1
|
White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, van Delft MF, Bedoui S, Lessene G, Ritchie ME, Huang DCS, Kile BT. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2015; 159:1549-62. [PMID: 25525874 DOI: 10.1016/j.cell.2014.11.036] [Citation(s) in RCA: 750] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/22/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
Abstract
Activated caspases are a hallmark of apoptosis induced by the intrinsic pathway, but they are dispensable for cell death and the apoptotic clearance of cells in vivo. This has led to the suggestion that caspases are activated not just to kill but to prevent dying cells from triggering a host immune response. Here, we show that the caspase cascade suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis. Bak and Bax trigger the release of mitochondrial DNA. This is recognized by the cGAS/STING-dependent DNA sensing pathway, which initiates IFN production. Activated caspases attenuate this response. Pharmacological caspase inhibition or genetic deletion of caspase-9, Apaf-1, or caspase-3/7 causes dying cells to secrete IFN-β. In vivo, this precipitates an elevation in IFN-β levels and consequent hematopoietic stem cell dysfunction, which is corrected by loss of Bak and Bax. Thus, the apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
750 |
2
|
D'Ambrosio D, Hippen KL, Minskoff SA, Mellman I, Pani G, Siminovitch KA, Cambier JC. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by Fc gamma RIIB1. Science 1995; 268:293-7. [PMID: 7716523 DOI: 10.1126/science.7716523] [Citation(s) in RCA: 431] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coligation of the Fc receptor on B cells, Fc gamma RIIB1, with the B cell antigen receptor (BCR) leads to abortive BCR signaling. Here it was shown that the Fc gamma RIIB1 recruits the phosphotyrosine phosphatase PTP1C after BCR coligation. This association is mediated by the binding of a 13-amino acid tyrosine-phosphorylated sequence to the carboxyl-terminal Src homology 2 domain of PTP1C and activates PTP1C. Inhibitory signaling and PTP1C recruitment are dependent on the presence of the tyrosine within the 13-amino acid sequence. Inhibitory signaling mediated by Fc gamma RIIB1 is deficient in motheaten mice which do not express functional PTP1C. Thus, PTP1C is an effector of BCR-Fc gamma RIIB1 negative signal cooperativity.
Collapse
|
|
30 |
431 |
3
|
Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier J. B cell antigen receptor signaling 101. Mol Immunol 2004; 41:599-613. [PMID: 15219998 DOI: 10.1016/j.molimm.2004.04.008] [Citation(s) in RCA: 420] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
All cells continually survey their environment and make decisions based on cues encountered. This requires specific receptors that detect such cues, then transduce signals that initiate the appropriate responses. B lymphocytes provide an archetypal model for such 'adaptive' cellular responses, where signals transmitted by the B cell Ag-receptor (BCR) influence not only cellular selection, maturation, and survival, but are imperative in generating the ultimate effector function of B cells, i.e. antibody production. While other extracellular stimuli and their cognate receptor signals can also influence B cell development, BCR-mediated signals and the way in which they are integrated and regulated are paramount in defining the cell's physiological fate.
Collapse
|
Review |
21 |
420 |
4
|
Pleiman CM, Hertz WM, Cambier JC. Activation of phosphatidylinositol-3' kinase by Src-family kinase SH3 binding to the p85 subunit. Science 1994; 263:1609-12. [PMID: 8128248 DOI: 10.1126/science.8128248] [Citation(s) in RCA: 362] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Engagement of antigen receptor complexes induces rapid activation of Src-family kinases and association with phosphatidylinositol-3' kinase (PI-3 kinase). Here it was found that the Src homology 3 (SH3) domain of Lyn and Fyn bound to a proline-rich region (residues 84 to 99) within the 85-kilodalton subunit (p85) of PI-3 kinase. The binding of SH3 to the purified kinase led to a five- to sevenfold increase in the specific activity of PI-3 kinase. Ligand-induced receptor stimulation activated PI-3 kinase, and this activation was blocked by a peptide containing residues 84 to 99 of p85. These data demonstrate a mechanism for PI-3 kinase activation and show that binding of SH3 domains to proline-rich target sequences can regulate enzymatic activity.
