic flows. Such knowledge can now be used to design traps for cell-based applications.
Collapse
|
research-article |
24 |
153 |
8
|
Abstract
We present the first known implementation of a passive, scalable architecture for trapping, imaging, and sorting individual microparticles, including cells, using a positive dielectrophoretic (p-DEP) trapping array. Our array-based technology enables "active coverslips" where, when scaled, many individually held cells can be sorted based upon imaged spatial or temporally variant characteristics. Our design incorporates a unique "ring-dot" p-DEP trap geometry organized in a row/column array format. This trap design, implemented in a two-level metal process, provides strong and highly spatially localized holding fields enabling single-cell capture for all traps in the array. We release individual trapped microparticles during sorting using a passive transistor-independent approach where we electrically ground the row and column electrodes associated with specific traps in the array. The demand for chip-to-world electrical connections in our arrays scales proportionally with the square root of the number of traps in a given array, delivering a substantial improvement over prior designs. We demonstrate capture, holding, and release operations with both beads and cells in small arrays of this new architecture.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
149 |
9
|
Kim L, Vahey MD, Lee HY, Voldman J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. LAB ON A CHIP 2006; 6:394-406. [PMID: 16511623 DOI: 10.1039/b511718f] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a microfluidic device for culturing adherent cells over a logarithmic range of flow rates. The device sets flow rates through four separate cell-culture chambers using syringe-driven flow and a network of fluidic resistances. The design is easy to fabricate with no on-chip valves and is scalable both in the number of culture chambers as well as in the range of applied flow rates. Using particle velocimetry, we have characterized the flow-rate range. We have also demonstrated an extension of the design that combines the logarithmic flow-rate functionality with a logarithmic concentration gradient across the array. Using fluorescence measurements we have verified that a logarithmic concentration gradient was established in the extended device. Compared with static cell culture, both devices enable greater control over the soluble microenvironment by controlling the transport of molecules to and away from the cells. This approach is particularly relevant for cell types such as embryonic stem cells (ESCs) which are especially sensitive to the microenvironment. We have demonstrated for the first time culture of murine ESCs (mESCs) in continuous, logarithmically scaled perfusion for 4 days, with flow rates varying >300x across the array. Cells grown in the slowest flow rate did not proliferate, while colonies grown in higher flow rates exhibited healthy round morphology. We have also demonstrated logarithmically scaled continuous perfusion culture of 3T3 fibroblasts for 3 days, with proliferation at all flow rates except the slowest rate.
Collapse
|
Comparative Study |
19 |
135 |
10
|
Rosenthal A, Macdonald A, Voldman J. Cell patterning chip for controlling the stem cell microenvironment. Biomaterials 2007; 28:3208-16. [PMID: 17434582 PMCID: PMC1929166 DOI: 10.1016/j.biomaterials.2007.03.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/15/2007] [Indexed: 11/22/2022]
Abstract
Cell-cell signaling is an important component of the stem cell microenvironment, affecting both differentiation and self-renewal. However, traditional cell-culture techniques do not provide precise control over cell-cell interactions, while existing cell-patterning technologies are limited when used with proliferating or motile cells. To address these limitations, we created the Bio Flip Chip (BFC), a microfabricated polymer chip containing thousands of microwells, each sized to trap down to a single stem cell. We have demonstrated the functionality of the BFC by patterning a 50 x 50 grid of murine embryonic stem cells (mESCs), with patterning efficiencies >75%, onto a variety of substrates--a cell-culture dish patterned with gelatin, a 3-D substrate, and even another layer of cells. We also used the BFC to pattern small groups of cells, with and without cell-cell contact, allowing incremental and independent control of contact-mediated signaling. We present quantitative evidence that cell-cell contact plays an important role in depressing mESC colony formation, and show that E-cadherin is involved in this negative regulatory pathway. Thus, by allowing exquisite control of the cellular microenvironment, we provide a technology that enables new applications in tissue engineering and regenerative medicine.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
129 |
11
|
Dura B, Dougan SK, Barisa M, Hoehl MM, Lo CT, Ploegh HL, Voldman J. Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat Commun 2015; 6:5940. [DOI: 10.1038/ncomms6940] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
|
|
10 |
123 |
12
|
Gray DS, Tan JL, Voldman J, Chen CS. Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron 2004; 19:1765-74. [PMID: 15198083 DOI: 10.1016/j.bios.2004.03.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a novel microfabricated device to simultaneously and actively trap thousands of single mammalian cells in alignment with a planar microelectrode array. Thousands of 3 Ipm diameter trapping electrodes were fabricated within the bottom of a parallel-plate flow chamber. Cells were trapped on the electrodes and held against destabilizing fluid flows by dielectrophoretic forces generated in the device. In general, each electrode trapped only one cell. Adhesive regions were patterned onto the surface in alignment with the traps such that cells adhered to the array surface and remained in alignment with the electrodes. By driving the device with different voltages, we showed that trapped cells could be killed by stronger electric fields. However, with weaker fields, cells were not damaged during trapping, as indicated by the similar morphologies and proliferation rates of trapped cells versus controls. As a test of the device, we patterned approximately 20,000 cells onto aI cm2 grid of rectangular adhesive regions, with two electrodes and thus two cells per rectangle. Our method obtained 70 +/- 1% fidelity versus 17 +/- 1% when using an existing cell-registration technique. By allowing the placement of desired numbers of cells at specified locations, this approach addresses many needs to manipulate and register cells to the surfaces of biosensors and other devices with high precision and fidelity.
