1
|
Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJC, Fujiyama A, Harland RM, Taira M, Rokhsar DS. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016; 538:336-343. [PMID: 27762356 PMCID: PMC5313049 DOI: 10.1038/nature19840] [Citation(s) in RCA: 678] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We demonstrate the allotetraploid origin of X. laevis by partitioning its genome into two homeologous subgenomes, marked by distinct families of “fossil” transposable elements. Based on the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged ~34 million years ago (Mya) and combined to form an allotetraploid ~17–18 Mya. 56% of all genes are retained in two homeologous copies. Protein function, gene expression, and the amount of flanking conserved sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
678 |
2
|
Wallingford JB, Rowning BA, Vogeli KM, Rothbächer U, Fraser SE, Harland RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000; 405:81-5. [PMID: 10811222 DOI: 10.1038/35011077] [Citation(s) in RCA: 621] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although cell movements are vital for establishing the normal architecture of embryos, it is unclear how these movements are regulated during development in vertebrates. Inhibition of Xenopus Dishevelled (Xdsh) function disrupts convergent extension movements of cells during gastrulation, but the mechanism of this effect is unclear, as cell fates are not affected. In Drosophila, Dishevelled controls both cell fate and cell polarity, but whether Dishevelled is involved in controlling cell polarity in vertebrate embryos has not been investigated. Here we show, using time-lapse confocal microscopy, that the failure of cells lacking Xdsh function to undergo convergent extension results from defects in cell polarity. Furthermore, Xdsh mutations that inhibit convergent extension correspond to mutations in Drosophila Dishevelled that selectively perturb planar cell polarity. Finally, the localization of Xdsh at the membrane of normal dorsal mesodermal cells is consistent with Xdsh controlling cell polarity. Our results show that polarized cell behaviour is essential for convergent extension and is controlled by vertebrate Dishevelled. Thus, a vertebrate equivalent of the Drosophila planar cell polarity signalling cascade may be required for normal gastrulation.
Collapse
|
|
25 |
621 |
3
|
Wallingford JB, Fraser SE, Harland RM. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev Cell 2002; 2:695-706. [PMID: 12062082 DOI: 10.1016/s1534-5807(02)00197-1] [Citation(s) in RCA: 447] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During development, vertebrate embryos undergo dramatic changes in shape. The lengthening and narrowing of a field of cells, termed convergent extension, contributes to a variety of morphogenetic processes. Focusing on frogs and fish, we review the different cellular mechanisms and the well-conserved signaling pathways that underlie this process.
Collapse
|
Review |
23 |
447 |
4
|
Wan C, Borgeson B, Phanse S, Tu F, Drew K, Clark G, Xiong X, Kagan O, Kwan J, Bezginov A, Chessman K, Pal S, Cromar G, Papoulas O, Ni Z, Boutz DR, Stoilova S, Havugimana PC, Guo X, Malty RH, Sarov M, Greenblatt J, Babu M, Derry WB, Tillier ER, Wallingford JB, Parkinson J, Marcotte EM, Emili A. Panorama of ancient metazoan macromolecular complexes. Nature 2015; 525:339-44. [PMID: 26344197 PMCID: PMC5036527 DOI: 10.1038/nature14877] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Abstract
Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we then generated a draft conservation map consisting of >1 million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering revealed a spectrum of conservation, ranging from ancient Eukaryal assemblies likely serving cellular housekeeping roles for at least 1 billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, by affinity-purification and by functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic significance and adaptive value to animal cell systems.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
391 |
5
|
Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol 2017; 18:375-388. [PMID: 28293032 DOI: 10.1038/nrm.2017.11] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) is an essential feature of animal tissues, whereby distinct polarity is established within the plane of a cell sheet. Tissue-wide establishment of PCP is driven by multiple global cues, including gradients of gene expression, gradients of secreted WNT ligands and anisotropic tissue strain. These cues guide the dynamic, subcellular enrichment of PCP proteins, which can self-assemble into mutually exclusive complexes at opposite sides of a cell. Endocytosis, endosomal trafficking and degradation dynamics of PCP components further regulate planar tissue patterning. This polarization propagates throughout the whole tissue, providing a polarity axis that governs collective morphogenetic events such as the orientation of subcellular structures and cell rearrangements. Reflecting the necessity of polarized cellular behaviours for proper development and function of diverse organs, defects in PCP have been implicated in human pathologies, most notably in severe birth defects.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
390 |
6
|
Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 2008; 40:871-9. [PMID: 18552847 PMCID: PMC2771675 DOI: 10.1038/ng.104] [Citation(s) in RCA: 375] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/28/2008] [Indexed: 02/07/2023]
Abstract
The planar cell polarity (PCP) signaling system governs many aspects of polarized cell behavior. Here, we use an in vivo model of vertebrate mucociliary epithelial development to show that Dishevelled (Dvl) is essential for the apical positioning of basal bodies. We find that Dvl and Inturned mediate the activation of the Rho GTPase specifically at basal bodies, and that these three proteins together mediate the docking of basal bodies to the apical plasma membrane. Moreover, we find that this docking involves a Dvl-dependent association of basal bodies with membrane-bound vesicles and the vesicle-trafficking protein, Sec8. Once docked, basal bodies again require Dvl and Rho for the planar polarization that underlies directional beating of cilia. These results demonstrate previously undescribed functions for PCP signaling components and suggest that a common signaling apparatus governs both apical docking and planar polarization of basal bodies.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
375 |
7
|
Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 2005; 132:4421-36. [PMID: 16192308 DOI: 10.1242/dev.02068] [Citation(s) in RCA: 371] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Dishevelled protein regulates many developmental processes in animals ranging from Hydra to humans. Here, we discuss the various known signaling activities of this enigmatic protein and focus on the biological processes that Dishevelled controls. Through its many signaling activities, Dishevelled plays important roles in the embryo and the adult, ranging from cell-fate specification and cell polarity to social behavior. Dishevelled also has important roles in the governance of polarized cell divisions, in the directed migration of individual cells, and in cardiac development and neuronal structure and function.
Collapse
|
Review |
20 |
371 |
8
|
Wallingford JB, Niswander LA, Shaw GM, Finnell RH. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 2013; 339:1222002. [PMID: 23449594 DOI: 10.1126/science.1222002] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human birth defects are a major public health burden: The Center for Disease Control estimates that 1 of every 33 United States newborns presents with a birth defect, and worldwide the estimate approaches 6% of all births. Among the most common and debilitating of human birth defects are those affecting the formation of the neural tube, the precursor to the central nervous system. Neural tube defects (NTDs) arise from a complex combination of genetic and environmental interactions. Although substantial advances have been made in the prevention and treatment of these malformations, NTDs remain a substantial public health problem, and we are only now beginning to understand their etiology. Here, we review the process of neural tube development and how defects in this process lead to NTDs, both in humans and in the animal models that serve to inform our understanding of these processes. The insights we are gaining will help generate new intervention strategies to tackle the clinical challenges and to alleviate the personal and societal burdens that accompany these defects.