Collapse
|
|
31 |
362 |
5
|
Cambier JC, Pleiman CM, Clark MR. Signal transduction by the B cell antigen receptor and its coreceptors. Annu Rev Immunol 1994; 12:457-86. [PMID: 8011288 DOI: 10.1146/annurev.iy.12.040194.002325] [Citation(s) in RCA: 312] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
B lymphocyte antigen receptors, membrane immunoglobulins (mIg), function in focusing and internalization of antigen for subsequent presentation to T cells and in transmembrane transduction of signals leading to cell activation, anergy, or deletion. Until quite recently, the ability of this receptor to transduce signals in spite of a virtual lack of cytoplasmic structure, left a significant gap in our understanding of how it is coupled to cytoplasmic signal propagators. Studies conducted during the past five years have defined a mIg-associated protein complex homologous to the CD3 complex associated with the T cell antigen receptor. Components of this disulfide linked heterodimeric complex, Ig-alpha and Ig-beta, contain an approximately 26 residue sequence motif termed ARH1, also known as TAM, which binds to cytoplasmic effectors, including src-family tyrosine kinases, and contains all structural information needed for signal transduction. Receptor associated src-family kinases which are activated following receptor cross-linking, also associate with downstream effectors, including phospholipase C gamma (PLC gamma), p21ras. GTPase activating protein (GAP), phosphatidylinositol 3-kinase (PI3-k) and microtubule associate protein kinase (MAPk2). In some cases, these associations are induced by receptor cross-linking and lead directly to effector activation. The current literature indicates that these interactions may occur in sequence and culminate in the activation of three major pathways of signal propagation including those mediated by PLC gamma, p21ras and PI3-k. This chapter reviews various molecular aspects of the B cell antigen receptor complex, including extended structure of the complex, and receptor-effector interactions and their biologic consequences. Finally, an integrated model of antigen receptor signaling is presented.
Collapse
|
Review |
31 |
312 |
6
|
Cambier JC, Newell MK, Justement LB, McGuire JC, Leach KL, Chen ZZ. Ia binding ligands and cAMP stimulate nuclear translocation of PKC in B lymphocytes. Nature 1987; 327:629-32. [PMID: 3037375 DOI: 10.1038/327629a0] [Citation(s) in RCA: 279] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Altered subcellular distribution and activity of protein kinase C (PKC) is associated with transmembrane signalling in a variety of systems in which receptor occupancy leads to increased hydrolysis of polyphosphoinositides. Here we report evidence that in B lymphocytes, cyclic-cAMP-generating signal transduction pathways can activate translocation of PKC from the cytosol to the nucleus. Elevated cAMP levels and translocation of PKC to the nucleus are induced by antibodies against Ia antigens in normal B lymphocytes. Further, cAMP analogues mediate the translocation of PKC to the nucleus of these cells. These findings suggest that in physiological situations, ligation of B-lymphocyte Ia molecules by helper T cells leads to increased cAMP production which in turn causes PKC translocation to the nucleus. In view of recent observations that antibodies against Ia antigens induce differentiation of B cells, we conclude that nuclear PKC may function in the regulation of gene expression.
Collapse
|
|
38 |
279 |
7
|
Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol 2007; 7:633-43. [PMID: 17641666 PMCID: PMC3714009 DOI: 10.1038/nri2133] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anergy, a condition in which cells persist in the periphery but are unresponsive to antigen, is responsible for silencing many self-reactive B cells. Loss of anergy is known to contribute to the development of autoimmune diseases, including systemic lupus erythematosus and type 1 diabetes. Multiple transgenic mouse models have enabled the dissection of mechanisms that underlie anergy, and recently, anergic B cells have been identified in the periphery of wild-type mice. Heterogeneity of mechanistic concepts developed using model systems has complicated our understanding of anergy and its biological features. In this Review, we compare and contrast the salient features of anergic B cells with a view to developing unifying mechanistic hypotheses that explain their lifestyles.
