1
|
Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, Peiris M, Yen HL. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020; 583:834-838. [PMID: 32408338 PMCID: PMC7394720 DOI: 10.1038/s41586-020-2342-5] [Citation(s) in RCA: 1033] [Impact Index Per Article: 206.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022]
|
Research Support, Non-U.S. Gov't |
5 |
1033 |
2
|
Nicholls JM, Poon LLM, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, Yan KW, Chan KH, Tsang NC, Guan Y, Yuen KY, Malik Peiris JS. Lung pathology of fatal severe acute respiratory syndrome. Lancet 2003; 361:1773-8. [PMID: 12781536 PMCID: PMC7112492 DOI: 10.1016/s0140-6736(03)13413-7] [Citation(s) in RCA: 861] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome (SARS) is a novel infectious disease with global impact. A virus from the family Coronaviridae has been identified as the cause, but the pathogenesis is still unclear. METHODS Post-mortem tissue samples from six patients who died from SARS in February and March, 2003, and an open lung biopsy from one of these patients were studied by histology and virology. Only one full autopsy was done. Evidence of infection with the SARS-associated coronavirus (SARS-CoV) and human metapneumovirus was sought by reverse-transcriptase PCR and serology. Pathological samples were examined by light and electron microscopy and immunohistochemistry. FINDINGS All six patients had serological evidence of recent infection with SARS-CoV. Diffuse alveolar damage was common but not universal. Morphological changes identified were bronchial epithelial denudation, loss of cilia, and squamous metaplasia. Secondary bacterial pneumonia was present in one case. A giant-cell infiltrate was seen in four patients, with a pronounced increase in macrophages in the alveoli and the interstitium of the lung. Haemophagocytosis was present in two patients. The alveolar pneumocytes also showed cytomegaly with granular amphophilic cytoplasm. The patient for whom full autopsy was done had atrophy of the white pulp of the spleen. Electron microscopy revealed viral particles in the cytoplasm of epithelial cells corresponding to coronavirus. INTERPRETATION SARS is associated with epithelial-cell proliferation and an increase in macrophages in the lung. The presence of haemophagocytosis supports the contention that cytokine dysregulation may account, at least partly, for the severity of the clinical disease. The case definition of SARS should acknowledge the range of lung pathology associated with this disease.
Collapse
|
Case Reports |
22 |
861 |
3
|
Peiris JSM, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST, Lim WL, Yuen KY, Guan Y. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 2004; 363:617-9. [PMID: 14987888 PMCID: PMC7112424 DOI: 10.1016/s0140-6736(04)15595-5] [Citation(s) in RCA: 590] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human disease associated with influenza A subtype H5N1 re-emerged in January, 2003, for the first time since an outbreak in Hong Kong in 1997. Patients with H5N1 disease had unusually high serum concentrations of chemokines (eg, interferon induced protein-10 [IP-10] and monokine induced by interferon gamma [MIG]). Taken together with a previous report that H5N1 influenza viruses induce large amounts of proinflammatory cytokines from macrophage cultures in vitro, our findings suggest that cytokine dysfunction contributes to the pathogenesis of H5N1 disease. Development of vaccines against influenza A (H5N1) virus should be made a priority.