Collapse
|
Review |
12 |
329 |
9
|
Park TJ, Haigo SL, Wallingford JB. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat Genet 2006; 38:303-11. [PMID: 16493421 DOI: 10.1038/ng1753] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 01/23/2006] [Indexed: 01/17/2023]
Abstract
The vertebrate planar cell polarity (PCP) pathway has previously been found to control polarized cell behaviors rather than cell fate. We report here that disruption of Xenopus laevis orthologs of the Drosophila melanogaster PCP effectors inturned (in) or fuzzy (fy) affected not only PCP-dependent convergent extension but also elicited embryonic phenotypes consistent with defective Hedgehog signaling. These defects in Hedgehog signaling resulted from a broad requirement for Inturned and Fuzzy in ciliogenesis. We show that these proteins govern apical actin assembly and thus control the orientation, but not assembly, of ciliary microtubules. Finally, accumulation of Dishevelled and Inturned near the basal apparatus of cilia suggests that these proteins function in a common pathway with core PCP components to regulate ciliogenesis. Together, these data highlight the interrelationships between cell polarity, cellular morphogenesis, signal transduction and cell fate specification.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
308 |
10
|
Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 2006; 133:1767-78. [PMID: 16571627 PMCID: PMC4158842 DOI: 10.1242/dev.02347] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The planar cell polarity (PCP) pathway is conserved throughout evolution, but it mediates distinct developmental processes. In Drosophila, members of the PCP pathway localize in a polarized fashion to specify the cellular polarity within the plane of the epithelium, perpendicular to the apicobasal axis of the cell. In Xenopus and zebrafish, several homologs of the components of the fly PCP pathway control convergent extension. We have shown previously that mammalian PCP homologs regulate both cell polarity and polarized extension in the cochlea in the mouse. Here we show, using mice with null mutations in two mammalian Dishevelled homologs, Dvl1 and Dvl2, that during neurulation a homologous mammalian PCP pathway regulates concomitant lengthening and narrowing of the neural plate, a morphogenetic process defined as convergent extension. Dvl2 genetically interacts with Loop-tail, a point mutation in the mammalian PCP gene Vangl2, during neurulation. By generating Dvl2 BAC (bacterial artificial chromosome) transgenes and introducing different domain deletions and a point mutation identical to the dsh1 allele in fly, we further demonstrated a high degree of conservation between Dvl function in mammalian convergent extension and the PCP pathway in fly. In the neuroepithelium of neurulating embryos, Dvl2 shows DEP domain-dependent membrane localization, a pre-requisite for its involvement in convergent extension. Intriguing, the Loop-tail mutation that disrupts both convergent extension in the neuroepithelium and PCP in the cochlea does not disrupt Dvl2 membrane distribution in the neuroepithelium, in contrast to its drastic effect on Dvl2 localization in the cochlea. These results are discussed in light of recent models on PCP and convergent extension.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
278 |
11
|
Kim SK, Shindo A, Park TJ, Oh EC, Ghosh S, Gray RS, Lewis RA, Johnson CA, Attie-Bittach T, Katsanis N, Wallingford JB. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 2010; 329:1337-40. [PMID: 20671153 DOI: 10.1126/science.1191184] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The planar cell polarity (PCP) signaling pathway governs collective cell movements during vertebrate embryogenesis, and certain PCP proteins are also implicated in the assembly of cilia. The septins are cytoskeletal proteins controlling behaviors such as cell division and migration. Here, we identified control of septin localization by the PCP protein Fritz as a crucial control point for both collective cell movement and ciliogenesis in Xenopus embryos. We also linked mutations in human Fritz to Bardet-Biedl and Meckel-Gruber syndromes, a notable link given that other genes mutated in these syndromes also influence collective cell movement and ciliogenesis. These findings shed light on the mechanisms by which fundamental cellular machinery, such as the cytoskeleton, is regulated during embryonic development and human disease.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
269 |
