1
|
Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, Brown C, Pugh TJ, Stojanov P, Cho J, Lawrence MS, Getz G, Brägelmann J, DeBoer R, Weichselbaum RR, Langerman A, Portugal L, Blair E, Stenson K, Lingen MW, Cohen EEW, Vokes EE, White KP, Hammerman PS. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res 2014; 21:632-41. [PMID: 25056374 DOI: 10.1158/1078-0432.ccr-13-3310] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The genetic differences between human papilloma virus (HPV)-positive and -negative head and neck squamous cell carcinomas (HNSCC) remain largely unknown. To identify differential biology and novel therapeutic targets for both entities, we determined mutations and copy-number aberrations in a large cohort of locoregionally advanced HNSCC. EXPERIMENTAL DESIGN We performed massively parallel sequencing of 617 cancer-associated genes in 120 matched tumor/normal samples (42.5% HPV-positive). Mutations and copy-number aberrations were determined and results validated with a secondary method. RESULTS The overall mutational burden in HPV-negative and HPV-positive HNSCC was similar with an average of 15.2 versus 14.4 somatic exonic mutations in the targeted cancer-associated genes. HPV-negative tumors showed a mutational spectrum concordant with published lung squamous cell carcinoma analyses with enrichment for mutations in TP53, CDKN2A, MLL2, CUL3, NSD1, PIK3CA, and NOTCH genes. HPV-positive tumors showed unique mutations in DDX3X, FGFR2/3 and aberrations in PIK3CA, KRAS, MLL2/3, and NOTCH1 were enriched in HPV-positive tumors. Currently targetable genomic alterations were identified in FGFR1, DDR2, EGFR, FGFR2/3, EPHA2, and PIK3CA. EGFR, CCND1, and FGFR1 amplifications occurred in HPV-negative tumors, whereas 17.6% of HPV-positive tumors harbored mutations in fibroblast growth factor receptor genes (FGFR2/3), including six recurrent FGFR3 S249C mutations. HPV-positive tumors showed a 5.8% incidence of KRAS mutations, and DNA-repair gene aberrations, including 7.8% BRCA1/2 mutations, were identified. CONCLUSIONS The mutational makeup of HPV-positive and HPV-negative HNSCC differs significantly, including targetable genes. HNSCC harbors multiple therapeutically important genetic aberrations, including frequent aberrations in the FGFR and PI3K pathway genes. See related commentary by Krigsfeld and Chung, p. 495.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
496 |
2
|
Mollaoglu G, Guthrie MR, Böhm S, Brägelmann J, Can I, Ballieu PM, Marx A, George J, Heinen C, Chalishazar MD, Cheng H, Ireland AS, Denning KE, Mukhopadhyay A, Vahrenkamp JM, Berrett KC, Mosbruger TL, Wang J, Kohan JL, Salama ME, Witt BL, Peifer M, Thomas RK, Gertz J, Johnson JE, Gazdar AF, Wechsler-Reya RJ, Sos ML, Oliver TG. MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell 2017; 31:270-285. [PMID: 28089889 PMCID: PMC5310991 DOI: 10.1016/j.ccell.2016.12.005] [Citation(s) in RCA: 424] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 12/13/2016] [Indexed: 01/19/2023]
Abstract
Loss of the tumor suppressors RB1 and TP53 and MYC amplification are frequent oncogenic events in small cell lung cancer (SCLC). We show that Myc expression cooperates with Rb1 and Trp53 loss in the mouse lung to promote aggressive, highly metastatic tumors, that are initially sensitive to chemotherapy followed by relapse, similar to human SCLC. Importantly, MYC drives a neuroendocrine-low "variant" subset of SCLC with high NEUROD1 expression corresponding to transcriptional profiles of human SCLC. Targeted drug screening reveals that SCLC with high MYC expression is vulnerable to Aurora kinase inhibition, which, combined with chemotherapy, strongly suppresses tumor progression and increases survival. These data identify molecular features for patient stratification and uncover a potential targeted treatment approach for MYC-driven SCLC.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
424 |
3
|
Keck MK, Zuo Z, Khattri A, Stricker TP, Brown CD, Imanguli M, Rieke D, Endhardt K, Fang P, Brägelmann J, DeBoer R, El-Dinali M, Aktolga S, Lei Z, Tan P, Rozen SG, Salgia R, Weichselbaum RR, Lingen MW, Story MD, Ang KK, Cohen EEW, White KP, Vokes EE, Seiwert TY. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res 2014; 21:870-81. [PMID: 25492084 DOI: 10.1158/1078-0432.ccr-14-2481] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Current classification of head and neck squamous cell carcinomas (HNSCC) based on anatomic site and stage fails to capture biologic heterogeneity or adequately inform treatment. EXPERIMENTAL DESIGN Here, we use gene expression-based consensus clustering, copy number profiling, and human papillomavirus (HPV) status on a clinically homogenous cohort of 134 locoregionally advanced HNSCCs with 44% HPV(+) tumors together with additional cohorts, which in total comprise 938 tumors, to identify HNSCC subtypes and discover several subtype-specific, translationally relevant characteristics. RESULTS We identified five subtypes of HNSCC, including two biologically distinct HPV subtypes. One HPV(+) and one HPV(-) subtype show a prominent immune and mesenchymal phenotype. Prominent tumor infiltration with CD8(+) lymphocytes characterizes this inflamed/mesenchymal subtype, independent of HPV status. Compared with other subtypes, the two HPV subtypes show low expression and no copy number events for EGFR/HER ligands. In contrast, the basal subtype is uniquely characterized by a prominent EGFR/HER signaling phenotype, negative HPV-status, as well as strong hypoxic differentiation not seen in other subtypes. CONCLUSION Our five-subtype classification provides a comprehensive overview of HPV(+) as well as HPV(-) HNSCC biology with significant translational implications for biomarker development and personalized care for patients with HNSCC.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