Collapse
|
research-article |
21 |
590 |
4
|
Chan MCW, Cheung CY, Chui WH, Tsao SW, Nicholls JM, Chan YO, Chan RWY, Long HT, Poon LLM, Guan Y, Peiris JSM. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir Res 2005; 6:135. [PMID: 16283933 PMCID: PMC1318487 DOI: 10.1186/1465-9921-6-135] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 11/11/2005] [Indexed: 11/18/2022] Open
Abstract
Background Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10). Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97) (H5N1/97) were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a) and chemokines (e.g. IP-10) from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells. Methods We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97), A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04) with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro. Results We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted) and interleukin 6 (IL-6) in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04) appeared to be even more potent at inducing IP-10 than H5N1/97 virus. Conclusion The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
381 |
5
|
Hui KPY, Cheung MC, Perera RAPM, Ng KC, Bui CHT, Ho JCW, Ng MMT, Kuok DIT, Shih KC, Tsao SW, Poon LLM, Peiris M, Nicholls JM, Chan MCW. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. THE LANCET. RESPIRATORY MEDICINE 2020; 8:687-695. [PMID: 32386571 PMCID: PMC7252187 DOI: 10.1016/s2213-2600(20)30193-4] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019, causing a respiratory disease (coronavirus disease 2019, COVID-19) of varying severity in Wuhan, China, and subsequently leading to a pandemic. The transmissibility and pathogenesis of SARS-CoV-2 remain poorly understood. We evaluate its tissue and cellular tropism in human respiratory tract, conjunctiva, and innate immune responses in comparison with other coronavirus and influenza virus to provide insights into COVID-19 pathogenesis. METHODS We isolated SARS-CoV-2 from a patient with confirmed COVID-19, and compared virus tropism and replication competence with SARS-CoV, Middle East respiratory syndrome-associated coronavirus (MERS-CoV), and 2009 pandemic influenza H1N1 (H1N1pdm) in ex-vivo cultures of human bronchus (n=5) and lung (n=4). We assessed extrapulmonary infection using ex-vivo cultures of human conjunctiva (n=3) and in-vitro cultures of human colorectal adenocarcinoma cell lines. Innate immune responses and angiotensin-converting enzyme 2 expression were investigated in human alveolar epithelial cells and macrophages. In-vitro studies included the highly pathogenic avian influenza H5N1 virus (H5N1) and mock-infected cells as controls. FINDINGS SARS-CoV-2 infected ciliated, mucus-secreting, and club cells of bronchial epithelium, type 1 pneumocytes in the lung, and the conjunctival mucosa. In the bronchus, SARS-CoV-2 replication competence was similar to MERS-CoV, and higher than SARS-CoV, but lower than H1N1pdm. In the lung, SARS-CoV-2 replication was similar to SARS-CoV and H1N1pdm, but was lower than MERS-CoV. In conjunctiva, SARS-CoV-2 replication was greater than SARS-CoV. SARS-CoV-2 was a less potent inducer of proinflammatory cytokines than H5N1, H1N1pdm, or MERS-CoV. INTERPRETATION The conjunctival epithelium and conducting airways appear to be potential portals of infection for SARS-CoV-2. Both SARS-CoV and SARS-CoV-2 replicated similarly in the alveolar epithelium; SARS-CoV-2 replicated more extensively in the bronchus than SARS-CoV. These findings provide important insights into the transmissibility and pathogenesis of SARS-CoV-2 infection and differences with other respiratory pathogens. FUNDING US National Institute of Allergy and Infectious Diseases, University Grants Committee of Hong Kong Special Administrative Region, China; Health and Medical Research Fund, Food and Health Bureau, Government of Hong Kong Special Administrative Region, China.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
377 |
6
|
Law HKW, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, Nicholls JM, Peiris JSM, Lau YL. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 2005; 106:2366-74. [PMID: 15860669 PMCID: PMC1895271 DOI: 10.1182/blood-2004-10-4166] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 04/19/2005] [Indexed: 02/08/2023] Open
Abstract
