1
|
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, et alTuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006; 313:1596-604. [PMID: 16973872 DOI: 10.1126/science.1128691] [Show More Authors] [Citation(s) in RCA: 2664] [Impact Index Per Article: 140.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
2664 |
2
|
Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 1998; 95:4126-33. [PMID: 9539701 PMCID: PMC22453 DOI: 10.1073/pnas.95.8.4126] [Citation(s) in RCA: 675] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the monoterpene, sesquiterpene, and diterpene synthases of plant origin that use the corresponding C10, C15, and C20 prenyl diphosphates as substrates to generate the enormous diversity of carbon skeletons characteristic of the terpenoid family of natural products. A description of the enzymology and mechanism of terpenoid cyclization is followed by a discussion of molecular cloning and heterologous expression of terpenoid synthases. Sequence relatedness and phylogenetic reconstruction, based on 33 members of the Tps gene family, are delineated, and comparison of important structural features of these enzymes is provided. The review concludes with an overview of the organization and regulation of terpenoid metabolism, and of the biotechnological applications of terpenoid synthase genes.
Collapse
|
research-article |
27 |
675 |
3
|
Steele CL, Crock J, Bohlmann J, Croteau R. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 1998; 273:2078-89. [PMID: 9442047 DOI: 10.1074/jbc.273.4.2078] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Grand fir (Abies grandis) has been developed as a model system for the study of oleoresin production in response to stem wounding and insect attack. The turpentine fraction of the oleoresin was shown to contain at least 38 sesquiterpenes that represent 12.5% of the turpentine, with the monoterpenes comprising the remainder. Assays of cell-free extracts from grand fir stem with farnesyl diphosphate as substrate indicated that the constitutive sesquiterpene synthases produced the same sesquiterpenes found in the oleoresin and that, in response to wounding, only two new products were synthesized, delta-cadinene and (E)-alpha-bisabolene. A similarity based cloning strategy yielded two new cDNA species from a stem cDNA library that, when expressed in Escherichia coli and the gene products subsequently assayed, yielded a remarkable number of sesquiterpene products. The encoded enzymes have been named delta-selinene synthase and gamma-humulene synthase based on the principal products formed; however, each enzyme synthesizes three major products and produces 34 and 52 total sesquiterpenes, respectively, thereby accounting for many of the sesquiterpenes of the oleoresin. The deduced amino acid sequence of the delta-selinene synthase cDNA open reading frame encodes a protein of 581 residues (at 67.6 kDa), whereas that of the gamma-humulene synthase cDNA encodes a protein of 593 residues (at 67.9 kDa). The two amino acid sequences are 83% similar and 65% identical to each other and range in similarity from 65 to 67% and in identity from 43 to 46% when compared with the known sequences of monoterpene and diterpene synthases from grand fir. Although the two sesquiterpene synthases from this gymnosperm do not very closely resemble terpene synthases from angiosperm species (52-56% similarity and 26-30% identity, there are clustered regions of significant apparent homology between the enzymes of these two plant classes. The multi-step, multi-product reactions catalyzed by the sesquiterpene synthases from grand fir are among the most complex of any terpenoid cyclase thus far described.
Collapse
|
Comparative Study |
27 |
262 |
4
|
Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase ( AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 2002; 267:730-45. [PMID: 12207221 DOI: 10.1007/s00438-002-0709-y] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 05/27/2002] [Indexed: 11/25/2022]
Abstract
A family of 40 terpenoid synthase genes ( AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic placement, the genes for plant monoterpene synthases, sesquiterpene synthases or diterpene synthases of secondary metabolism. Rapid evolution of these AtTPS resulted from repeated gene duplication and sequence divergence with minor changes in gene architecture. In contrast, only two AtTPS genes have known functions in basic (primary) metabolism, namely gibberellin biosynthesis. This striking difference in rates of gene diversification in primary and secondary metabolism is relevant for an understanding of the evolution of terpenoid natural product diversity. Eight AtTPS genes are interrupted and are likely to be inactive pseudogenes. The localization of AtTPS genes on all five chromosomes reflects the dynamics of the Arabidopsis genome; however, several AtTPS genes are clustered and organized in tandem repeats. Furthermore, some AtTPS genes are localized with prenyltransferase genes ( AtGGPPS, geranylgeranyl diphosphate synthase) in contiguous genomic clusters encoding consecutive steps in terpenoid biosynthesis. The clustered organization may have implications for TPS gene evolution and the evolution of pathway segments for the synthesis of terpenoid natural products. Phylogenetic analyses highlight events in the divergence of the TPS paralogs and suggest orthologous genes and a model for the evolution of the TPS gene family.