12
|
Haigo SL, Hildebrand JD, Harland RM, Wallingford JB. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr Biol 2004; 13:2125-37. [PMID: 14680628 DOI: 10.1016/j.cub.2003.11.054] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The morphogenetic events of early vertebrate development generally involve the combined actions of several populations of cells, each engaged in a distinct behavior. Neural tube closure, for instance, involves apicobasal cell heightening, apical constriction at hingepoints, convergent extension of the midline, and pushing by the epidermis. Although a large number of genes are known to be required for neural tube closure, in only a very few cases has the affected cell behavior been identified. For example, neural tube closure requires the actin binding protein Shroom, but the cellular basis of Shroom function and how it influences neural tube closure remain to be elucidated. RESULTS We show here that expression of Shroom is sufficient to organize apical constriction in transcriptionally quiescent, naive epithelial cells but not in non-polarized cells. Shroom-induced apical constriction was associated with enrichment of apically localized actin filaments and required the small GTPase Rap1 but not Rho. Endogenous Xenopus shroom was found to be expressed in cells engaged in apical constriction. Consistent with a role for Shroom in organizing apical constriction, disrupting Shroom function resulted in a specific failure of hingepoint formation, defective neuroepithelial sheet-bending, and failure of neural tube closure. CONCLUSIONS These data demonstrate that Shroom is an essential regulator of apical constriction during neurulation. The finding that a single protein can initiate this process in epithelial cells establishes that bending of epithelial sheets may be patterned during development by the regulation of expression of single genes.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
256 |
13
|
Wallingford JB, Harland RM. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 2002; 129:5815-25. [PMID: 12421719 DOI: 10.1242/dev.00123] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Xenopus, Dishevelled (Xdsh) signaling is required for both neural tube closure and neural convergent extension, but the connection between these two morphogenetic processes remains unclear. Indeed normal neurulation requires several different cell polarity decisions, any of which may require Xdsh signaling. In this paper we address two issues: (1) which aspects of normal neurulation require Xdsh function; and (2) what role convergent extension plays in the closure of the neural tube. We show that Xdsh signaling is not required for neural fold elevation, medial movement or fusion. Disruption of Xdsh signaling therefore provides a specific tool for uncoupling convergent extension from other processes of neurulation. Using disruption of Xdsh signaling, we demonstrate that convergent extension is crucial to tube closure. Targeted injection revealed that Xdsh function was required specifically in the midline for normal neural tube closure. We suggest that the inherent movement of the neural folds can accomplish only a finite amount of medial progress and that convergent extension of the midline is necessary to reduce the distance between the nascent neural folds, allowing them to meet and fuse. Similar results with Xenopus strabismus implicate the planar cell polarity (PCP) signaling cascade in neural convergent extension and tube closure. Together, these data demonstrate that PCP-mediated convergent extension movements are crucial to proper vertebrate neurulation.
Collapse
|
|
23 |
247 |
14
|
Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 2011; 25:201-13. [PMID: 21289065 DOI: 10.1101/gad.2008011] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cilia are important cellular structures that have been implicated in a variety of signaling cascades. In this review, we discuss the current evidence for and against a link between cilia and both the canonical Wnt/β-catenin pathway and the noncanonical Wnt/planar cell polarity (PCP) pathway. Furthermore, we address the evidence implicating a role for PCP components in ciliogenesis. Given the lack of consensus in the field, we use new data on the control of ciliary protein localization as a basis for proposing new models by which cell type-specific regulation of ciliary components via differential transport, regulated entry and exit, or diffusion barriers might generate context-dependent functions for cilia.