Lymphopenia and increasing viral load in the first 10 days of severe acute respiratory syndrome (SARS) suggested immune evasion by SARS-coronavirus (CoV). In this study, we focused on dendritic cells (DCs) which play important roles in linking the innate and adaptive immunity. SARS-CoV was shown to infect both immature and mature human monocyte-derived DCs by electron microscopy and immunofluorescence. The detection of negative strands of SARS-CoV RNA in DCs suggested viral replication. However, no increase in viral RNA was observed. Using cytopathic assays, no increase in virus titer was detected in infected DCs and cell-culture supernatant, confirming that virus replication was incomplete. No induction of apoptosis or maturation was detected in SARS-CoV-infected DCs. The SARS-CoV-infected DCs showed low expression of antiviral cytokines (interferon alpha [IFN-alpha], IFN-beta, IFN-gamma, and interleukin 12p40 [IL-12p40]), moderate up-regulation of proinflammatory cytokines (tumor necrosis factor alpha [TNF-alpha] and IL-6) but significant up-regulation of inflammatory chemokines (macrophage inflammatory protein 1alpha [MIP-1alpha], regulated on activation normal T cell expressed and secreted [RANTES]), interferon-inducible protein of 10 kDa [IP-10], and monocyte chemoattractant protein 1 [MCP-1]). The lack of antiviral cytokine response against a background of intense chemokine up-regulation could represent a mechanism of immune evasion by SARS-CoV.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
368 |
7
|
Nicholls JM, Chan MCW, Chan WY, Wong HK, Cheung CY, Kwong DLW, Wong MP, Chui WH, Poon LLM, Tsao SW, Guan Y, Peiris JSM. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med 2007; 13:147-9. [PMID: 17206149 DOI: 10.1038/nm1529] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 12/04/2006] [Indexed: 02/04/2023]
Abstract
Poor human-to-human transmission of influenza A H5N1 virus has been attributed to the paucity of putative sialic acid alpha2-3 virus receptors in the epithelium of the human upper respiratory tract, and thus to the presumed inability of the virus to replicate efficiently at this site. We now demonstrate that ex vivo cultures of human nasopharyngeal, adenoid and tonsillar tissues can be infected with H5N1 viruses in spite of an apparent lack of these receptors.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
255 |
8
|
Nicholls JM, Bourne AJ, Chen H, Guan Y, Peiris JSM. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir Res 2007; 8:73. [PMID: 17961210 PMCID: PMC2169242 DOI: 10.1186/1465-9921-8-73] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 10/25/2007] [Indexed: 12/02/2022] Open
Abstract
Background Influenza virus binds to cell receptors via sialic acid (SA) linked glycoproteins. They recognize SA on host cells through their haemagglutinins (H). The distribution of SA on cell surfaces is one determinant of host tropism and understanding its expression on human cells and tissues is important for understanding influenza pathogenesis. The objective of this study therefore was to optimize the detection of α2,3-linked and α2,6-linked SA by lectin histochemistry by investigating the binding of Sambucus nigra agglutinin (SNA) for SAα2,6Gal and Maackia amurensis agglutinin (MAA) for SAα2,3Gal in the respiratory tract of normal adults and children. Methods We used fluorescent and biotinylated SNA and MAA from different suppliers on archived and prospectively collected biopsy and autopsy specimens from the nasopharynx, trachea, bronchus and lungs of fetuses, infants and adults. We compared different methods of unmasking for tissue sections to determine if these would affect lectin binding. Using serial sections we then compared the lectin binding of MAA from different suppliers. Results We found that unmasking using microwave treatment in citrate buffer produced increased lectin binding to the ciliated and glandular epithelium of the respiratory tract. In addition we found that there were differences in tissue distribution of the α2,3 linked SA when 2 different isoforms of MAA (MAA1 and MAA2) lectin were used. MAA1 had widespread binding throughout the upper and lower respiratory tract and showed more binding to the respiratory epithelium of children than in adults. By comparison, MAA2 binding was mainly restricted to the alveolar epithelial cells of the lung with weak binding to goblet cells. SNA binding was detected in bronchial and alveolar epithelial cells and binding of this lectin was stronger to the paediatric epithelium compared to adult epithelium. Furthermore, the MAA lectins from 2 suppliers (Roche and EY Labs) tended to only bind in a pattern similar to MAA1 (Vector Labs) and produced a different binding pattern to MAA2 from Vector Labs. Conclusion The lectin binding pattern of MAA may vary depending on the supplier and the different isoforms of MAA show a different tissue distribution in the respiratory tract. This finding is important if conclusions about the potential binding sites of SAα2,3 binding viruses, such as influenza or human parainfluenza are to be made.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