Collapse
|
Review |
18 |
271 |
8
|
Roehm NW, Leibson HJ, Zlotnik A, Kappler J, Marrack P, Cambier JC. Interleukin-induced increase in Ia expression by normal mouse B cells. J Exp Med 1984; 160:679-94. [PMID: 6432933 PMCID: PMC2187406 DOI: 10.1084/jem.160.3.679] [Citation(s) in RCA: 263] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The constitutive culture supernatant (SN) of the macrophage tumor line P388D1 (P388 SN) and the concanavalin A (Con A)-induced culture supernatant of the T cell hybridoma FS6-14.13 (FS6 Con A SN) were shown to contain nonspecific factors capable of inducing increased Ia expression by normal resting B cells in a dose-dependent manner. In six consecutive experiments the relative increase in Ia expression induced by P388 SN was 4.9 +/- 0.9, with FS6 Con A SN 10.7 +/- 1.5, and with a combination of both preparations 13.0 +/- 1.7. This increase in Ia expression was observed to occur in virtually all the B cells, reaching maximum levels within 24 h of culture. The interleukin-induced increase in B cell Ia expression occurred in the absence of ancillary signals provided by ligand-receptor Ig cross-linking and despite the fact that virtually all the control B cells, cultured in the absence of factors, remained in G0. These results suggest that functional receptors for at least some interleukins are expressed on normal resting B cells and their effects can be manifest in the absence of additional activating signals. The increased Ia expression induced by the nonspecific factor preparations was shown to be correlated with enhanced antigen-presenting capacity by the B cells to T cell hybridomas. The nature of the interleukins responsible for these effects remains to be definitively determined, however, the activity of FS6 Con A SN was shown to correlate with B cell growth factor activity and increased B cell Ia expression was not observed using interleukin 2 (IL-2) or interferon-gamma, prepared by recombinant DNA technology.
Collapse
|
research-article |
41 |
263 |
9
|
Clark MR, Campbell KS, Kazlauskas A, Johnson SA, Hertz M, Potter TA, Pleiman C, Cambier JC. The B cell antigen receptor complex: association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science 1992; 258:123-6. [PMID: 1439759 DOI: 10.1126/science.1439759] [Citation(s) in RCA: 244] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The B cell antigen receptor complex is a hetero-oligomeric structure composed of antigen binding, membrane immunoglobulin, and transducer-transporter substructures. The transducer-transporter substructure is composed of disulfide-linked dimers of immunoglobulin (Ig)-alpha and Ig-beta/gamma subunits that are products of the mb-1(alpha) and B29 (beta/gamma) genes. Although the receptor complex associates with Src family kinases that are activated after receptor ligation, the site of interaction of these and other cytoplasmic effector molecules with receptor subunits is unknown. The cytoplasmic tails of Ig-alpha and Ig-beta chains were found to associate with distinct sets of effector molecules. The Ig-alpha chain cytoplasmic domain bound to the Src family kinases Lyn and Fyn, phosphatidylinositol-3 kinase (PI-3 kinase), and an unidentified 38-kilodalton phosphoprotein; the cytoplasmic tail of Ig-beta bound PI-3 kinase and unidentified 40- and 42-kilodalton phosphoproteins. Binding activity was found to occur within a 26-amino acid sequence of Ig-alpha and Ig-beta that contains a motif [(Asp or Glu)-(any amino acid)7-(Asp or Glu)-Tyr-(any amino acid)3-Leu-(any amino acid)7-Tyr-(any amino acid)2-(Leu or Ile)] previously implicated in signal transduction via other receptors including the Fc epsilon receptor I and the T cell antigen receptor. These findings indicate that the subunits act independently to activate distinct second messenger pathways.