Collapse
|
Review |
14 |
244 |
15
|
Abstract
Cilia are microtubule-based projections that serve a wide variety of essential functions in animal cells. Defects in cilia structure or function have recently been found to underlie diverse human diseases. While many eukaryotic cells possess only one or two cilia, some cells, including those of many unicellular organisms, exhibit many cilia. In vertebrates, multiciliated cells are a specialized population of post-mitotic cells decorated with dozens of motile cilia that beat in a polarized and synchronized fashion to drive directed fluid flow across an epithelium. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. Despite their importance, multiciliated cells are relatively poorly studied and we are only beginning to understand the mechanisms underlying their development and function. Here, we review the general phylogeny and physiology of multiciliation and detail our current understanding of the developmental and cellular events underlying the specification, differentiation and function of multiciliated cells in vertebrates.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
228 |
16
|
Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J, Mathieu M, Kirillova I, De Marco P, Merello E, Hayes JM, Wallingford JB, Drapeau P, Capra V, Gros P. Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 2007; 356:1432-7. [PMID: 17409324 DOI: 10.1056/nejmoa060651] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neural-tube defects such as anencephaly and spina bifida constitute a group of common congenital malformations caused by complex genetic and environmental factors. We have identified three mutations in the VANGL1 gene in patients with familial types (V239I and R274Q) and a sporadic type (M328T) of the disease, including a spontaneous mutation (V239I) appearing in a familial setting. In a protein-protein interaction assay V239I abolished interaction of VANGL1 protein with its binding partners, disheveled-1, -2, and -3. These findings implicate VANGL1 as a risk factor in human neural-tube defects.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
220 |
17
|
Wallingford JB. Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 2012; 28:627-53. [PMID: 22905955 DOI: 10.1146/annurev-cellbio-092910-154208] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Planar cell polarity (PCP), the orientation and alignment of cells within a sheet, is a ubiquitous cellular property that is commonly governed by the conserved set of proteins encoded by so-called PCP genes. The PCP proteins coordinate developmental signaling cues with individual cell behaviors in a wildly diverse array of tissues. Consequently, disruptions of PCP protein functions are linked to defects in axis elongation, inner ear patterning, neural tube closure, directed ciliary beating, and left/right patterning, to name only a few. This review attempts to synthesize what is known about PCP and the PCP proteins in vertebrate animals, with a particular focus on the mechanisms by which individual cells respond to PCP cues in order to execute specific cellular behaviors.
Collapse
|
Review |
13 |
186 |
18
|
Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, Finnell RH. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 2009; 11:1225-32. [PMID: 19767740 PMCID: PMC2755648 DOI: 10.1038/ncb1966] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/22/2009] [Indexed: 11/08/2022]
Abstract
The planar cell polarity (PCP) signalling pathway is essential for embryonic development because it governs diverse cellular behaviours, and 'core PCP' proteins, such as Dishevelled and Frizzled, have been extensively characterized. By contrast, the 'PCP effector' proteins, such as Intu and Fuz, remain largely unstudied. These proteins are essential for PCP signalling, but they have never been investigated in mammals and their cell biological activities remain entirely unknown. We report here that Fuz mutant mice show neural tube defects, skeletal dysmorphologies and Hedgehog signalling defects stemming from disrupted ciliogenesis. Using bioinformatics and imaging of an in vivo mucociliary epithelium, we established a central role for Fuz in membrane trafficking, showing that Fuz is essential for trafficking of cargo to basal bodies and to the apical tips of cilia. Fuz is also essential for exocytosis in secretory cells. Finally, we identified a Rab-related small GTPase as a Fuz interaction partner that is also essential for ciliogenesis and secretion. These results are significant because they provide new insights into the mechanisms by which developmental regulatory systems such as PCP signalling interface with fundamental cellular systems such as the vesicle trafficking machinery.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
182 |
19
|
Vize PD, Seufert DW, Carroll TJ, Wallingford JB. Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol 1997; 188:189-204. [PMID: 9268568 DOI: 10.1006/dbio.1997.8629] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most vertebrate organs, once formed, continue to perform the function for which they were generated until the death of the organism. The kidney is a notable exception to this rule. Vertebrates, even those that do not undergo metamorphosis, utilize a progression of more complex kidneys as they grow and develop. This is presumably due to the changing conditions to which the organism must respond to retain what Homer Smith referred to as our physiological freedom. To quote, "Recognizing that we have the kind of blood we have because we have the kind of kidneys we have, we must acknowledge that our kidneys constitute the major foundation of our physiological freedom. Only because they work the way they do has it become possible for us to have bones, muscles, glands, and brains. Superficially, it might be said that the function of the kidneys is to make urine; but in a more considered view one can say that the kidneys make the stuff of philosophy itself" ("From Fish to Philosopher," Little, Brown and Co., Boston, 1953). Different kidneys are used to make the stuff of philosophy at different stages of development depending on the age and needs of the organism, rather than the usual approach of simply making embryonic organs larger as the animal grows. Although evolution has provided the higher vertebrates with complex adult kidneys, they continue to utilize simple kidneys in embryogenesis. In lower vertebrates with simple adult kidneys, even more simple versions are used during early developmental stages. In this review the anatomy, development, and gene expression patterns of the embryonic kidney, the pronephros, will be described and compared to the more complex kidney forms. Despite some differences in anatomy, similar developmental pathways seem to be responsible for the induction and the response to induction in both evanescent and permanent kidney forms. Gene expression patterns can, therefore, be added to the morphological and functional data indicating that all forms of the kidney are closely related structures. Given the similarities between the development of simple and complex kidneys, the embryonic kidneys may be an ideal model system in which to investigate the genesis of multicomponent organ systems.