233 |
9
|
Walther T, Karamanska R, Chan RWY, Chan MCW, Jia N, Air G, Hopton C, Wong MP, Dell A, Malik Peiris JS, Haslam SM, Nicholls JM. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog 2013; 9:e1003223. [PMID: 23516363 PMCID: PMC3597497 DOI: 10.1371/journal.ppat.1003223] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia) acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses. This study was performed to determine what possible glycan receptors for influenza were present in the human respiratory tract. We compared the glycans present on existing published glycan arrays with the actual glycans identified in the human respiratory tract by mass spectrometric analysis to determine how representative these arrays would be for potential binding. The most comprehensive array to date only contained approximately half the range of the actual glycans present. Over the past 5 years we have performed ex-vivo infection of 113 bronchial and 185 lung samples with seasonal, avian and swine influenza viruses, and have demonstrated that the lung is able to be infected by all types of influenza viruses but that the bronchus can also be infected by a limited range of avian, swine and seasonal viruses. The key findings are that there is wide spectrum of glycans present in the respiratory tract which can be used by influenza viruses for infection, and the currently available arrays are not predictive of successful infection. Our findings will be of use for researchers in developing more comprehensive and focused arrays for the screening of emerging influenza viruses and bacteria in order to determine their potential threat to humans.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
208 |
10
|
Uiprasertkul M, Puthavathana P, Sangsiriwut K, Pooruk P, Srisook K, Peiris M, Nicholls JM, Chokephaibulkit K, Vanprapar N, Auewarakul P. Influenza A H5N1 replication sites in humans. Emerg Infect Dis 2005; 11:1036-41. [PMID: 16022777 PMCID: PMC3371815 DOI: 10.3201/eid1107.041313] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tissue tropism and pathogenesis of influenza A virus subtype H5N1 disease in humans is not well defined. In mammalian experimental models, H5N1 influenza is a disseminated disease. However, limited previous data from human autopsies have not shown evidence of virus dissemination beyond the lung. We investigated a patient with fatal H5N1 influenza. Viral RNA was detected by reverse transcription–polymerase chain reaction in lung, intestine, and spleen tissues, but positive-stranded viral RNA indicating virus replication was confined to the lung and intestine. Viral antigen was detected in pneumocytes by immunohistochemical tests. Tumor necrosis factor-α mRNA was seen in lung tissue. In contrast to disseminated infection documented in other mammals and birds, H5N1 viral replication in humans may be restricted to the lung and intestine, and the major site of H5N1 viral replication in the lung is the pneumocyte.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
198 |
11
|
Crook T, Nicholls JM, Brooks L, O'Nions J, Allday MJ. High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 2000; 19:3439-44. [PMID: 10918601 DOI: 10.1038/sj.onc.1203656] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Undifferentiated nasopharyngeal carcinoma (NPC) is an epithelial malignancy that is consistently associated with Epstein-Barr virus (EBV) but which very rarely has p53 gene mutations in primary tumours. Since the tumour suppressor p53 is mutated in most human cancers or the wild type protein is inactivated in a significant number of the remainder, here we have investigated cellular factors that could compromise p53 function in primary NPC. Twenty-five primary tumours were judged to carry only wild type p53 by SSCP analysis of all exons and sequence determination of exons 4-9. Only one tumour was found to express significant levels of hMdm2 and in 24/25 there were no detectable mutations or deletions in exons 1beta and 2 of the p14(ARF) gene. However, immunohistochemistry consistently revealed that all the tumour cells express substantial amounts of the p53-related protein p63. Semi-quantitative RT-PCR analysis of mRNA from tumour biopsies showed that the dominant species expressed was invariably the truncated deltaN-isotype. Since this can block p53-mediated transactivation, it is potentially a dominant-negative isoform. In normal nasopharyngeal epithelium the distribution of p63 was restricted to the proliferating basal and suprabasal layers. We suggest that deltaN-p63 is a good candidate as a suppressor of wild type p53 function in these tumours and also that it may prove to be a valuable diagnostic marker for undifferentiated NPC.