258 |
4
|
Scheffler M, Ihle MA, Hein R, Merkelbach-Bruse S, Scheel AH, Siemanowski J, Brägelmann J, Kron A, Abedpour N, Ueckeroth F, Schüller M, Koleczko S, Michels S, Fassunke J, Pasternack H, Heydt C, Serke M, Fischer R, Schulte W, Gerigk U, Nogova L, Ko YD, Abdulla DSY, Riedel R, Kambartel KO, Lorenz J, Sauerland I, Randerath W, Kaminsky B, Hagmeyer L, Grohé C, Eisert A, Frank R, Gogl L, Schaepers C, Holzem A, Hellmich M, Thomas RK, Peifer M, Sos ML, Büttner R, Wolf J. K-ras Mutation Subtypes in NSCLC and Associated Co-occuring Mutations in Other Oncogenic Pathways. J Thorac Oncol 2018; 14:606-616. [PMID: 30605727 DOI: 10.1016/j.jtho.2018.12.013] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/31/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Although KRAS mutations in NSCLC have been considered mutually exclusive driver mutations for a long time, there is now growing evidence that KRAS-mutated NSCLC represents a genetically heterogeneous subgroup. We sought to determine genetic heterogeneity with respect to cancer-related co-mutations and their correlation with different KRAS mutation subtypes. METHODS Diagnostic samples from 4507 patients with NSCLC were analyzed by next-generation sequencing by using a panel of 14 genes and, in a subset of patients, fluorescence in situ hybridization. Next-generation sequencing with an extended panel of 14 additional genes was performed in 101 patients. Molecular data were correlated with clinical data. Whole-exome sequencing was performed in two patients. RESULTS We identified 1078 patients with KRAS mutations, of whom 53.5% had at least one additional mutation. Different KRAS mutation subtypes showed different patterns of co-occurring mutations. Besides mutations in tumor protein p53 gene (TP53) (39.4%), serine/threonine kinase 11 gene (STK11) (19.8%), kelch like ECH associated protein 1 gene (KEAP1) (12.9%), and ATM serine/threonine kinase gene (ATM) (11.9%), as well as MNNG HOS Transforming gene (MET) amplifications (15.4%) and erb-b2 receptor tyrosine kinase 2 gene (ERBB2) amplifications (13.8%, exclusively in G12C), we found rare co-occurrence of targetable mutations in EGFR (1.2%) and BRAF (1.2%). Whole-exome sequencing of two patients with co-occurring phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA) mutation revealed clonality of mutated KRAS in one patient and subclonality in the second, suggesting different evolutionary backgrounds. CONCLUSION KRAS-mutated NSCLC represents a genetically heterogeneous subgroup with a high frequency of co-occurring mutations in cancer-associated pathways, partly associated with distinct KRAS mutation subtypes. This diversity might have implications for understanding the variability of treatment outcome in KRAS-mutated NSCLC and for future trial design.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
184 |
5
|
Deng M, Brägelmann J, Schultze JL, Perner S. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets. BMC Bioinformatics 2016; 17:72. [PMID: 26852330 PMCID: PMC4744375 DOI: 10.1186/s12859-016-0917-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background The Cancer Genome Atlas (TCGA) is a pool of molecular data sets publicly accessible and freely available to cancer researchers anywhere around the world. However, wide spread use is limited since an advanced knowledge of statistics and statistical software is required. Results In order to improve accessibility we created Web-TCGA, a web based, freely accessible online tool, which can also be run in a private instance, for integrated analysis of molecular cancer data sets provided by TCGA. In contrast to already available tools, Web-TCGA utilizes different methods for analysis and visualization of TCGA data, allowing users to generate global molecular profiles across different cancer entities simultaneously. In addition to global molecular profiles, Web-TCGA offers highly detailed gene and tumor entity centric analysis by providing interactive tables and views. Conclusions As a supplement to other already available tools, such as cBioPortal (Sci Signal 6:pl1, 2013, Cancer Discov 2:401–4, 2012), Web-TCGA is offering an analysis service, which does not require any installation or configuration, for molecular data sets available at the TCGA. Individual processing requests (queries) are generated by the user for mutation, methylation, expression and copy number variation (CNV) analyses. The user can focus analyses on results from single genes and cancer entities or perform a global analysis (multiple cancer entities and genes simultaneously). Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0917-9) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
119 |
6
|
Deng M, Brägelmann J, Kryukov I, Saraiva-Agostinho N, Perner S. FirebrowseR: an R client to the Broad Institute's Firehose Pipeline. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:baw160. [PMID: 28062517 PMCID: PMC5216271 DOI: 10.1093/database/baw160] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023]