Collapse
|
Review |
28 |
165 |
20
|
Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, Ma Y, Wallingford JB, Marcotte EM. Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Mol Syst Biol 2017; 13:932. [PMID: 28596423 PMCID: PMC5488662 DOI: 10.15252/msb.20167490] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular protein complexes carry out many of the essential functions of cells, and many genetic diseases arise from disrupting the functions of such complexes. Currently, there is great interest in defining the complete set of human protein complexes, but recent published maps lack comprehensive coverage. Here, through the synthesis of over 9,000 published mass spectrometry experiments, we present hu.MAP, the most comprehensive and accurate human protein complex map to date, containing > 4,600 total complexes, > 7,700 proteins, and > 56,000 unique interactions, including thousands of confident protein interactions not identified by the original publications. hu.MAP accurately recapitulates known complexes withheld from the learning procedure, which was optimized with the aid of a new quantitative metric (k‐cliques) for comparing sets of sets. The vast majority of complexes in our map are significantly enriched with literature annotations, and the map overall shows improved coverage of many disease‐associated proteins, as we describe in detail for ciliopathies. Using hu.MAP, we predicted and experimentally validated candidate ciliopathy disease genes in vivo in a model vertebrate, discovering CCDC138, WDR90, and KIAA1328 to be new cilia basal body/centriolar satellite proteins, and identifying ANKRD55 as a novel member of the intraflagellar transport machinery. By offering significant improvements to the accuracy and coverage of human protein complexes, hu.MAP (http://proteincomplexes.org) serves as a valuable resource for better understanding the core cellular functions of human proteins and helping to determine mechanistic foundations of human disease.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
150 |
21
|
Wallingford JB. Planar cell polarity signaling, cilia and polarized ciliary beating. Curr Opin Cell Biol 2011; 22:597-604. [PMID: 20817501 DOI: 10.1016/j.ceb.2010.07.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 12/27/2022]
Abstract
Planar cell polarity signaling governs a wide array of polarized cell behaviors in animals. Recent reports now show that PCP signaling is essential for the directional beating of motile cilia. Interestingly, PCP signaling acts in a variety of ciliated cell types that use motile cilia to generate directional fluid flow in very different ways. This review will synthesize these recent papers and place them in context with previous studies of PCP signaling in polarized cellular morphogenesis and collective cell movement.