Collapse
|
|
23 |
258 |
5
|
Keeling CI, Yuen MMS, Liao NY, Roderick Docking T, Chan SK, Taylor GA, Palmquist DL, Jackman SD, Nguyen A, Li M, Henderson H, Janes JK, Zhao Y, Pandoh P, Moore R, Sperling FAH, W Huber DP, Birol I, Jones SJM, Bohlmann J. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol 2013; 14:R27. [PMID: 23537049 PMCID: PMC4053930 DOI: 10.1186/gb-2013-14-3-r27] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/08/2013] [Accepted: 03/27/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests. RESULTS We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle. CONCLUSIONS Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects.
Collapse
|
research-article |
12 |
201 |
6
|
Bohlmann J, Steele CL, Croteau R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. J Biol Chem 1997; 272:21784-92. [PMID: 9268308 DOI: 10.1074/jbc.272.35.21784] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA blot hybridization using probes derived from the three monoterpene synthase cDNAs. The availability of cDNA species encoding these monoterpene synthases will allow an understanding of the regulation of oleoresin formation in conifers and will ultimately permit the transgenic manipulation of this defensive secretion to enhance resistance to insects. These cDNAs also furnish tools for defining structure-function relationships in this group of catalysts that generate acyclic, monocyclic, and bicyclic olefin products.
Collapse
|
|
28 |
188 |
7
|
Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJS, Chakrabarty R, Desgagné-Penix I, Haslam TM, Kim YB, Liu E, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, Zhang Y, Bohlmann J, Covello PS, De Luca V, Page JE, Ro DK, Martin VJJ, Facchini PJ, Sensen CW. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 2013; 166:122-34. [PMID: 23602801 DOI: 10.1016/j.jbiotec.2013.04.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 10/27/2022]
Abstract
Plants produce a vast array of specialized metabolites, many of which are used as pharmaceuticals, flavors, fragrances, and other high-value fine chemicals. However, most of these compounds occur in non-model plants for which genomic sequence information is not yet available. The production of a large amount of nucleotide sequence data using next-generation technologies is now relatively fast and cost-effective, especially when using the latest Roche-454 and Illumina sequencers with enhanced base-calling accuracy. To investigate specialized metabolite biosynthesis in non-model plants we have established a data-mining framework, employing next-generation sequencing and computational algorithms, to construct and analyze the transcriptomes of 75 non-model plants that produce compounds of interest for biotechnological applications. After sequence assembly an extensive annotation approach was applied to assign functional information to over 800,000 putative transcripts. The annotation is based on direct searches against public databases, including RefSeq and InterPro. Gene Ontology (GO), Enzyme Commission (EC) annotations and associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps are also collected. As a proof-of-concept, the selection of biosynthetic gene candidates associated with six specialized metabolic pathways is described. A web-based BLAST server has been established to allow public access to assembled transcriptome databases for all 75 plant species of the PhytoMetaSyn Project (www.phytometasyn.ca).