Collapse
|
|
25 |
156 |
12
|
Zhao X, Nicholls JM, Chen YG. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J Biol Chem 2007; 283:3272-3280. [PMID: 18055455 PMCID: PMC8740907 DOI: 10.1074/jbc.m708033200] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is an acute infectious disease with significant mortality. A typical clinical feature associated with SARS is pulmonary fibrosis and the associated lung failure. However, the underlying mechanism remains elusive. In this study, we demonstrate that SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein potentiates transforming growth factor-β (TGF-β)-induced expression of plasminogen activator inhibitor-1 but attenuates Smad3/Smad4-mediated apoptosis of human peripheral lung epithelial HPL1 cells. The promoting effect of N protein on the transcriptional responses of TGF-β is Smad3-specific. N protein associates with Smad3 and promotes Smad3-p300 complex formation while it interferes with the complex formation between Smad3 and Smad4. These findings provide evidence of a novel mechanism whereby N protein modulates TGF-β signaling to block apoptosis of SARS-CoV-infected host cells and meanwhile promote tissue fibrosis. Our results reveal a novel mode of Smad3 action in a Smad4-independent manner and may lead to successful strategies for SARS treatment by targeting the TGF-β signaling molecules.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
154 |
13
|
Chua DTT, Nicholls JM, Sham JST, Au GKH. Prognostic value of epidermal growth factor receptor expression in patients with advanced stage nasopharyngeal carcinoma treated with induction chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59:11-20. [PMID: 15093894 DOI: 10.1016/j.ijrobp.2003.10.038] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 10/03/2003] [Accepted: 10/15/2003] [Indexed: 11/22/2022]
Abstract
PURPOSE A retrospective study was performed to correlate the expression of epidermal growth factor receptor (EGFR) with treatment outcome in advanced stage nasopharyngeal carcinoma (NPC). METHODS AND MATERIALS The study population comprised 54 of 92 patients with American Joint Committee on Cancer Stage III-IV NPC with sufficient pretreatment tumor biopsy specimens for study. Immunohistochemical staining was performed to evaluate the extent and intensity of EGFR expression. All patients were treated by induction chemotherapy with two to three cycles of cisplatin 60 mg/m(2) and epirubicin 110 mg/m(2) every 3 weeks followed by radiotherapy. The median follow-up time was 52 months for all patients and 99 months for surviving patients. RESULTS EGFR expression was present in 89% of cases. EGFR intensity was negative in 11%, weak in 43%, moderate in 13%, and strong in 33%. The EGFR extent was <5% in 15%, > or =5% but <25% in 13%, and > or =25% in 72%. No correlation was found between EGFR expression and T stage, N stage, stage group, nodal size, gender, and age. No statistically significant differences in chemotherapy response rates were found in patients with different EGFR intensity and extent. EGFR extent > or =25% was associated with a significantly poorer treatment outcome. The 5-year disease-specific survival, relapse-free survival, locoregional relapse-free, and distant metastasis-free rate in patients with EGFR extent > or =25% was 48%, 36%, 60%, and 55%, respectively. The corresponding rates in patients with EGFR extent <25% were 86%, 80%, 93%, and 86%. The differences were all statistically significant, except for distant metastasis. No statistically significant differences in relapse-free and disease-specific survival rates were found among patients with differing EGFR intensity. In multivariate analysis, EGFR extent was the only independent factor that predicted for disease relapse, locoregional failure, and cancer death. CONCLUSION Our study results showed that EGFR expression was common in advanced stage NPC, and the expression did not correlate with tumor or nodal stage. Correlative analysis showed that EGFR extent was a strong, independent prognostic factor that determined locoregional control, relapse-free survival, and disease-specific survival in Stage III-IV NPC treated with induction chemotherapy and radiotherapy. Our findings suggest that EGFR expression status can identify a subgroup of patients within advanced stage disease that will have a poor outcome after induction chemotherapy and radiotherapy. Whether this patient subgroup will benefit from an alternate treatment strategy and anti-EGFR-targeted treatment requires additional studies.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