Collapse
|
|
33 |
244 |
10
|
|
Review |
38 |
242 |
11
|
Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, Perraud AL, Cambier JC, Lenz LL. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. THE JOURNAL OF IMMUNOLOGY 2011; 187:2595-601. [PMID: 21813776 DOI: 10.4049/jimmunol.1100088] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclic-di-GMP and cyclic-di-AMP are second messengers produced by bacteria and influence bacterial cell survival, differentiation, colonization, biofilm formation, virulence, and bacteria-host interactions. In this study, we show that in both RAW264.7 macrophage cells and primary bone marrow-derived macrophages, the production of IFN-β and IL-6, but not TNF, in response to cyclic-di-AMP and cyclic-di-GMP requires MPYS (also known as STING, MITA, and TMEM173). Furthermore, expression of MPYS was required for IFN response factor 3 but not NF-κB activation in response to these bacterial metabolites. We also confirm that MPYS is required for type I IFN production by cultured macrophages infected with the intracellular pathogens Listeria monocytogenes and Francisella tularensis. However, during systemic infection with either pathogen, MPYS deficiency did not impact bacterial burdens in infected spleens. Serum IFN-β and IL-6 concentrations in the infected control and MPYS(-/-) mice were also similar at 24 h postinfection, suggesting that these pathogens stimulate MPYS-independent cytokine production during in vivo infection. Our findings indicate that bifurcating MPYS-dependent and -independent pathways mediate sensing of cytosolic bacterial infections.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
232 |
12
|
Willer JC, Dehen H, Cambier J. Stress-induced analgesia in humans: endogenous opioids and naloxone-reversible depression of pain reflexes. Science 1981; 212:689-91. [PMID: 6261330 DOI: 10.1126/science.6261330] [Citation(s) in RCA: 225] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cumulative effects of a repetitive stress induced by anticipation of pain (noxious foot shock) were studied on the threshold of a nociceptive flexion reflex of the lower limb. The threshold of the nociceptive reflex progressively increased with the repetition of the stress. This effect was reversed by naloxone, which even produced hyperalgesia, since a rapid and significant decrease in this threshold, below the initial values, was noted. Tha data provide evidence for involvement of endogenous opioids in the phenomenon of stress-induced analgesia in normal man.
Collapse
|
|
44 |
225 |
13
|
Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, Cambier JC. Identification of Anergic B Cells within a Wild-Type Repertoire. Immunity 2006; 25:953-62. [PMID: 17174121 DOI: 10.1016/j.immuni.2006.10.017] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/30/2006] [Accepted: 10/23/2006] [Indexed: 01/10/2023]
Abstract
The contribution of anergy to silencing of autoreactive B cells in physiologic settings is unknown. By comparing anergic and nonanergic immunoglobulin-transgenic mouse strains, we defined a set of surface markers that were used for presumptive identification of an anergic B cell cohort within a normal repertoire. Like anergic transgenic B cells, these physiologic anergic cells exhibited high basal intracellular free calcium and did not mobilize calcium, initiate tyrosine phosphorylation, proliferate, upregulate activation markers, or mount an immune response upon antigen-receptor stimulation. Autoreactive B cells were overrepresented in this cohort. On the basis of the frequency and lifespan of these cells, it appears that as many as 50% of newly produced B cells are destined to become anergic. In conclusion, our findings indicate that anergy is probably the primary mechanism by which autoreactive B cells are silenced. Thus maintenance of the unresponsiveness of anergic cells is critical for prevention of autoimmunity.
Collapse
|
|
19 |
222 |
14
|
Khalil AM, Cambier JC, Shlomchik MJ. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 2012; 336:1178-81. [PMID: 22555432 PMCID: PMC3777391 DOI: 10.1126/science.1213368] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Germinal centers (GCs) generate memory B and plasma cells, which are essential for long-lived humoral immunity. GC B cells with high-affinity B cell receptors (BCRs) are selectively expanded. To enable this selection, BCRs of such cells are thought to signal differently from those with lower affinity. We show that, surprisingly, most proliferating GC B cells did not demonstrate active BCR signaling. Rather, spontaneous and induced signaling was limited by increased phosphatase activity. Accordingly, both SH2 domain-containing phosphatase-1 (SHP-1) and SH2 domain-containing inositol 5 phosphatase were hyperphosphorylated in GC cells and remained colocalized with BCRs after ligation. Furthermore, SHP-1 was required for GC maintenance. Intriguingly, GC B cells in the cell-cycle G(2) period regained responsiveness to BCR stimulation. These data have implications for how higher-affinity B cells are selected in the GC.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
222 |
15
|
Ott VL, Cambier JC, Kappler J, Marrack P, Swanson BJ. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat Immunol 2003; 4:974-81. [PMID: 12949532 DOI: 10.1038/ni971] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 07/31/2003] [Indexed: 11/08/2022]
Abstract
Studies in both humans and rodents indicate that CD8+ T cells may be important in allergic inflammation. However, neither the mechanisms that mediate CD8+ T cell recruitment to inflamed tissues nor the relative participation of effector and central memory CD8+ T cells is known. Here we report that activated mast cells induced chemotaxis of effector, but not central memory, CD8+ T cells through production of leukotriene B4 (LTB4). These studies indicate that LTB4 production by activated peripheral leukocytes could be important for the recruitment of effector CD8+ T cells to sites of inflammation.