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
144 |
8
|
Bohlmann J, Crock J, Jetter R, Croteau R. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci U S A 1998; 95:6756-61. [PMID: 9618485 PMCID: PMC22624 DOI: 10.1073/pnas.95.12.6756] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/1998] [Indexed: 02/07/2023] Open
Abstract
(E)-alpha-Bisabolene synthase is one of two wound-inducible sesquiterpene synthases of grand fir (Abies grandis), and the olefin product of this cyclization reaction is considered to be the precursor in Abies species of todomatuic acid, juvabione, and related insect juvenile hormone mimics. A cDNA encoding (E)-alpha-bisabolene synthase was isolated from a wound-induced grand fir stem library by a PCR-based strategy and was functionally expressed in Escherichia coli and shown to produce (E)-alpha-bisabolene as the sole product from farnesyl diphosphate. The expressed synthase has a deduced size of 93.8 kDa and a pI of 5. 03, exhibits other properties typical of sesquiterpene synthases, and resembles in sequence other terpenoid synthases with the exception of a large amino-terminal insertion corresponding to Pro81-Val296. Biosynthetically prepared (E)-alpha-[3H]bisabolene was converted to todomatuic acid in induced grand fir cells, and the time course of appearance of bisabolene synthase mRNA was shown by Northern hybridization to lag behind that of mRNAs responsible for production of induced oleoresin monoterpenes. These results suggest that induced (E)-alpha-bisabolene biosynthesis constitutes part of a defense response targeted to insect herbivores, and possibly fungal pathogens, that is distinct from induced oleoresin monoterpene production.
Collapse
|
research-article |
27 |
141 |
9
|
Livingston SJ, Quilichini TD, Booth JK, Wong DCJ, Rensing KH, Laflamme-Yonkman J, Castellarin SD, Bohlmann J, Page JE, Samuels AL. Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:37-56. [PMID: 31469934 DOI: 10.1111/tpj.14516] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 05/18/2023]
Abstract
The cannabis leaf is iconic, but it is the flowers of cannabis that are consumed for the psychoactive and medicinal effects of their specialized metabolites. Cannabinoid metabolites, together with terpenes, are produced in glandular trichomes. Superficially, stalked and sessile trichomes in cannabis only differ in size and whether they have a stalk. The objectives of this study were: to define each trichome type using patterns of autofluorescence and secretory cell numbers, to test the hypothesis that stalked trichomes develop from sessile-like precursors, and to test whether metabolic specialization occurs in cannabis glandular trichomes. A two-photon microscopy technique using glandular trichome intrinsic autofluorescence was developed which demonstrated that stalked glandular trichomes possessed blue autofluorescence correlated with high cannabinoid levels. These stalked trichomes had 12-16 secretory disc cells and strongly monoterpene-dominant terpene profiles. In contrast, sessile trichomes on mature flowers and vegetative leaves possessed red-shifted autofluorescence, eight secretory disc cells and less monoterpene-dominant terpene profiles. Moreover, intrinsic autofluorescence patterns and disc cell numbers supported a developmental model where stalked trichomes develop from apparently sessile trichomes. Transcriptomes of isolated floral trichomes revealed strong expression of cannabinoid and terpene biosynthetic genes, as well as uncharacterized genes highly co-expressed with CBDA synthase. Identification and characterization of two previously unknown and highly expressed monoterpene synthases highlighted the metabolic specialization of stalked trichomes for monoterpene production. These unique properties and highly expressed genes of cannabis trichomes determine the medicinal, psychoactive and sensory properties of cannabis products.
Collapse
|
|
5 |
131 |
10
|
Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJM, MacKay J, Birol I, Bohlmann J. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:189-212. [PMID: 26017574 DOI: 10.1111/tpj.12886] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/15/2015] [Indexed: 05/21/2023]
Abstract
White spruce (Picea glauca), a gymnosperm tree, has been established as one of the models for conifer genomics. We describe the draft genome assemblies of two white spruce genotypes, PG29 and WS77111, innovative tools for the assembly of very large genomes, and the conifer genomics resources developed in this process. The two white spruce genotypes originate from distant geographic regions of western (PG29) and eastern (WS77111) North America, and represent elite trees in two Canadian tree-breeding programs. We present an update (V3 and V4) for a previously reported PG29 V2 draft genome assembly and introduce a second white spruce genome assembly for genotype WS77111. Assemblies of the PG29 and WS77111 genomes confirm the reconstructed white spruce genome size in the 20 Gbp range, and show broad synteny. Using the PG29 V3 assembly and additional white spruce genomics and transcriptomics resources, we performed MAKER-P annotation and meticulous expert annotation of very large gene families of conifer defense metabolism, the terpene synthases and cytochrome P450s. We also comprehensively annotated the white spruce mevalonate, methylerythritol phosphate and phenylpropanoid pathways. These analyses highlighted the large extent of gene and pseudogene duplications in a conifer genome, in particular for genes of secondary (i.e. specialized) metabolism, and the potential for gain and loss of function for defense and adaptation.