148 |
14
|
Chan RWY, Chan MCW, Agnihothram S, Chan LLY, Kuok DIT, Fong JHM, Guan Y, Poon LLM, Baric RS, Nicholls JM, Peiris JSM. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol 2013; 87:6604-14. [PMID: 23552422 PMCID: PMC3676115 DOI: 10.1128/jvi.00009-13] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/12/2013] [Indexed: 01/11/2023] Open
Abstract
Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV). The innate immune responses elicited by HCoV-EMC were also investigated. HCoV-EMC productively replicated in human bronchial and lung ex vivo organ cultures. While SARS-CoV productively replicated in lung tissue, replication in human bronchial tissue was limited. Immunohistochemistry revealed that HCoV-EMC infected nonciliated bronchial epithelium, bronchiolar epithelial cells, alveolar epithelial cells, and endothelial cells. Transmission electron microscopy showed virions within the cytoplasm of bronchial epithelial cells and budding virions from alveolar epithelial cells (type II). In contrast, there was minimal HCoV-229E infection in these tissues. HCoV-EMC failed to elicit strong type I or III interferon (IFN) or proinflammatory innate immune responses in ex vivo respiratory tissue cultures. Treatment of human lung tissue ex vivo organ cultures with type I IFNs (alpha and beta IFNs) at 1 h postinfection reduced the replication of HCoV-EMC, suggesting a potential therapeutic use of IFNs for treatment of human infection.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
145 |
15
|
Van Poucke SGM, Nicholls JM, Nauwynck HJ, Van Reeth K. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol J 2010; 7:38. [PMID: 20158900 PMCID: PMC2829537 DOI: 10.1186/1743-422x-7-38] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/16/2010] [Indexed: 12/22/2022] Open
Abstract
Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs). However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia) receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal) and avian virus receptors (Siaα2-3Gal) were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia receptors alone, the pig is unlikely to be a more appropriate mixing vessel for influenza viruses than humans. We conclude that too little is known on the exact mechanism and on predisposing factors for reassortment to assess the true role of the pig in the emergence of novel influenza viruses.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
128 |
16
|
Jia D, Rahbar R, Chan RWY, Lee SMY, Chan MCW, Wang BX, Baker DP, Sun B, Peiris JSM, Nicholls JM, Fish EN. Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PLoS One 2010; 5:e13927. [PMID: 21085662 PMCID: PMC2978095 DOI: 10.1371/journal.pone.0013927] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/18/2010] [Indexed: 01/17/2023] Open
Abstract
Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.
Collapse
|
research-article |
15 |
128 |
17
|
Chu DKW, Hui KPY, Perera RAPM, Miguel E, Niemeyer D, Zhao J, Channappanavar R, Dudas G, Oladipo JO, Traoré A, Fassi-Fihri O, Ali A, Demissié GF, Muth D, Chan MCW, Nicholls JM, Meyerholz DK, Kuranga SA, Mamo G, Zhou Z, So RTY, Hemida MG, Webby RJ, Roger F, Rambaut A, Poon LLM, Perlman S, Drosten C, Chevalier V, Peiris M. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc Natl Acad Sci U S A 2018; 115:3144-3149. [PMID: 29507189 PMCID: PMC5866576 DOI: 10.1073/pnas.1718769115] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
123 |
18
|
Chan KH, Peiris JSM, Lim W, Nicholls JM, Chiu SS. Comparison of nasopharyngeal flocked swabs and aspirates for rapid diagnosis of respiratory viruses in children. J Clin Virol 2008; 42:65-9. [PMID: 18242124 DOI: 10.1016/j.jcv.2007.12.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Accepted: 12/05/2007] [Indexed: 01/19/2023]
Abstract