Collapse
|
Review |
14 |
148 |
22
|
Shindo A, Wallingford JB. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science 2014; 343:649-52. [PMID: 24503851 DOI: 10.1126/science.1243126] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite our understanding of actomyosin function in individual migrating cells, we know little about the mechanisms by which actomyosin drives collective cell movement in vertebrate embryos. The collective movements of convergent extension drive both global reorganization of the early embryo and local remodeling during organogenesis. We report here that planar cell polarity (PCP) proteins control convergent extension by exploiting an evolutionarily ancient function of the septin cytoskeleton. By directing septin-mediated compartmentalization of cortical actomyosin, PCP proteins coordinate the specific shortening of mesenchymal cell-cell contacts, which in turn powers cell interdigitation. These data illuminate the interface between developmental signaling systems and the fundamental machinery of cell behavior and should provide insights into the etiology of human birth defects, such as spina bifida and congenital kidney cysts.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
144 |
23
|
Yan D, Wallingford JB, Sun TQ, Nelson AM, Sakanaka C, Reinhard C, Harland RM, Fantl WJ, Williams LT. Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc Natl Acad Sci U S A 2001; 98:3802-7. [PMID: 11274398 PMCID: PMC31133 DOI: 10.1073/pnas.071041898] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic studies have identified Drosophila Naked Cuticle (Nkd) as an antagonist of the canonical Wnt/beta-catenin signaling pathway, but its mechanism of action remains obscure [Zeng, W., Wharton, K. A., Jr., Mack, J. A., Wang, K., Gadbaw, M., et al. (2000) Nature (London) 403, 789--795]. Here we have cloned a cDNA encoding a mammalian homolog of Drosophila Nkd, mNkd, and demonstrated that mNkd interacts directly with Dishevelled. Dishevelled is an intracellular mediator of both the canonical Wnt pathway and planar cell polarity (PCP) pathway. Activation of the c-Jun-N-terminal kinase has been implicated in the PCP pathway. We showed that mNkd acts in a cell-autonomous manner not only to inhibit the canonical Wnt pathway but also to stimulate c-Jun-N-terminal kinase activity. Expression of mNkd disrupted convergent extension in Xenopus, consistent with a role for mNkd in the PCP pathway. These data suggest that mNkd may act as a switch to direct Dishevelled activity toward the PCP pathway, and away from the canonical Wnt pathway.
Collapse
|
research-article |
24 |
139 |
24
|
Wallingford JB, Harland RM. XenopusDishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis. Development 2001; 128:2581-92. [PMID: 11493574 DOI: 10.1242/dev.128.13.2581] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During amphibian development, non-canonical Wnt signals regulate the polarity of intercalating dorsal mesoderm cells during convergent extension. Cells of the overlying posterior neural ectoderm engage in similar morphogenetic cell movements. Important differences have been discerned in the cell behaviors associated with neural and mesodermal cell intercalation, raising the possibility that different mechanisms may control intercalations in these two tissues. In this report, targeted expression of mutants of Xenopus Dishevelled (Xdsh) to neural or mesodermal tissues elicited different defects that were consistent with inhibition of either neural or mesodermal convergent extension. Expression of mutant Xdsh also inhibited elongation of neural tissues in vitro in Keller sandwich explants and in vivo in neural plate grafts. Targeted expression of other Wnt signaling antagonists also inhibited neural convergent extension in whole embryos. In situ hybridization indicated that these defects were not due to changes in cell fate. Examination of embryonic phenotypes after inhibition of convergent extension in different tissues reveals a primary role for mesodermal convergent extension in axial elongation, and a role for neural convergent extension as an equalizing force to produce a straight axis. This study demonstrates that non-canonical Wnt signaling is a common mechanism controlling convergent extension in two very different tissues in the Xenopus embryo and may reflect a general conservation of control mechanisms in vertebrate convergent extension.
Collapse
|
|
24 |
138 |
25
|
Blum M, De Robertis EM, Wallingford JB, Niehrs C. Morpholinos: Antisense and Sensibility. Dev Cell 2016; 35:145-9. [PMID: 26506304 DOI: 10.1016/j.devcel.2015.09.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
For over 15 years, antisense morpholino oligonucleotides (MOs) have allowed developmental biologists to make key discoveries regarding developmental mechanisms in numerous model organisms. Recently, serious concerns have been raised as to the specificity of MO effects, and it has been recommended to discontinue their usage, despite the long experience of the scientific community with the MO tool in thousands of studies. Reviewing the many advantages afforded by MOs, we conclude that adequately controlled MOs should continue to be accepted as generic loss-of-function approach, as otherwise progress in developmental biology will greatly suffer.
Collapse
|
Review |
9 |
135 |