Abstract
With its Firebrowse service (http://firebrowse.org/) the Broad Institute is making large-scale multi-platform omics data analysis results publicly available through a Representational State Transfer (REST) Application Programmable Interface (API). Querying this database through an API client from an arbitrary programming environment is an essential task, allowing other developers and researchers to focus on their analysis and avoid data wrangling. Hence, as a first result, we developed a workflow to automatically generate, test and deploy such clients for rapid response to API changes. Its underlying infrastructure, a combination of free and publicly available web services, facilitates the development of API clients. It decouples changes in server software from the client software by reacting to changes in the RESTful service and removing direct dependencies on a specific implementation of an API. As a second result, FirebrowseR, an R client to the Broad Institute’s RESTful Firehose Pipeline, is provided as a working example, which is built by the means of the presented workflow. The package’s features are demonstrated by an example analysis of cancer gene expression data. Database URL:https://github.com/mariodeng/
Collapse
|
Journal Article |
8 |
118 |
7
|
Müller T, Braun M, Dietrich D, Aktekin S, Höft S, Kristiansen G, Göke F, Schröck A, Brägelmann J, Held SAE, Bootz F, Brossart P. PD-L1: a novel prognostic biomarker in head and neck squamous cell carcinoma. Oncotarget 2017; 8:52889-52900. [PMID: 28881780 PMCID: PMC5581079 DOI: 10.18632/oncotarget.17547] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/17/2017] [Indexed: 12/31/2022] Open
Abstract
Background The PD-1 receptor and its ligands PD-L1 and PD-L2 are known to be significantly involved in T-cell regulation. Recent studies suggest that PD-L1 expression in malignant tumors contributes to an immunosuppressive microenvironment and disruption of antitumoral immune response. Drugs targeting this pathway are already tested in clinical trials against several tumor entities with promising results. However, until now comprehensive data with regard to PD-L1 and PD-L2 expression in head and neck squamous cell carcinoma (HNSCC) is still lacking. Patients and methods We assessed PD-L1 and PD-L2 expression via immunohistochemistry in two independent cohorts of 293 HNSCC patients. Results A significant subset of HNSCC showed high expression levels of PD-L1. Most remarkable, we detected a strong correlation between PD-L1 expression and overall survival time in both HNSCC cohorts. Further, in multivariate cox proportional hazard models, PD-L1 dominates as the strongest prognostic factor of patient's outcome in HNSCC, leaving even tumor stage and distant metastasis behind. Moreover, strong PD-L1 expression was associated with the presence of distant metastases in a subset of cases. Conclusions In summary, while the significance of PD-L2 in HNSCC seems to minor, we show that PD-L1 expression is common in HNSCC and, more importantly, a both robust and strong prognostic biomarker. In this respect, our results provide hints on further application of therapies targeting the PD-1/PD-L1 pathway in HNSCC. Investigation of response and outcome of patients receiving anti-PD-1/PD-L1 containing therapies in correlation with PD-L1 expression analysis should be an important task for the future. STATEMENT OF TRANSLATIONAL RELEVANCE In spite of improved treatment options and increasing knowledge of molecular alterations in HNSCC, the survival rate has not been dramatically changed in the past decades. Pies are missing in HNSCC. One promising candidate in cancer immune therapy is PD-L1. Drugs targeting PD-L1 or its receptor PD-1 are subject of several clinical studies in different cancer entities. However, comprehensive data about PD-L1 expression in HNSCC and therefore a rational basis for anti PD-L1/PD-1 therapy in HNSCC is lacking. Here, we provide wide-ranging data about PD-L1 expression in HNSCC of all major localizations. We observed a strong correlation between expression of PD-L1 and reduced overall survival time. Furthermore, high PD-L1 expression was identified as a strong prognostic factor of patient's outcome when verified together with recognized prognostic factors.
Collapse
|
Journal Article |
8 |
88 |
8
|
Brägelmann J, Klümper N, Offermann A, von Mässenhausen A, Böhm D, Deng M, Queisser A, Sanders C, Syring I, Merseburger AS, Vogel W, Sievers E, Vlasic I, Carlsson J, Andrén O, Brossart P, Duensing S, Svensson MA, Shaikhibrahim Z, Kirfel J, Perner S. Pan-Cancer Analysis of the Mediator Complex Transcriptome Identifies CDK19 and CDK8 as Therapeutic Targets in Advanced Prostate Cancer. Clin Cancer Res 2016; 23:1829-1840. [PMID: 27678455 DOI: 10.1158/1078-0432.ccr-16-0094] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches.Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities (n = 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer (n = 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq.Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19 In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro, inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion.Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer. Clin Cancer Res; 23(7); 1829-40. ©2016 AACR.