Collapse
|
|
22 |
222 |
16
|
Kerur N, Fukuda S, Banerjee D, Kim Y, Fu D, Apicella I, Varshney A, Yasuma R, Fowler BJ, Baghdasaryan E, Marion KM, Huang X, Yasuma T, Hirano Y, Serbulea V, Ambati M, Ambati VL, Kajiwara Y, Ambati K, Hirahara S, Bastos-Carvalho A, Ogura Y, Terasaki H, Oshika T, Kim KB, Hinton DR, Leitinger N, Cambier JC, Buxbaum JD, Kenney MC, Jazwinski SM, Nagai H, Hara I, West AP, Fitzgerald KA, Sadda SR, Gelfand BD, Ambati J. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat Med 2017; 24:50-61. [PMID: 29176737 PMCID: PMC5760363 DOI: 10.1038/nm.4450] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Geographic atrophy is a blinding form of age-related macular degeneration characterized by death of the retinal pigmented epithelium (RPE). In this disease, the RPE displays evidence of DICER1 deficiency, resultant accumulation of endogenous Alu retroelement RNA, and NLRP3 inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human cell culture and in mouse models is driven by a non-canonical inflammasome pathway that results in activation of caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-β (IFN-β) production and gasdermin D-dependent interleukin-18 (IL-18) secretion. Reduction of DICER1 levelsor accumulation of Alu RNA triggers cytosolic escape of mitochondrial DNA, which engages cGAS. Moreover, caspase-4, gasdermin D, IFN-β, and cGAS levels are elevated in the RPE of human eyes with geographic atrophy. Collectively, these data highlight an unexpected role for cGAS in responding to mobile element transcripts, reveal cGAS-driven interferon signaling as a conduit for mitochondrial damage-induced inflammasome activation, expand the immune sensing repertoire of cGAS and caspase-4 to non-infectious human disease, and identify new potential targets for treatment of a major cause of blindness.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
220 |
17
|
Pani G, Kozlowski M, Cambier JC, Mills GB, Siminovitch KA. Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling. J Exp Med 1995; 181:2077-84. [PMID: 7539038 PMCID: PMC2192043 DOI: 10.1084/jem.181.6.2077] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent data implicating loss of PTP1C tyrosine phosphatase activity in the genesis of the multiple hemopoietic cell defects found in systemic autoimmune/immunodeficient motheaten (me) and viable motheaten (mev) mice suggest that PTP1C plays an important role in modulating intracellular signaling events regulating cell activation and differentiation. To begin elucidating the role for this cytosolic phosphatase in lymphoid cell signal transduction, we have examined early signaling events and mitogenic responses induced by B cell antigen receptor (BCR) ligation in me and mev splenic B cells and in CD5+ CH12 lymphoma cells, which represent the lymphoid population amplified in motheaten mice. Despite their lack of functional PTP1C, me and mev B cells proliferated normally in response to LPS. However, compared with wild-type B cells, cells from the mutant mice were hyperresponsive to normally submitogenic concentrations of F(ab')2 anti-Ig antibody, and they exhibited reduced susceptibility to the inhibitory effects of Fc gamma IIRB cross-linking on BCR-induced proliferation. Additional studies of unstimulated CH12 and wild-type splenic B cells revealed the constitutive association of PTP1C with the resting BCR complex, as evidenced by coprecipitation of PTP1C protein and phosphatase activity with BCR components and the depletion of BCR-associated tyrosine phosphatase activity by anti-PTP1C antibodies. These results suggest a role for PTP1C in regulating the tyrosine phosphorylation state of the resting BCR complex components, a hypothesis supported by the observation that PTP1C specifically induces dephosphorylation of a 35-kD BCR-associated protein likely representing Ig-alpha. In contrast, whereas membrane Ig cross-linking was associated with an increase in the tyrosine phosphorylation of PTP1C and an approximately 140-kD coprecipitated protein, PTP1C was no longer detected in the BCR complex after receptor engagement, suggesting that PTP1C dissociates from the activated receptor complex. Together these results suggest a critical role for PTP1C in modulating BCR signaling capacity, and they indicate that the PTP1C influence on B cell signaling is likely to be realized in both resting and activated cells.