Collapse
|
Validation Study |
10 |
125 |
11
|
Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QCB. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 2006; 15:1367-78. [PMID: 16626459 DOI: 10.1111/j.1365-294x.2006.02885.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract Ecotilling was used as a simple nucleotide polymorphism (SNP) discovery tool to examine DNA variation in natural populations of the western black cottonwood, Populus trichocarpa, and was found to be more efficient than sequencing for large-scale studies of genetic variation in this tree. A publicly available, live reference collection of P. trichocarpa from the University of British Columbia Botanical Garden was used in this study to survey variation in nine different genes among individuals from 41 different populations. A large amount of genetic variation was detected, but the level of variation appears to be less than in the related species, Populus tremula, based on reported statistics for that tree. Genes examined varied considerably in their level of variation, from PoptrTB1 which had a single SNP, to PoptrLFY which had more than 23 in the 1000-bp region examined. Overall nucleotide diversity, measured as (Total), was relatively low at 0.00184. Linkage disequilibrium, on the other hand, was higher than reported for some woody plant species, with mean r2 equal to 0.34. This study reveals the potential of Ecotilling as a rapid genotype discovery method to explore and utilize the large pool of genetic variation in tree species.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
117 |
12
|
Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJ. Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 2012; 30:127-31. [DOI: 10.1016/j.tibtech.2011.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 12/26/2022]
|
|
13 |
115 |
13
|
Bohlmann J, Phillips M, Ramachandiran V, Katoh S, Croteau R. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys 1999; 368:232-43. [PMID: 10441373 DOI: 10.1006/abbi.1999.1332] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Grand fir (Abies grandis) is a useful model system for studying the biochemistry, molecular genetics, and regulation of defensive oleoresin formation in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced biosynthesis of monoterpenes and sesquiterpenes (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. A similarity-based cloning strategy, employing primers designed to conserved regions of existing monoterpene synthases and anticipated to amplify a 1000-bp fragment, unexpectedly yielded a 300-bp fragment with sequence reminiscent of a terpenoid synthase. Utilization of this amplicon as a hybridization probe afforded four new, full-length cDNA species from a wounded fir stem cDNA library that appeared to encode four distinct monoterpene synthases. Expression in Escherichia coli, followed by enzyme assay with geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)) and geranylgeranyl diphosphate (C(20)), and analysis of the terpene products by chiral phase gas chromatography and mass spectrometry confirmed that these sequences encoded four new monoterpene synthases, including (-)-camphene synthase, (-)-beta-phellandrene synthase, terpinolene synthase, and an enzyme that produces both (-)-limonene and (-)-alpha-pinene. The deduced amino acid sequences indicated these enzymes to be 618 to 637 residues in length (71 to 73 kDa) and to be translated as preproteins bearing an amino-terminal plastid targeting sequence of 50-60 residues. cDNA truncation to delete the transit peptide allowed functional expression of the "pseudomature" forms of these enzymes, which exhibited no change in product outcome as a result of truncation. Sequence comparison revealed that these new monoterpene synthases from grand fir are members of the Tpsd gene subfamily and resemble sesquiterpene (C(15)) synthases and diterpene (C(20)) synthases from conifers more closely than mechanistically related monoterpene synthases from angiosperm species. The availability of a nearly complete set of constitutive and inducible monoterpene synthases from grand fir (now numbering seven) will allow molecular dissection of the resin-based defense response in this conifer species, and detailed study of structure-function relationships among this large and diverse family of catalysts, all of which exploit the same stereochemistry in the coupled isomerization-cyclization reaction.