BACKGROUND The quality of clinical specimens is a crucial determinant for virological diagnosis. OBJECTIVES We compared the viral diagnostic yield for influenza A and respiratory syncytial virus (RSV) from the recently developed nasopharyngeal flocked swabs (NPFS) with nasopharyngeal aspirates (NPA) collected in parallel from 196 hospitalized children with acute respiratory infection during the peak period of influenza A and RSV activity in Hong Kong. Specimens were tested by RT-PCR for influenza A and RSV and viral load determined. They were also tested by direct immunofluorescence (DIF) for influenza A and B, RSV, parainfluenza types 1-3 and adenovirus. RESULTS Both NPA and NPFS had excellent sensitivity (100%) for detecting influenza A by RT-PCR but NPA was slightly more sensitive than NPFS for detecting RSV by both RT-PCR (100% vs. 92.3%) and DIF (87.2% vs. 84.6%) and for detecting influenza A by DIF (90.2% vs. 82.9%). Viral load for influenza A in NPA and NPFS was not significantly different but that for RSV was higher in NPA. CONCLUSION NPA remains the optimal specimen for diagnosis of respiratory infections by RT-PCR and DIF. However, collection of NPFS is easier to perform in an out-patient setting, was more acceptable to parents and less likely to generate aerosols than NPA engendering potentially less infection control hazard.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
119 |
19
|
Nicholls JM, Butany J, Poon LLM, Chan KH, Beh SL, Poutanen S, Peiris JSM, Wong M. Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med 2006; 3:e27. [PMID: 16379499 PMCID: PMC1324951 DOI: 10.1371/journal.pmed.0030027] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 10/24/2005] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cellular localization of severe acute respiratory syndrome coronavirus (SARS-CoV) in the lungs of patients with SARS is important in confirming the etiological association of the virus with disease as well as in understanding the pathogenesis of the disease. To our knowledge, there have been no comprehensive studies investigating viral infection at the cellular level in humans. METHODS AND FINDINGS We collected the largest series of fatal cases of SARS with autopsy material to date by merging the pathological material from two regions involved in the 2003 worldwide SARS outbreak in Hong Kong, China, and Toronto, Canada. We developed a monoclonal antibody against the SARS-CoV nucleoprotein and used it together with in situ hybridization (ISH) to analyze the autopsy lung tissues of 32 patients with SARS from Hong Kong and Toronto. We compared the results of these assays with the pulmonary pathologies and the clinical course of illness for each patient. SARS-CoV nucleoprotein and RNA were detected by immunohistochemistry and ISH, respectively, primarily in alveolar pneumocytes and, less frequently, in macrophages. Such localization was detected in four of the seven patients who died within two weeks of illness onset, and in none of the 25 patients who died later than two weeks after symptom onset. CONCLUSIONS The pulmonary alveolar epithelium is the chief target of SARS-CoV, with macrophages infected subsequently. Viral replication appears to be limited to the first two weeks after symptom onset, with little evidence of continued widespread replication after this period. If antiviral therapy is considered for future treatment, it should be focused on this two-week period of acute clinical disease.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
115 |
20
|
Wu EX, Wu Y, Nicholls JM, Wang J, Liao S, Zhu S, Lau CP, Tse HF. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn Reson Med 2008; 58:687-95. [PMID: 17899595 DOI: 10.1002/mrm.21350] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study aimed to investigate postinfarct left ventricular (LV) fiber structural alterations by ex vivo diffusion tensor imaging (DTI) in a porcine heart model. In vivo cardiac MR imaging was first performed to measure ventricular function in six adult pigs with septal infarction near apex induced by the LAD ligation 13 weeks earlier. Hearts were then excised from the infarct pigs (n = 6) and six intact controls (n = 6) and fixed in formalin. High-resolution DTI was employed to examine changes in fractional anisotropy (FA), apparent diffusion coefficient (ADC), and transmural helix angle distribution in the infarct, adjacent and remote regions as compared to the sham regions in the controls. FA values were found to decrease in the infarct and differ between the adjacent and remote regions. ADC increase in the infarct region was substantial, while changes in the adjacent and remote regions were insignificant. Structurally, the double-helix myocardial structure shifted toward more left-handed around the infarcted myocardium. Accordingly, the histological analysis revealed clear fiber structural degradation in the adjacent region. These findings confirmed the subtle alterations in the myocardial fiber quality and structure not only in the infarcted but also in the surrounding noninfarcted myocardium or borderzone.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