Collapse
|
research-article |
30 |
217 |
18
|
Justement LB, Campbell KS, Chien NC, Cambier JC. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science 1991; 252:1839-42. [PMID: 1648262 DOI: 10.1126/science.1648262] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD45 is a member of a family of membrane proteins that possess phosphotyrosine phosphatase activity, and is the source of much of the tyrosine phosphatase activity in lymphocytes. In view of its enzymatic activity and high copy number, it seems likely that CD45 functions in transmembrane signal transduction by lymphocyte receptors that are coupled to activation of tyrosine kinases. The B cell antigen receptor was found to transduce a Ca(2+)-mobilizing signal only if cells expressed CD45. Also, both membrane immunoglobulin M (mIgM) and CD45 were lost from the surface of cells treated with antibody to CD45, suggesting a physical interaction between these proteins. Finally, CD45 dephosphorylated a complex of mIg-associated proteins that appears to function in signal transduction by the antigen receptor. These data indicate that CD45 occurs as a component of a complex of proteins associated with the antigen receptor, and that CD45 may regulate signal transduction by modulating the phosphorylation state of the antigen receptor subunits.
Collapse
|
|
34 |
216 |
19
|
Kurosaki T, Johnson SA, Pao L, Sada K, Yamamura H, Cambier JC. Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling. J Exp Med 1995; 182:1815-23. [PMID: 7500027 PMCID: PMC2192262 DOI: 10.1084/jem.182.6.1815] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To explore the mechanism(s) by which the Syk protein tyrosine kinase participates in B cell antigen receptor (BCR) signaling, we have studied the function of various Syk mutants in B cells made Syk deficient by homologous recombination knockout. Both Syk SH2 domains were required for BCR-mediated Syk and phospholipase C (PLC)-gamma 2 phosphorylation, inositol 1,4,5-triphosphate release, and Ca2+ mobilization. A possible explanation for this requirement was provided by findings that recruitment of Syk to tyrosine-phosphorylated immunoglobulin (Ig) alpha and Ig beta requires both Syk SH2 domains. A Syk mutant in which the putative autophosphorylation site (Y518/Y519) of Syk was changed to phenylalanine was also defective in signal transduction; however, this mutation did not affect recruitment to the phosphorylated immunoreceptor family tyrosine-based activation motifs (ITAMs). These findings not only confirm that both SH2 domains are necessary for Syk binding to tyrosine-phosphorylated Ig alpha and Ig beta but indicate that this binding is necessary for Syk (Y518/519) phosphorylation after BCR ligation. This sequence of events is apparently required for coupling the BCR to most cellular protein tyrosine phosphorylation, to the phosphorylation and activation of PLC-gamma 2, and to Ca2+ mobilization.
Collapse
|
research-article |
30 |
208 |
20
|
|
Letter |
30 |
200 |
21
|
Gauld SB, Dal Porto JM, Cambier JC. B cell antigen receptor signaling: roles in cell development and disease. Science 2002; 296:1641-2. [PMID: 12040177 DOI: 10.1126/science.1071546] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signals propagated through the B cell antigen receptor (BCR) are vital for the development and survival of B lymphocytes in both the bone marrow and the periphery. These signals not only guide maturation and activation but also affect the removal of potentially self-reactive B lymphocytes. Interestingly, these signals are known to be either ligand-independent ("tonic" signals) or induced by ligand (antigen) binding to the BCR. We focus on the problems that occur in B cell development due to defects in signals emanating from the BCR. In addition, we present the B Cell Antigen Receptor Pathway, an STKE Connections Map that illustrates the events involved in B cell signaling.