Collapse
|
|
26 |
108 |
14
|
Abstract
Volatile organic compounds are important flavor components of finished wines. In addition to winemaking practices, which shape wine quality, cultivation of the grape berries in the vineyard each season affects the production of volatile organic compounds as well as other chemical components that ultimately contribute to our perception of flavor in finished wines. By studying how berry flavor components are determined by the interplay of vine genotypes, the environment, and cultivation practices at the molecular level, scientists will develop advanced tools and knowledge that will aid viticulturalists in consistently producing balanced, flavorful berries for wine production.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
102 |
15
|
Hammerbacher A, Schmidt A, Wadke N, Wright LP, Schneider B, Bohlmann J, Brand WA, Fenning TM, Gershenzon J, Paetz C. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. PLANT PHYSIOLOGY 2013; 162:1324-36. [PMID: 23729780 PMCID: PMC3707561 DOI: 10.1104/pp.113.218610] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/28/2013] [Indexed: 05/03/2023]
Abstract
Norway spruce (Picea abies) forests suffer periodic fatal attacks by the bark beetle Ips typographus and its fungal associate, Ceratocystis polonica. Norway spruce protects itself against fungal and bark beetle invasion by the production of terpenoid resins, but it is unclear whether resins or other defenses are effective against the fungus. We investigated stilbenes, a group of phenolic compounds found in Norway spruce bark with a diaryl-ethene skeleton with known antifungal properties. During C. polonica infection, stilbene biosynthesis was up-regulated, as evidenced by elevated transcript levels of stilbene synthase genes. However, stilbene concentrations actually declined during infection, and this was due to fungal metabolism. C. polonica converted stilbenes to ring-opened, deglycosylated, and dimeric products. Chromatographic separation of C. polonica protein extracts confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of C. polonica strains showed that rapid conversion of host phenolics is associated with higher virulence. C. polonica is so well adapted to its host's chemical defenses that it is even able to use host phenolic compounds as its sole carbon source.
Collapse
|
research-article |
12 |
96 |
16
|
Bohlmann J, Martin D, Oldham NJ, Gershenzon J. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys 2000; 375:261-9. [PMID: 10700382 DOI: 10.1006/abbi.1999.1669] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Arabidopsis genome project has recently reported sequences with similarity to members of the terpene synthase (TPS) gene family of higher plants. Surprisingly, several Arabidopsis terpene synthase-like sequences (AtTPS) share the most identity with TPS genes that participate in secondary metabolism in terpenoid-accumulating plant species. Expression of a putative Arabidopsis terpene synthase gene, designated AtTPS03, was demonstrated by amplification of a 392-bp cDNA fragment using primers designed to conserved regions of plant terpene synthases. Using the AtTPS03 fragment as a hybridization probe, a second AtTPS cDNA, designated AtTPS10, was isolated from a jasmonate-induced cDNA library. The partial AtTPS10 cDNA clone contained an open reading frame of 1665 bp encoding a protein of 555 amino acids. Functional expression of AtTPS10 in Escherichia coli yielded an active monoterpene synthase enzyme, which converted geranyl diphosphate (C(10)) into the acyclic monoterpenes beta-myrcene and (E)-beta-ocimene and small amounts of cyclic monoterpenes. Based on sequence relatedness, AtTPS10 was classified as a member of the TPSb subfamily of angiosperm monoterpene synthases. Sequence comparison of AtTPS10 with previously cloned monoterpene synthases suggests independent events of functional specialization of terpene synthases during the evolution of terpenoid secondary metabolism in gymnosperms and angiosperms. Functional characterization of the AtTPS10 gene was prompted by the availability of Arabidopsis genome sequences. Although Arabidoposis has not been reported to form terpenoid secondary metabolites, the unexpected expression of TPS genes belonging to the TPSb subfamily in this species strongly suggests that terpenoid secondary metabolism is active in the model system Arabidopsis.
Collapse
|
|
25 |
84 |
17
|
Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. PLANT PHYSIOLOGY 2011; 157:876-90. [PMID: 21865488 PMCID: PMC3192583 DOI: 10.1104/pp.111.181420] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in spruce, we identified two similar stilbene synthase (STS) genes in Norway spruce (Picea abies), PaSTS1 and PaSTS2, which had orthologs with high sequence identity in sitka (Picea sitchensis) and white (Picea glauca) spruce. Despite the conservation of STS sequences in these three spruce species, they differed substantially from angiosperm STSs. Several types of in vitro and in vivo assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-coenzyme A and three molecules of malonyl-coenzyme A to yield the trihydroxystilbene resveratrol but do not directly form the dominant spruce stilbenes, which are tetrahydroxylated. However, in transgenic Norway spruce overexpressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol, which is further modified by hydroxylation, O-methylation, and O-glucosylation to yield astringin and isorhapontin. Inoculating spruce with fungal mycelium increased STS transcript abundance and tetrahydroxystilbene glycoside production. Extracts from STS-overexpressing lines significantly inhibited fungal growth in vitro compared with extracts from control lines, suggesting that spruce stilbenes have a role in antifungal defense.