Collapse
|
Journal Article |
9 |
76 |
9
|
Catenacci DVT, Cervantes G, Yala S, Nelson EA, El-Hashani E, Kanteti R, El Dinali M, Hasina R, Brägelmann J, Seiwert T, Sanicola M, Henderson L, Grushko TA, Olopade O, Karrison T, Bang YJ, Kim WH, Tretiakova M, Vokes E, Frank DA, Kindler HL, Huet H, Salgia R. RON (MST1R) is a novel prognostic marker and therapeutic target for gastroesophageal adenocarcinoma. Cancer Biol Ther 2011; 12:9-46. [PMID: 21543897 DOI: 10.4161/cbt.12.1.15747] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RON (MST1R) is one of two members of the MET receptor tyrosine kinase family, along with parent receptor MET. RON has a putative role in several cancers, but its expression and function is poorly characterized in gastroesophageal adenocarcinoma. A recognized functional role of MET tyrosine kinase in gastroesophageal cancer has led to early phase clinical trials using MET inhibitors, with unimpressive results. Therefore, the role of RON in gastroesophageal cancer, as well as its role in cooperative signaling with MET and as a mechanism of resistance to MET inhibition, was studied in gastroesophageal tissues and cell lines. By IHC, RON was highly over-expressed in 74% of gastroesophageal samples (n=94), and over-expression was prognostic of poor survival (p=0.008); RON and MET co-expression occurred in 43% of samples and was prognostic of worst survival (p=0.03). High MST1R gene copy number by quantitative polymerase chain reaction, and confirmed by fluorescence in situ hybridization and/or array comparative genomic hybridization, was seen in 35.5% (16/45) of cases. High MST1R gene copy number correlated with poor survival (p=0.01), and was associated with high MET and ERBB2 gene copy number. A novel somatic MST1R juxtamembrane mutation R1018G was found in 11% of samples. RON signaling was functional in cell lines, activating downstream effector STAT3, and resulted in increased viability over controls. RON and MET co-stimulation assays led to enhanced malignant phenotypes over stimulation of either receptor alone. Growth inhibition as evidenced by viability and apoptosis assays was optimal using novel blocking monoclonal antibodies to both RON and MET, versus either alone. SU11274, a classic MET small molecule tyrosine kinase inhibitor, blocked signaling of both receptors, and proved synergistic when combined with STAT3 inhibition (combination index < 1). These preclinical studies define RON as an important novel prognostic marker and therapeutic target for gastroesophageal cancer warranting further investigation.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
70 |
10
|
Müller F, Lim JKM, Bebber CM, Seidel E, Tishina S, Dahlhaus A, Stroh J, Beck J, Yapici FI, Nakayama K, Torres Fernández L, Brägelmann J, Leprivier G, von Karstedt S. Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation. Cell Death Differ 2023; 30:442-456. [PMID: 36443441 PMCID: PMC9950476 DOI: 10.1038/s41418-022-01096-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Oncogenic KRAS is the key driver oncogene for several of the most aggressive human cancers. One key feature of oncogenic KRAS expression is an early increase in cellular reactive oxygen species (ROS) which promotes cellular transformation if cells manage to escape cell death, mechanisms of which remain incompletely understood. Here, we identify that expression of oncogenic as compared to WT KRAS in isogenic cellular systems renders cells more resistant to ferroptosis, a recently described type of regulated necrosis. Mechanistically, we find that cells with mutant KRAS show a specific lack of ferroptosis-induced lipid peroxidation. Interestingly, KRAS-mutant cells upregulate expression of ferroptosis suppressor protein 1 (FSP1). Indeed, elevated levels of FSP1 in KRAS-mutant cells are responsible for mediating ferroptosis resistance and FSP1 is upregulated as a consequence of MAPK and NRF2 pathway activation downstream of KRAS. Strikingly, FSP1 activity promotes cellular transformation in soft agar and its overexpression is sufficient to promote spheroid growth in 3D in KRAS WT cells. Moreover, FSP1 expression and its activity in ferroptosis inhibition accelerates tumor onset of KRAS WT cells in the absence of oncogenic KRAS in vivo. Consequently, we find that pharmacological induction of ferroptosis in pancreatic organoids derived from the LsL-KRASG12D expressing mouse model is only effective in combination with FSP1 inhibition. Lastly, FSP1 is upregulated in non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) as compared to the respective normal tissue of origin and correlates with NRF2 expression in PDAC patient datasets. Based on these data, we propose that KRAS-mutant cells must navigate a ferroptosis checkpoint by upregulating FSP1 during tumor establishment. Consequently, ferroptosis-inducing therapy should be combined with FSP1 inhibitors for efficient therapy of KRAS-mutant cancers.
Collapse
|
research-article |
2 |
70 |
11
|
Brägelmann J, Böhm S, Guthrie MR, Mollaoglu G, Oliver TG, Sos ML. Family matters: How MYC family oncogenes impact small cell lung cancer. Cell Cycle 2017; 16:1489-1498. [PMID: 28737478 DOI: 10.1080/15384101.2017.1339849] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Small cell lung cancer (SCLC) is one of the most deadly cancers and currently lacks effective targeted treatment options. Recent advances in the molecular characterization of SCLC has provided novel insight into the biology of this disease and raises hope for a paradigm shift in the treatment of SCLC. We and others have identified activation of MYC as a driver of susceptibility to Aurora kinase inhibition in SCLC cells and tumors that translates into a therapeutic option for the targeted treatment of MYC-driven SCLC. While MYC shares major features with its paralogs MYCN and MYCL, the sensitivity to Aurora kinase inhibitors is unique for MYC-driven SCLC. In this review, we will compare the distinct molecular features of the 3 MYC family members and address the potential implications for targeted therapy of SCLC.