Collapse
|
Review |
23 |
191 |
22
|
Tamir I, Stolpa JC, Helgason CD, Nakamura K, Bruhns P, Daeron M, Cambier JC. The RasGAP-binding protein p62dok is a mediator of inhibitory FcgammaRIIB signals in B cells. Immunity 2000; 12:347-58. [PMID: 10755621 DOI: 10.1016/s1074-7613(00)80187-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The low affinity receptor for IgG, FcgammaRIIB, functions to dampen the antibody response and reduce the risk of autoimmunity. This function is reportedly mediated in part by inhibition of B cell antigen receptor (BCR)-mediated p21ras activation, though the basis of this inhibition is unknown. We show here that FcgammaRIIB-BCR coaggregation leads to increased tyrosine phosphorylation of the RasGAP-binding protein p62dok, with a concomitant increase in its binding to RasGAP. These effects require the recruitment and tyrosine phosphorylation of the phosphatidylinositol 5-phosphatase SHIP, which further recruits p62dok via the latter's phosphotyrosine-binding domain. Using chimeric FcgammaRIIB containing the RasGAP-binding domain of p62dok, we demonstrate that p62dok contains all structural information required to mediate the inhibitory effect of FcgammaRIIB on Erk activation.
Collapse
|
|
25 |
190 |
23
|
Roehm N, Herron L, Cambier J, DiGuisto D, Haskins K, Kappler J, Marrack P. The major histocompatibility complex-restricted antigen receptor on T cells: distribution on thymus and peripheral T cells. Cell 1984; 38:577-84. [PMID: 6331891 DOI: 10.1016/0092-8674(84)90512-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A monoclonal antibody, KJ16-133, which binds to antigen-specific, major histocompatibility complex-restricted (Ag/MHC) receptors on about 20% of BALB/c peripheral T cells has been used to examine the expression of these receptors on thymocytes and different subpopulations of peripheral T cells. Although KJ16-133-reactive receptors were found on mature thymocytes at similar frequencies and levels as on peripheral T cells, these molecules were absent from the first cells to enter the thymus, and in less mature thymocyte populations KJ16-133-reactive cells were less frequent than in the periphery and bore lower quantities of receptor. These results showed that Ag/MHC receptors are present on the surfaces of immature thymocytes, albeit at variable levels, during the time that the repertoire of these cells for Ag/MHC is thought to be selected. Additional experiments showed that KJ16-133 could not be used to distinguish T-cell receptors with different restriction specificities, i.e., for Class I or Class II products of the MHC.
Collapse
|
|
41 |
186 |
24
|
Melamed D, Benschop RJ, Cambier JC, Nemazee D. Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 1998; 92:173-82. [PMID: 9458042 DOI: 10.1016/s0092-8674(00)80912-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
B lymphocyte development is a highly ordered process that involves immunoglobulin gene rearrangements, antigen receptor expression, and a learning process that minimizes the development of cells with reactivity to self tissue. Two distinct mechanisms for immune tolerance have been defined that operate during early bone marrow stages of B cell development: apoptosis, which eliminates clones of cells, and receptor editing, which spares the cells but genetically reprograms their autoreactive antigen receptors through nested immunoglobulin L chain gene rearrangements. We show here that sensitivity to antigen-induced apoptosis arises relatively late in B cell development and is preceded by a functionally distinct developmental stage capable of receptor editing. This regulation compartmentalizes clonal selection from receptor selection.
Collapse
|
|
27 |
183 |
25
|
Jordan MB, Mills DM, Kappler J, Marrack P, Cambier JC. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 2004; 304:1808-10. [PMID: 15205534 DOI: 10.1126/science.1089926] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure of naïve B cells to the cytokine interleukin-4 (IL-4) and/or antigen leads to a state of "priming," in which subsequent aggregation of major histocompatibility complex class II molecules induces the mobilization of calcium ions and cell proliferation. However, it is not clear how critical this priming is for immune responses or how it is normally induced in vivo. Injection of mice with the commonly used adjuvant alum led to priming of splenic B cells and to the accumulation in the spleen of a previously unknown population of IL-4-producing, Gr1+ cells. These cells and IL-4 were both required for in vivo priming and expansion of antigen-specific B cells, as well as for optimal production of antibody. These studies reveal a key role for a previously unknown accessory myeloid cell population in the generation of humoral immune responses.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
177 |