Collapse
|
|
14 |
77 |
18
|
Byun-McKay A, Godard KA, Toudefallah M, Martin DM, Alfaro R, King J, Bohlmann J, Plant AL. Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. PLANT PHYSIOLOGY 2006; 140:1009-21. [PMID: 16415217 PMCID: PMC1400563 DOI: 10.1104/pp.105.071803] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We analyzed the expression pattern of various terpene synthase (TPS) genes in response to a wounding injury applied to the apical leader of Sitka spruce (Picea sitchensis Bong. Carr.) genotypes known to be resistant (R) or susceptible (S) to white pine weevil (Pissodes strobi Peck.) attack. The purpose was to test if differences in constitutive or wound-induced TPS expression can be associated with established weevil resistance. All wounding treatments were conducted on 9-year-old R and S trees growing under natural field conditions within the range of variation for weevil R and S genotypes. Representative cDNAs of the monoterpene synthase (mono-TPS), sesquiterpene synthase (sesqui-TPS), and diterpene synthase (di-TPS) classes were isolated from Sitka spruce to assess TPS transcript levels. Based on amino acid sequence similarity, the cDNAs resemble Norway spruce (Picea abies) (-)-linalool synthase (mono-TPS; PsTPS-Linl) and levopimaradiene/abietadiene synthase (di-TPS; PsTPS-LASl), and grand fir (Abies grandis) delta-selinene synthase (sesqui-TPS; PsTPS-Sell). One other mono-TPS was functionally identified as (-)-limonene synthase (PsTPS-Lim). No significant difference in constitutive expression levels for these TPSs was detected between R and S trees. However, over a postwounding period of 16 d, only R trees exhibited significant transcript accumulation for the mono- and sesqui-TPS tested. Both R and S trees exhibited a significant accumulation of PsTPS-LASl transcripts. An assessment of traumatic resin duct formation in wounded leaders showed that both R and S trees responded by forming traumatic resin ducts; however, the magnitude of this response was significantly greater in R trees. Collectively, our data imply that the induced resinosis response is an important aspect of defense in weevil R Sitka spruce trees growing under natural conditions.
Collapse
|
research-article |
19 |
73 |
19
|
Keeling CI, Henderson H, Li M, Yuen M, Clark EL, Fraser JD, Huber DPW, Liao NY, Docking TR, Birol I, Chan SK, Taylor GA, Palmquist D, Jones SJM, Bohlmann J. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:525-536. [PMID: 22516182 DOI: 10.1016/j.ibmb.2012.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera.
Collapse
|
|
13 |
69 |
20
|
Bleeker PM, Spyropoulou EA, Diergaarde PJ, Volpin H, De Both MTJ, Zerbe P, Bohlmann J, Falara V, Matsuba Y, Pichersky E, Haring MA, Schuurink RC. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. PLANT MOLECULAR BIOLOGY 2011; 77:323-36. [PMID: 21818683 PMCID: PMC3193516 DOI: 10.1007/s11103-011-9813-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/16/2011] [Indexed: 05/18/2023]
Abstract
Solanum lycopersicum and Solanum habrochaites (f. typicum) accession PI127826 emit a variety of sesquiterpenes. To identify terpene synthases involved in the production of these volatile sesquiterpenes, we used massive parallel pyrosequencing (RNA-seq) to obtain the transcriptome of the stem trichomes from these plants. This approach resulted initially in the discovery of six sesquiterpene synthase cDNAs from S. lycopersicum and five from S. habrochaites. Searches of other databases and the S. lycopersicum genome resulted in the discovery of two additional sesquiterpene synthases expressed in trichomes. The sesquiterpene synthases from S. lycopersicum and S. habrochaites have high levels of protein identity. Several of them appeared to encode for non-functional proteins. Functional recombinant proteins produced germacrenes, β-caryophyllene/α-humulene, viridiflorene and valencene from (E,E)-farnesyl diphosphate. However, the activities of these enzymes do not completely explain the differences in sesquiterpene production between the two tomato plants. RT-qPCR confirmed high levels of expression of most of the S. lycopersicum sesquiterpene synthases in stem trichomes. In addition, one sesquiterpene synthase was induced by jasmonic acid, while another appeared to be slightly repressed by the treatment. Our data provide a foundation to study the evolution of terpene synthases in cultivated and wild tomato.