Collapse
|
Review |
8 |
64 |
12
|
Plenker D, Bertrand M, de Langen AJ, Riedel R, Lorenz C, Scheel AH, Müller J, Brägelmann J, Daßler-Plenker J, Kobe C, Persigehl T, Kluge A, Wurdinger T, Schellen P, Hartmann G, Zacherle T, Menon R, Thunnissen E, Büttner R, Griesinger F, Wolf J, Heukamp L, Sos ML, Heuckmann JM. Structural Alterations of MET Trigger Response to MET Kinase Inhibition in Lung Adenocarcinoma Patients. Clin Cancer Res 2017; 24:1337-1343. [PMID: 29284707 DOI: 10.1158/1078-0432.ccr-17-3001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
|
Research Support, Non-U.S. Gov't |
8 |
62 |
13
|
Watermann C, Pasternack H, Idel C, Ribbat-Idel J, Brägelmann J, Kuppler P, Offermann A, Jonigk D, Kühnel MP, Schröck A, Dreyer E, Rosero C, Nathansen J, Dubrovska A, Tharun L, Kirfel J, Wollenberg B, Perner S, Krupar R. Recurrent HNSCC Harbor an Immunosuppressive Tumor Immune Microenvironment Suggesting Successful Tumor Immune Evasion. Clin Cancer Res 2020; 27:632-644. [PMID: 33109740 DOI: 10.1158/1078-0432.ccr-20-0197] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/24/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Recurrent tumors (RT) of head and neck squamous cell carcinoma (HNSCC) occur in up to 60%, with poor therapeutic response and detrimental prognosis. We hypothesized that HNSCC RTs successfully evade antitumor immune response and aimed to reveal tumor immune microenvironment (TIME) changes of primary tumors (PT) and corresponding RTs. EXPERIMENTAL DESIGN Tumor-infiltrating leukocytes (TIL) of 300 PTs and 108 RTs from two large independent and clinically well-characterized HNSCC cohorts [discovery cohort (DC), validation cohort (VD)] were compared by IHC. mRNA expression analysis of 730 immune-related genes was performed for 18 PTs and RTs after adjuvant chemoradiotherapy (CRT). The effect of chemotherapy and radiation resistance was assessed with an in vitro spheroid/immunocyte coculture model. RESULTS TIME analysis revealed overall decrease of TILs with significant loss of CD8+ T cells (DC P = 0.045/VC P < 0.0001) and B lymphocytes (DC P = 0.036/VC P < 0.0001) in RTs compared with PTs in both cohorts. Decrease predominantly occurred in RTs after CRT. Gene expression analysis confirmed loss of TILs (P = 0.0004) and B lymphocytes (P < 0.0001) and showed relative increase of neutrophils (P = 0.018), macrophages (P < 0.0001), dendritic cells (P = 0.0002), and mast cells (P = 0.0057) as well as lower overall expression of immune-related genes (P = 0.018) in RTs after CRT. Genes involved in B-lymphocyte functions and number of tertiary lymphoid structures showed the strongest decrease. SPP1 and MAPK1 were upregulated in vivo and in vitro, indicating their potential suitability as therapeutic targets in CRT resistance. CONCLUSIONS HNSCC RTs have an immunosuppressive TIME, which is particularly apparent after adjuvant CRT and might substantially contribute to poor therapeutic response and prognosis.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
58 |
14
|
Plenker D, Riedel M, Brägelmann J, Dammert MA, Chauhan R, Knowles PP, Lorenz C, Keul M, Bührmann M, Pagel O, Tischler V, Scheel AH, Schütte D, Song Y, Stark J, Mrugalla F, Alber Y, Richters A, Engel J, Leenders F, Heuckmann JM, Wolf J, Diebold J, Pall G, Peifer M, Aerts M, Gevaert K, Zahedi RP, Buettner R, Shokat KM, McDonald NQ, Kast SM, Gautschi O, Thomas RK, Sos ML. Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors. Sci Transl Med 2017; 9:eaah6144. [PMID: 28615362 PMCID: PMC5805089 DOI: 10.1126/scitranslmed.aah6144] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/03/2017] [Accepted: 03/21/2017] [Indexed: 01/25/2023]
Abstract