Collapse
|
|
21 |
119 |
13
|
Kovac JR, Voldman J. Intuitive, image-based cell sorting using optofluidic cell sorting. Anal Chem 2007; 79:9321-30. [PMID: 18004819 DOI: 10.1021/ac071366y] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a microfluidic cell-sorting device which augments microscopy with the capability to perform facile image-based cell sorting. This combination enables intuitive, complex phenotype sorting based on spatio-temporal fluorescence or cell morphology. The microfluidic device contains a microwell array that can be passively loaded with mammalian cells via sedimentation and can be subsequently inspected with microscopy. After inspection, we use the scattering force from a focused infrared laser to levitate cells of interest from their wells into a flow field for collection. First, we demonstrate image-based sorting predicated on whole-cell fluorescence, which could enable sorting based on temporal whole-cell fluorescence behavior. Second, we demonstrate image-based sorting predicated on fluorescence localization (nuclear vs whole-cell fluorescence), highlighting the capability of our approach to sort based on imaged subcellular events, such as localized protein expression or translocation events. We achieve postsort purities up to 89% and up to 155-fold enrichment of target cells. Optical manipulation literature and a direct cell viability assay suggest that cells remain viable after using our technique. The architecture is highly scalable and supports over 10 000 individually addressable trap sites. Our approach enables sorting of significant populations based on subcellular spatio-temporal information, which is difficult or impossible with existing widespread sorting technologies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
103 |
14
|
Gray DS, Tan JL, Voldman J, Chen CS. Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron 2004; 19:771-80. [PMID: 14709396 DOI: 10.1016/j.bios.2003.08.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a novel microfabricated device to simultaneously and actively trap thousands of single mammalian cells in alignment with a planar microelectrode array. Thousands of 3 micromdiameter trapping electrodes were fabricated within the bottom of a parallel-plate flow chamber. Cells were trapped on the electrodes and held against destabilizing fluid flows by dielectrophoretic forces generated in the device. In general, each electrode trapped only one cell. Adhesive regions were patterned onto the surface in alignment with the traps such that cells adhered to the array surface and remained in alignment with the electrodes. By driving the device with different voltages, we showed that trapped cells could be killed by stronger electric fields. However, with weaker fields, cells were not damaged during trapping, as indicated by the similar morphologies and proliferation rates of trapped cells versus controls. As a test of the device, we patterned approximately 20000 cells onto a 1cm(2) grid of rectangular adhesive regions, with two electrodes and thus two cells per rectangle. Our method obtained 70+/-1% fidelity versus 17+/-1% when using an existing cell-registration technique. By allowing the placement of desired numbers of cells at specified locations, this approach addresses many needs to manipulate and register cells to the surfaces of biosensors and other devices with high precision and fidelity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
101 |
15
|
Toh YC, Voldman J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J 2010; 25:1208-17. [PMID: 21183594 DOI: 10.1096/fj.10-168971] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Shear stress is a ubiquitous environmental cue experienced by stem cells when they are being differentiated or expanded in perfusion cultures. However, its role in modulating self-renewing stem cell phenotypes is unclear, since shear is usually only studied in the context of cardiovascular differentiation. We used a multiplex microfluidic array, which overcomes the limitations of macroperfusion systems in shear application throughput and precision, to initiate a comprehensive, quantitative study of shear effects on self-renewing mouse embryonic stem cells (mESCs), where shear stresses varying by >1000 times (0.016-16 dyn/cm(2)) are applied simultaneously. When compared with static controls in the presence or absence of a saturated soluble environment (i.e., mESC-conditioned medium), we ascertained that flow-induced shear stress specifically up-regulates the epiblast marker Fgf5. Epiblast-state transition in mESCs involves heparan sulfate proteoglycans (HSPGs), which have also been shown to transduce shear stress in endothelial cells. By disrupting (with sulfation inhibitors and heparinase) and partially reconstituting (with heparin) HSPG function, we show that mESCs also mechanically sense shear stress via HSPGs to modulate Fgf5 expression. This study demonstrates that self-renewing mESCs possess the molecular machinery to sense shear stress and provides quantitative shear application benchmarks for future scalable stem cell culture systems.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
97 |
16
|
Gadish N, Voldman J. High-Throughput Positive-Dielectrophoretic Bioparticle Microconcentrator. Anal Chem 2006; 78:7870-6. [PMID: 17105182 DOI: 10.1021/ac061170i] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce a new dielectrophoretic particle microconcentrator that combines interdigitated electrodes with a chaotic mixer to achieve high-throughput (>100 microL/min) particle concentration. The interdigitated electrodes use positive dielectrophoresis to attract particles to the surface, while the chaotic mixer circulates the particles to increase the number brought in proximity with the surface. We have used this microconcentrator to concentrate both beads and B. subtilis spores and have developed a microvolume concentration measurement method to determine the delivered off-chip concentration enhancement of the output sample. The resulting microconcentrator is sufficiently high throughput to serve as an interface between macroscale sample collectors and micro- or nanoscale detectors.