Collapse
|
Comparative Study |
14 |
62 |
21
|
Hammerbacher A, Paetz C, Wright LP, Fischer TC, Bohlmann J, Davis AJ, Fenning TM, Gershenzon J, Schmidt A. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica. PLANT PHYSIOLOGY 2014; 164:2107-22. [PMID: 24550241 PMCID: PMC3982766 DOI: 10.1104/pp.113.232389] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
Proanthocyanidins (PAs) are common polyphenolic polymers of plants found in foliage, fruit, bark, roots, rhizomes, and seed coats that consist of flavan-3-ol units such as 2,3-trans-(+)-catechin and 2,3-cis-(-)-epicatechin. Although the biosynthesis of flavan-3-ols has been studied in angiosperms, little is known about their biosynthesis and ecological roles in gymnosperms. In this study, the genes encoding leucoanthocyanidin reductase, a branch point enzyme involved in the biosynthesis of 2,3-trans-(+)-flavan-3-ols, were identified and functionally characterized in Norway spruce (Picea abies), the most widespread and economically important conifer in Europe. In addition, the accumulation of flavan-3-ols and PAs was investigated in Norway spruce saplings after wounding or inoculation with the fungal pathogen Ceratocystis polonica, which is vectored by bark beetles (Ips typographus) and is usually present during fatal beetle attacks. Monomeric and dimeric flavan-3-ols were analyzed by reverse-phase high-pressure liquid chromatography, while the size and subunit composition of larger PAs were characterized using a novel acid hydrolysis method and normal phase chromatography. Only flavan-3-ol monomers with 2,3-trans stereochemistry were detected in spruce bark; dimeric and larger PAs contained flavan-3-ols with both 2,3-trans and 2,3-cis stereochemistry. Levels of monomers as well as PAs with a higher degree of polymerization increased dramatically in spruce bark after infection by C. polonica. In accordance with their role in the biosynthesis of 2,3-trans-(+)-flavan-3-ols, transcript abundance of Norway spruce LEUCOANTHOCYANIDIN REDUCTASE genes also increased significantly during fungal infection. Bioassays with C. polonica revealed that the levels of 2,3-trans-(+)-catechin and PAs that are produced in the tree in response to fungal infection inhibit C. polonica growth and can therefore be considered chemical defense compounds.