Oncogenic fusion events have been identified in a broad range of tumors. Among them, RET rearrangements represent distinct and potentially druggable targets that are recurrently found in lung adenocarcinomas. We provide further evidence that current anti-RET drugs may not be potent enough to induce durable responses in such tumors. We report that potent inhibitors, such as AD80 or ponatinib, that stably bind in the DFG-out conformation of RET may overcome these limitations and selectively kill RET-rearranged tumors. Using chemical genomics in conjunction with phosphoproteomic analyses in RET-rearranged cells, we identify the CCDC6-RETI788N mutation and drug-induced mitogen-activated protein kinase pathway reactivation as possible mechanisms by which tumors may escape the activity of RET inhibitors. Our data provide mechanistic insight into the druggability of RET kinase fusions that may be of help for the development of effective therapies targeting such tumors.
Collapse
|
research-article |
8 |
53 |
15
|
Pfister R, Brägelmann J, Michels G, Wareham NJ, Luben R, Khaw KT. Performance of the CHARGE-AF risk model for incident atrial fibrillation in the EPIC Norfolk cohort. Eur J Prev Cardiol 2014; 22:932-9. [DOI: 10.1177/2047487314544045] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/28/2014] [Indexed: 11/15/2022]
|
|
11 |
50 |
16
|
Dammert MA, Brägelmann J, Olsen RR, Böhm S, Monhasery N, Whitney CP, Chalishazar MD, Tumbrink HL, Guthrie MR, Klein S, Ireland AS, Ryan J, Schmitt A, Marx A, Ozretić L, Castiglione R, Lorenz C, Jachimowicz RD, Wolf E, Thomas RK, Poirier JT, Büttner R, Sen T, Byers LA, Reinhardt HC, Letai A, Oliver TG, Sos ML. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun 2019; 10:3485. [PMID: 31375684 PMCID: PMC6677768 DOI: 10.1038/s41467-019-11371-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/10/2019] [Indexed: 01/06/2023] Open
Abstract
MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
50 |
17
|
Malchers F, Ercanoglu M, Schütte D, Castiglione R, Tischler V, Michels S, Dahmen I, Brägelmann J, Menon R, Heuckmann JM, George J, Ansén S, Sos ML, Soltermann A, Peifer M, Wolf J, Büttner R, Thomas RK. Mechanisms of Primary Drug Resistance in FGFR1-Amplified Lung Cancer. Clin Cancer Res 2017. [PMID: 28630215 DOI: 10.1158/1078-0432.ccr-17-0478] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: The 8p12-p11 locus is frequently amplified in squamous cell lung cancer (SQLC); the receptor tyrosine kinase fibroblast growth factor receptor 1 (FGFR1) being one of the most prominent targets of this amplification. Thus, small molecules inhibiting FGFRs have been employed to treat FGFR1-amplified SQLC. However, only about 11% of such FGFR1-amplified tumors respond to single-agent FGFR inhibition and several tumors exhibited insufficient tumor shrinkage, compatible with the existence of drug-resistant tumor cells.Experimental Design: To investigate possible mechanisms of resistance to FGFR inhibition, we studied the lung cancer cell lines DMS114 and H1581. Both cell lines are highly sensitive to three different FGFR inhibitors, but exhibit sustained residual cellular viability under treatment, indicating a subpopulation of existing drug-resistant cells. We isolated these subpopulations by treating the cells with constant high doses of FGFR inhibitors.Results: The FGFR inhibitor-resistant cells were cross-resistant and characterized by sustained MAPK pathway activation. In drug-resistant H1581 cells, we identified NRAS amplification and DUSP6 deletion, leading to MAPK pathway reactivation. Furthermore, we detected subclonal NRAS amplifications in 3 of 20 (15%) primary human FGFR1-amplified SQLC specimens. In contrast, drug-resistant DMS114 cells exhibited transcriptional upregulation of MET that drove MAPK pathway reactivation. As a consequence, we demonstrate that rational combination therapies resensitize resistant cells to treatment with FGFR inhibitors.Conclusions: We provide evidence for the existence of diverse mechanisms of primary drug resistance in FGFR1-amplified lung cancer and provide a rational strategy to improve FGFR inhibitor therapies by combination treatment. Clin Cancer Res; 23(18); 5527-36. ©2017 AACR.