Collapse
|
|
19 |
67 |
17
|
Dura B, Servos MM, Barry RM, Ploegh HL, Dougan SK, Voldman J. Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. Proc Natl Acad Sci U S A 2016; 113:E3599-608. [PMID: 27303033 PMCID: PMC4932925 DOI: 10.1073/pnas.1515364113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Resolving how the early signaling events initiated by cell-cell interactions are transduced into diverse functional outcomes necessitates correlated measurements at various stages. Typical approaches that rely on bulk cocultures and population-wide correlations, however, only reveal these relationships broadly at the population level, not within each individual cell. Here, we present a microfluidics-based cell-cell interaction assay that enables longitudinal investigation of lymphocyte interactions at the single-cell level through microfluidic cell pairing, on-chip culture, and multiparameter assays, and allows recovery of desired cell pairs by micromanipulation for off-chip culture and analyses. Well-defined initiation of interactions enables probing cellular responses from the very onset, permitting single-cell correlation analyses between early signaling dynamics and later-stage functional outcomes within same cells. We demonstrate the utility of this microfluidic assay with natural killer cells interacting with tumor cells, and our findings suggest a possible role for the strength of early calcium signaling in selective coordination of subsequent cytotoxicity and IFN-gamma production. Collectively, our experiments demonstrate that this new approach is well-suited for resolving the relationships between complex immune responses within each individual cell.
Collapse
|
Evaluation Study |
9 |
65 |
18
|
Tandon N, Marsano A, Maidhof R, Numata K, Montouri-Sorrentino C, Cannizzaro C, Voldman J, Vunjak-Novakovic G. Surface-patterned electrode bioreactor for electrical stimulation. LAB ON A CHIP 2010; 10:692-700. [PMID: 20221556 PMCID: PMC3618471 DOI: 10.1039/b917743d] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a microscale cell culture system with an interdigitated microarray of excimer-laser-ablated indium tin oxide electrodes for electrical stimulation of cultured cells. The system has been characterized in a range of geometeries and stimulation regimes via electrochemical impedance spectroscopy and used to culture primary cardiomyocytes and human adipose derived stem cells. Over 6 days of culture with electrical stimulation (2 ms duration, 1 Hz, 180 microm wide electrodes with 200 microm spacing), both cell types exhibited enhanced proliferation, elongation and alignment, and adipose derived stem cells exhibited higher numbers of Connexin-43-composed gap junctions.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
65 |
19
|
Dura B, Liu Y, Voldman J. Deformability-based microfluidic cell pairing and fusion. LAB ON A CHIP 2014; 14:2783-90. [PMID: 24898933 DOI: 10.1039/c4lc00303a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a microfluidic cell pairing device capable of sequential trapping and pairing of hundreds of cells using passive hydrodynamics and flow-induced deformation. We describe the design and operation principles of our device and show its applicability for cell fusion. Using our device, we achieved both homotypic and heterotypic cell pairing, demonstrating efficiencies up to 80%. The platform is compatible with fusion protocols based on biological, chemical and physical stimuli with fusion yields up to 95%. Our device further permits its disconnection from the fluidic hardware enabling its transportation for imaging and culture while maintaining cell registration on chip. Our design principles and cell trapping technique can readily be applied for different cell types and can be extended to trap and fuse multiple (>2) cell partners as demonstrated by our preliminary experiments.