Collapse
|
research-article |
11 |
61 |
22
|
Jackman SD, Coombe L, Warren RL, Kirk H, Trinh E, MacLeod T, Pleasance S, Pandoh P, Zhao Y, Coope RJ, Bousquet J, Bohlmann J, Jones SJM, Birol I. Complete Mitochondrial Genome of a Gymnosperm, Sitka Spruce (Picea sitchensis), Indicates a Complex Physical Structure. Genome Biol Evol 2021; 12:1174-1179. [PMID: 32449750 PMCID: PMC7486957 DOI: 10.1093/gbe/evaa108] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Plant mitochondrial genomes vary widely in size. Although many plant mitochondrial genomes have been sequenced and assembled, the vast majority are of angiosperms, and few are of gymnosperms. Most plant mitochondrial genomes are smaller than a megabase, with a few notable exceptions. We have sequenced and assembled the complete 5.5-Mb mitochondrial genome of Sitka spruce (Picea sitchensis), to date, one of the largest mitochondrial genomes of a gymnosperm. We sequenced the whole genome using Oxford Nanopore MinION, and then identified contigs of mitochondrial origin assembled from these long reads based on sequence homology to the white spruce mitochondrial genome. The assembly graph shows a multipartite genome structure, composed of one smaller 168-kb circular segment of DNA, and a larger 5.4-Mb single component with a branching structure. The assembly graph gives insight into a putative complex physical genome structure, and its branching points may represent active sites of recombination.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
60 |
23
|
Chiu CC, Keeling CI, Bohlmann J. Toxicity of Pine Monoterpenes to Mountain Pine Beetle. Sci Rep 2017; 7:8858. [PMID: 28821756 PMCID: PMC5562797 DOI: 10.1038/s41598-017-08983-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
The mountain pine beetle (Dendroctonus ponderosae; MPB) is an eruptive bark beetle species affecting pine forests of western North America. MPB are exposed to volatile monoterpenes, which are important host defense chemicals. We assessed the toxicity of the ten most abundant monoterpenes of lodgepole pine (Pinus contorta), a major host in the current MPB epidemic, against adult MPB from two locations in British Columbia, Canada. Monoterpenes were tested as individual volatiles and included (-)-β-phellandrene, (+)-3-carene, myrcene, terpinolene, and both enantiomers of α-pinene, β-pinene and limonene. Dose-mortality experiments identified (-)-limonene as the most toxic (LC50: 32 μL/L), and (-)-α-pinene (LC50: 290 μL/L) and terpinolene (LC50: >500 μL/L) as the least toxic. MPB body weight had a significant positive effect on the ability to survive most monoterpene volatiles, while sex did not have a significant effect with most monoterpenes. This study helps to quantitatively define the effects of individual monoterpenes towards MPB mortality, which is critical when assessing the variable monoterpene chemical defense profiles of its host species.
Collapse
|
research-article |
8 |
57 |
24
|
Janes JK, Li Y, Keeling CI, Yuen MMS, Boone CK, Cooke JEK, Bohlmann J, Huber DPW, Murray BW, Coltman DW, Sperling FAH. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains. Mol Biol Evol 2014; 31:1803-15. [PMID: 24803641 PMCID: PMC4069619 DOI: 10.1093/molbev/msu135] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below −40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species.
Collapse
|
Journal Article |
11 |
57 |
25
|
Warren RL, Coombe L, Mohamadi H, Zhang J, Jaquish B, Isabel N, Jones SJM, Bousquet J, Bohlmann J, Birol I. ntEdit: scalable genome sequence polishing. Bioinformatics 2020; 35:4430-4432. [PMID: 31095290 PMCID: PMC6821332 DOI: 10.1093/bioinformatics/btz400] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/04/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023] Open
Abstract
Motivation In the modern genomics era, genome sequence assemblies are routine practice. However, depending on the methodology, resulting drafts may contain considerable base errors. Although utilities exist for genome base polishing, they work best with high read coverage and do not scale well. We developed ntEdit, a Bloom filter-based genome sequence editing utility that scales to large mammalian and conifer genomes. Results We first tested ntEdit and the state-of-the-art assembly improvement tools GATK, Pilon and Racon on controlled Escherichia coli and Caenorhabditis elegans sequence data. Generally, ntEdit performs well at low sequence depths (<20×), fixing the majority (>97%) of base substitutions and indels, and its performance is largely constant with increased coverage. In all experiments conducted using a single CPU, the ntEdit pipeline executed in <14 s and <3 m, on average, on E.coli and C.elegans, respectively. We performed similar benchmarks on a sub-20× coverage human genome sequence dataset, inspecting accuracy and resource usage in editing chromosomes 1 and 21, and whole genome. ntEdit scaled linearly, executing in 30–40 m on those sequences. We show how ntEdit ran in <2 h 20 m to improve upon long and linked read human genome assemblies of NA12878, using high-coverage (54×) Illumina sequence data from the same individual, fixing frame shifts in coding sequences. We also generated 17-fold coverage spruce sequence data from haploid sequence sources (seed megagametophyte), and used it to edit our pseudo haploid assemblies of the 20 Gb interior and white spruce genomes in <4 and <5 h, respectively, making roughly 50M edits at a (substitution+indel) rate of 0.0024. Availability and implementation https://github.com/bcgsc/ntedit Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
56 |