Collapse
|
Journal Article |
8 |
44 |
18
|
Brägelmann J, Dammert MA, Dietlein F, Heuckmann JM, Choidas A, Böhm S, Richters A, Basu D, Tischler V, Lorenz C, Habenberger P, Fang Z, Ortiz-Cuaran S, Leenders F, Eickhoff J, Koch U, Getlik M, Termathe M, Sallouh M, Greff Z, Varga Z, Balke-Want H, French CA, Peifer M, Reinhardt HC, Örfi L, Kéri G, Ansén S, Heukamp LC, Büttner R, Rauh D, Klebl BM, Thomas RK, Sos ML. Systematic Kinase Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline Carcinoma. Cell Rep 2018; 20:2833-2845. [PMID: 28930680 PMCID: PMC5622049 DOI: 10.1016/j.celrep.2017.08.082] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells. Finally, RNA-seq and ChIP-based analyses reveal a BRD4-NUT-specific CDK9i-induced perturbation of transcriptional elongation. Thus, our data provide a mechanistic basis for the genotype-dependent vulnerability of NMC cells to CDK9i that may be of relevance for the development of targeted therapies for NMC patients.
Collapse
|
Journal Article |
7 |
39 |
19
|
Brägelmann J, Lorenz C, Borchmann S, Nishii K, Wegner J, Meder L, Ostendorp J, Ast DF, Heimsoeth A, Nakasuka T, Hirabae A, Okawa S, Dammert MA, Plenker D, Klein S, Lohneis P, Gu J, Godfrey LK, Forster J, Trajkovic-Arsic M, Zillinger T, Haarmann M, Quaas A, Lennartz S, Schmiel M, D'Rozario J, Thomas ES, Li H, Schmitt CA, George J, Thomas RK, von Karstedt S, Hartmann G, Büttner R, Ullrich RT, Siveke JT, Ohashi K, Schlee M, Sos ML. MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I. Nat Commun 2021; 12:5505. [PMID: 34535668 PMCID: PMC8448826 DOI: 10.1038/s41467-021-25728-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8+ T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients.
Collapse
|
research-article |
4 |
36 |
20
|
Becker F, Joerg V, Hupe MC, Roth D, Krupar R, Lubczyk V, Kuefer R, Sailer V, Duensing S, Kirfel J, Merseburger AS, Brägelmann J, Perner S, Offermann A. Increased mediator complex subunit CDK19 expression associates with aggressive prostate cancer. Int J Cancer 2019; 146:577-588. [PMID: 31271443 DOI: 10.1002/ijc.32551] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022]
Abstract
The Mediator complex is a transcriptional regulator interacting with transcription factors and RNA-polymerase-II. Recently, we identified its subunit CDK19 to be specifically expressed in prostate cancer (PCa) and to be functionally implicated in PCa aggressiveness. Aim of our study was to comprehensively characterize the protein expression of CDK19 and its paralog CDK8 in PCa. We performed immunohistochemistry (IHC) for CDK19/CDK8 on a large cohort including needle biopsies from 202 patients, 799 primary tumor foci of radical prostatectomy specimens from 415 patients, 120 locally advanced tumor foci obtained by palliative transurethral resection, 140 lymph node metastases, 67 distant metastases and 82 benigns. Primary tumors were stained for the proliferation marker Ki67, androgen receptor (AR) and ERG. For 376 patients, clinic-pathologic data were available. Primary endpoint was disease-recurrence-free survival (DFS). Nuclear CDK19 and CDK8 expression increases during progression showing the highest intensity in metastatic and castration-resistant tumors. High CDK19 expression on primary tumors correlates with DFS independently from Gleason grade and PSA. Five-year-DFS rates of patients with primary tumors expressing no, moderate and high CDK19 are 73.7, 56.9 and 30.4%, respectively. CDK19 correlates with Gleason grade, T-stage, Ki67 proliferation-index, nuclear AR expression and ERG-status. Therapeutic options for metastatic and castration-resistant PCa remain limited. In the current study, we confirmed an important role of the Mediator subunit CDK19 in advanced PCa supporting current developments to target CDK19 and its paralog CDK8. Furthermore, CDK19 protein expression has the potential to predict disease recurrence independently from established biomarkers thus contributing to individual management for PCa patients.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
27 |
21
|
Khattri A, Zuo Z, Brägelmann J, Keck MK, El Dinali M, Brown CD, Stricker T, Munagala A, Cohen EEW, Lingen MW, White KP, Vokes EE, Seiwert TY. Rare occurrence of EGFRvIII deletion in head and neck squamous cell carcinoma. Oral Oncol 2014; 51:53-8. [PMID: 25255959 DOI: 10.1016/j.oraloncology.2014.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor and is overexpressed in up to 90% of head and neck squamous cell carcinoma (HNSCC) cases. The EGFR truncation mutation, EGFR variant III (EGFRvIII), harbors an in-frame deletion of exons 2-7 (801 bp) that leads to the constitutive activation of downstream signaling. EGFRvIII has been reported in ∼40% of glioblastomas (GBM), but its presence in HNSCC remains controversial. METHODS EGFRvIII deletion in 638 HNSCC samples was analyzed using: (i) quantitative Real-Time polymerase chain reaction (qRT-PCR) on 108 HNSCC samples with direct detection of the EGFRvIII breakpoint, (ii) RNA-Seq analysis on 7 HNSCC tumor tissues and 425 The Cancer Genome Atlas (TCGA) HNSCC samples, and (iii) immunohistochemistry (IHC) for EGFRvIII using an established antibody (L8A4) on a tissue microarray of 105 HNSCC samples. RESULTS qRT-PCR did not show the presence of EGFRvIII in any of the samples analyzed. Furthermore, we could not detect any EGFRvIII transcripts in the RNA-Seq data of the seven HNSCC samples. However, 2 samples out of 425 TCGA HNSCC samples had EGFRvIII specific reads. EGFRvIII IHC results were assessed as negative for all samples. CONCLUSION Our results firmly establish that EGFRvIII is very rare in HNSCC as only 2 out of 638 (0.31%) samples we analyzed overall, or 2 out of 540 (0.37%) using mRNA based approaches, were positive for EGFRvIII. EGFRvIII is extremely rare in HNSCC and the clinical significance remains unclear. We propose not to include EGFRvIII testing in regular diagnostic tests for HNSCC.
Collapse
|
Journal Article |
11 |
26 |
22
|
von Mässenhausen A, Sanders C, Brägelmann J, Konantz M, Queisser A, Vogel W, Kristiansen G, Duensing S, Schröck A, Bootz F, Brossart P, Kirfel J, Lengerke C, Perner S. Targeting DDR2 in head and neck squamous cell carcinoma with dasatinib. Int J Cancer 2016; 139:2359-69. [PMID: 27434411 DOI: 10.1002/ijc.30279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022]
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is the tenth most common tumor entity in men worldwide. Nevertheless therapeutic options are mostly limited to surgery and radio-chemotherapy resulting in 5-year survival rates of around 50%. Therefore new therapeutic options are urgently needed. During the last years, targeting of receptor tyrosine kinases has emerged as a promising strategy that can complement standard therapeutical approaches. Here, we aimed at investigating if the receptor tyrosine kinase DDR2 is a targetable structure in HNSCC. DDR2 expression was assessed on a large HNSCC cohort (554 patients) including primary tumors, lymph node metastases and recurrences and normal mucosa as control. Subsequently, DDR2 was stably overexpressed in two different cell lines (FaDu and HSC-3) using lentiviral technology. Different tumorigenic properties such as proliferation, migration, invasion, adhesion and anchorage independent growth were assessed with and without dasatinib treatment using in-vitro cell models and in-vivo zebrafish xenografts. DDR2 was overexpressed in all tumor tissues when compared to normal mucosa. DDR2 overexpression led to increased migration, invasion, adhesion and anchorage independent growth whereas proliferation remained unaltered. Upon dasatinib treatment migration, invasion and adhesion could be inhibited in-vitro and in-vivo whereas proliferation was unchanged. Our data suggest treatment with dasatinib as a promising new therapeutic option for patients suffering from DDR2 overexpressing HNSCC. Since dasatinib is already FDA-approved we propose to test this drug in clinical trials so that patients could directly benefit from this new treatment option.