Collapse
|
Comparative Study |
11 |
61 |
20
|
Skelley AM, Voldman J. An active bubble trap and debubbler for microfluidic systems. LAB ON A CHIP 2008; 8:1733-7. [PMID: 18813398 DOI: 10.1039/b807037g] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a novel, fully integrated microfluidic bubble trap and debubbler. The 2-layer structure, based on a PDMS valve design, utilizes a featured membrane to stop bubble progression through the device. A pneumatic chamber directly above the trap is evacuated, and the bubble is pulled out through the gas-permeable PDMS membrane. Normal device operation, including continuous flow at atmospheric pressure, is maintained during the entire trapping and debubbling process. We present a range of trap sizes, from 2 to 10 mm diameter, and can trap and remove bubbles up to 25 microL in under 3 h.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
59 |
21
|
Mittal N, Rosenthal A, Voldman J. nDEP microwells for single-cell patterning in physiological media. LAB ON A CHIP 2007; 7:1146-53. [PMID: 17713613 DOI: 10.1039/b706342c] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a novel technique to accurately position single cells on a substrate using negative dielectrophoresis and cell-substrate adhesion. The cells are suspended in physiological media throughout the patterning process. We also verify the biocompatibility of this method by demonstrating that the patterned cells proliferate and show normal morphology. We calculate the temperatures and transmembrane potential that cells in the device experience and compare them to physiologically acceptable levels described in previous studies.
Collapse
|
|
18 |
59 |
22
|
Desai SP, Freeman DM, Voldman J. Plastic masters-rigid templates for soft lithography. LAB ON A CHIP 2009; 9:1631-7. [PMID: 19458873 DOI: 10.1039/b822081f] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We demonstrate a simple process for the fabrication of rigid plastic master molds for soft lithography directly from (poly)dimethysiloxane devices. Plastics masters (PMs) provide a cost-effective alternative to silicon-based masters and can be easily replicated without the need for cleanroom facilities. We have successfully demonstrated the use of plastics micromolding to generate both single and dual-layer plastic structures, and have characterized the fidelity of the molding process. Using the PM fabrication technique, world-to-chip connections can be integrated directly into the master enabling devices with robust, well-aligned fluidic ports directly after molding. PMs provide an easy technique for the fabrication of microfluidic devices and a simple route for the scaling-up of fabrication of robust masters for soft lithography.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
51 |
23
|
Przybyla L, Voldman J. Probing embryonic stem cell autocrine and paracrine signaling using microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:293-315. [PMID: 22524217 PMCID: PMC4030416 DOI: 10.1146/annurev-anchem-062011-143122] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
49 |
24
|
Vahey MD, Voldman J. High-throughput cell and particle characterization using isodielectric separation. Anal Chem 2009; 81:2446-55. [PMID: 19253950 PMCID: PMC2675787 DOI: 10.1021/ac8019575] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Separations can be broadly categorized as preparative, where the objective is to extract purified quantities of a sample from a complex mixture, or analytic, where the goal is to determine and quantify the contents of the original mixture. Here we demonstrate the application of a new microfluidic separation method, isodielectric separation (IDS), to a range of analytic separations involving cells and particles spanning several orders of magnitude in volume and electrical conductivity. In IDS, cells are dielectrophoretically concentrated to the region along an electrical conductivity gradient where their polarizability vanishes; by measuring this position--the isodielectric point (IDP)--as operating conditions such as the frequency and voltage of the applied electric field are varied, we are able to sort cells or particles with distinct IDPs while simultaneously characterizing their electrical properties. We apply this technique to measure the electrical properties of polystyrene microspheres, viable and nonviable cells of the budding yeast Saccharomyces cerevisiae , and murine pro B cells, including how these electrical properties vary with the electrical conductivity of the surrounding solvent.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
48 |
25
|
Lee HY, Voldman J. Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance. Anal Chem 2007; 79:1833-9. [PMID: 17253658 DOI: 10.1021/ac061647q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an investigation into optimizing micromixer design for enhancing dielectrophoretic (DEP) microconcentrator performance. DEP-based microconcentrators use the dielectrophoretic force to collect particles on electrodes. Because the DEP force generated by electrodes decays rapidly away from the electrodes, DEP-based microconcentrators are only effective at capturing particles from a limited cross section of the input liquid stream. Adding a mixer can circulate the input liquid, increasing the probability that particles will drift near the electrodes for capture. Because mixers for DEP-based microconcentrators aim to circulate particles, rather than mix two species, design specifications for such mixers may be significantly different from that for conventional mixers. Here we investigated the performance of patterned-groove micromixers on particle trapping efficiency in DEP-based microconcentrators numerically and experimentally. We used modeling software to simulate the particle motion due to various forces on the particle (DEP, hydrodynamic, etc.), allowing us to predict trapping efficiency. We also conducted trapping experiments and measured the capture efficiency of different micromixer configurations, including the slanted groove, staggered herringbone, and herringbone mixers. Finally, we used these analyses to illustrate the design principles of mixers for DEP-based concentrators.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
43 |