Collapse
|
Journal Article |
9 |
24 |
23
|
Brägelmann J, Barahona Ponce C, Marcelain K, Roessler S, Goeppert B, Gallegos I, Colombo A, Sanhueza V, Morales E, Rivera MT, de Toro G, Ortega A, Müller B, Gabler F, Scherer D, Waldenberger M, Reischl E, Boekstegers F, Garate-Calderon V, Umu SU, Rounge TB, Popanda O, Lorenzo Bermejo J. Epigenome-Wide Analysis of Methylation Changes in the Sequence of Gallstone Disease, Dysplasia, and Gallbladder Cancer. Hepatology 2021; 73:2293-2310. [PMID: 33020926 DOI: 10.1002/hep.31585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Gallbladder cancer (GBC) is a highly aggressive malignancy of the biliary tract. Most cases of GBC are diagnosed in low-income and middle-income countries, and research into this disease has long been limited. In this study we therefore investigate the epigenetic changes along the model of GBC carcinogenesis represented by the sequence gallstone disease → dysplasia → GBC in Chile, the country with the highest incidence of GBC worldwide. APPROACH AND RESULTS To perform epigenome-wide methylation profiling, genomic DNA extracted from sections of formalin-fixed, paraffin-embedded gallbladder tissue was analyzed using Illumina Infinium MethylationEPIC BeadChips. Preprocessed, quality-controlled data from 82 samples (gallstones n = 32, low-grade dysplasia n = 13, high-grade dysplasia n = 9, GBC n = 28) were available to identify differentially methylated markers, regions, and pathways as well as changes in copy number variations (CNVs). The number and magnitude of epigenetic changes increased with disease development and predominantly involved the hypermethylation of cytosine-guanine dinucleotide islands and gene promoter regions. The methylation of genes implicated in Wnt signaling, Hedgehog signaling, and tumor suppression increased with tumor grade. CNVs also increased with GBC development and affected cyclin-dependent kinase inhibitor 2A, MDM2 proto-oncogene, tumor protein P53, and cyclin D1 genes. Gains in the targetable Erb-B2 receptor tyrosine kinase 2 gene were detected in 14% of GBC samples. CONCLUSIONS Our results indicate that GBC carcinogenesis comprises three main methylation stages: early (gallstone disease and low-grade dysplasia), intermediate (high-grade dysplasia), and late (GBC). The identified gradual changes in methylation and CNVs may help to enhance our understanding of the mechanisms underlying this aggressive disease and eventually lead to improved treatment and early diagnosis of GBC.
Collapse
|
|
4 |
24 |
24
|
Laban S, Giebel G, Klümper N, Schröck A, Doescher J, Spagnoli G, Thierauf J, Theodoraki MN, Remark R, Gnjatic S, Krupar R, Sikora AG, Litjens G, Grabe N, Kristiansen G, Bootz F, Schuler PJ, Brunner C, Brägelmann J, Hoffmann TK, Perner S. MAGE expression in head and neck squamous cell carcinoma primary tumors, lymph node metastases and respective recurrences-implications for immunotherapy. Oncotarget 2017; 8:14719-14735. [PMID: 28146422 PMCID: PMC5362438 DOI: 10.18632/oncotarget.14830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/16/2017] [Indexed: 12/01/2022] Open
Abstract
Melanoma associated antigens (MAGE) are potential targets for immunotherapy and have been associated with poor overall survival (OS) in head and neck squamous cell carcinoma (HNSCC). However, little is known about MAGE in lymph node metastases (LNM) and recurrent disease (RD) of HNSCC.To assess whether MAGE expression increases with metastasis or recurrence, a tissue microarray (TMA) of 552 primary tumors (PT), 219 LNM and 75 RD was evaluated by immunohistochemistry for MAGE antigens using three monoclonal antibodies to multiple MAGE family members. Mean expression intensity (MEI) was obtained from triplicates of each tumor specimen.The median MEI compared between PT, LNM and RD was significantly higher in LNM and RD. In paired samples, MEI was comparable in PT to respective LNM, but significantly different from RD. Up to 25% of patients were negative for pan-MAGE or MAGE-A3/A4 in PT, but positive in RD. The prognostic impact of MAGE expression was validated in the TMA cohort and also in TCGA data (mRNA). OS was significantly lower for patients expressing pan-MAGE or MAGE-A3/A4 in both independent cohorts.MAGE expression was confirmed as a prognostic marker in HNSCC and may be important for immunotherapeutic strategies as a shared antigen.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/therapy
- Cohort Studies
- Female
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/therapy
- Humans
- Immunohistochemistry
- Immunotherapy/methods
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- Melanoma-Specific Antigens/genetics
- Melanoma-Specific Antigens/metabolism
- Multivariate Analysis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local
- Outcome Assessment, Health Care/methods
- Outcome Assessment, Health Care/statistics & numerical data
- Prognosis
- Proportional Hazards Models
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
|
research-article |
8 |
19 |
25
|
Brägelmann J, Lorenzo Bermejo J. A comparative analysis of cell-type adjustment methods for epigenome-wide association studies based on simulated and real data sets. Brief Bioinform 2020; 20:2055-2065. [PMID: 30099476 PMCID: PMC6954449 DOI: 10.1093/bib/bby068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 12/26/2022] Open
Abstract
Technological advances and reduced costs of high-density methylation arrays have led to an increasing number of association studies on the possible relationship between human disease and epigenetic variability. DNA samples from peripheral blood or other tissue types are analyzed in epigenome-wide association studies (EWAS) to detect methylation differences related to a particular phenotype. Since information on the cell-type composition of the sample is generally not available and methylation profiles are cell-type specific, statistical methods have been developed for adjustment of cell-type heterogeneity in EWAS. In this study we systematically compared five popular adjustment methods: the factored spectrally transformed linear mixed model (FaST-LMM-EWASher), the sparse principal component analysis algorithm ReFACTor, surrogate variable analysis (SVA), independent SVA (ISVA) and an optimized version of SVA (SmartSVA). We used real data and applied a multilayered simulation framework to assess the type I error rate, the statistical power and the quality of estimated methylation differences according to major study characteristics. While all five adjustment methods improved false-positive rates compared with unadjusted analyses, FaST-LMM-EWASher resulted in the lowest type I error rate at the expense of low statistical power. SVA efficiently corrected for cell-type heterogeneity in EWAS up to 200 cases and 200 controls, but did not control type I error rates in larger studies. Results based on real data sets confirmed simulation findings with the strongest control of type I error rates by FaST-LMM-EWASher and SmartSVA. Overall, ReFACTor, ISVA and SmartSVA showed the best comparable statistical power, quality of estimated methylation differences and runtime.
Collapse
|
Review |
5 |
16 |