110 |
21
|
Martensson P, Ni WX, Hansson GV, Nicholls JM, Reihl B. Surface electronic structure of Si(111)7 x 7-Ge and Si(111)5 x 5-Ge studied with photoemission and inverse photoemission. PHYSICAL REVIEW. B, CONDENSED MATTER 1987; 36:5974-5981. [PMID: 9942278 DOI: 10.1103/physrevb.36.5974] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
38 |
103 |
22
|
Gulley ML, Amin MB, Nicholls JM, Banks PM, Ayala AG, Srigley JR, Eagan PA, Ro JY. Epstein-Barr virus is detected in undifferentiated nasopharyngeal carcinoma but not in lymphoepithelioma-like carcinoma of the urinary bladder. Hum Pathol 1995; 26:1207-14. [PMID: 7590694 DOI: 10.1016/0046-8177(95)90195-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC) and with lymphoepithelioma-like carcinomas developing in certain anatomic sites. In this study, an in situ hybridization was used to identify EBV-encoded ribonucleic acid (RNA) (EBER1) transcripts in 32 of 45 cases of NPC but not in any of the 11 lymphoepithelioma-like carcinomas developing in the urinary bladder. EBER1 was most commonly detected in those NPCs having undifferentiated or nonkeratinizing squamous histology rather than the keratinizing squamous cell subtype of NPC. The EBV-encoded latent membrane protein 1 (LMP1) was expressed focally in only seven of 21 EBER1-positive NPCs by an immunohistochemical technique. These findings imply that EBER1 hybridization is more sensitive than LMP1 immunohistochemistry on paraffin sections in detecting carcinoma-associated virus. Previous in vitro studies have suggested that LMP1 expression might be a function of differentiation, but this study of naturally infected NPCs showed no strong correlation between LMP1 positivity and degree of tumor differentiation, albeit a limited spectrum of differentiation that could be examined. In two cases in which frozen tissue was available, the NPCs were monoclonal with respect to viral DNA structure, implying that the virus was present before malignant transformation. Unlike NPCs, the lymphoepithelioma-like carcinomas of the bladder were uniformly EBV negative, lending further evidence to the growing body of literature linking EBV with lymphoepithelial carcinomas of foregut-derived tissues but not with similar-appearing tumors developing in other anatomic sites.
Collapse
MESH Headings
- Blotting, Southern
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/complications
- Carcinoma, Squamous Cell/virology
- DNA, Viral/analysis
- DNA, Viral/genetics
- Herpesviridae Infections/complications
- Herpesviridae Infections/diagnosis
- Herpesviridae Infections/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/physiology
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Nasopharyngeal Neoplasms/chemistry
- Nasopharyngeal Neoplasms/complications
- Nasopharyngeal Neoplasms/virology
- RNA, Viral/analysis
- RNA, Viral/genetics
- RNA-Binding Proteins/genetics
- Ribosomal Proteins
- Tumor Virus Infections/complications
- Tumor Virus Infections/diagnosis
- Tumor Virus Infections/genetics
- Urinary Bladder Neoplasms/chemistry
- Urinary Bladder Neoplasms/complications
- Urinary Bladder Neoplasms/virology
- Viral Matrix Proteins/analysis
Collapse
|
|
30 |
103 |
23
|
Chan MCW, Chan RWY, Yu WCL, Ho CCC, Yuen KM, Fong JHM, Tang LLS, Lai WW, Lo ACY, Chui WH, Sihoe ADL, Kwong DLW, Wong DSH, Tsao GSW, Poon LLM, Guan Y, Nicholls JM, Peiris JSM. Tropism and innate host responses of the 2009 pandemic H1N1 influenza virus in ex vivo and in vitro cultures of human conjunctiva and respiratory tract. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1828-40. [PMID: 20110407 DOI: 10.2353/ajpath.2010.091087] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The novel pandemic influenza H1N1 (H1N1pdm) virus of swine origin causes mild disease but occasionally leads to acute respiratory distress syndrome and death. It is important to understand the pathogenesis of this new disease in humans. We compared the virus tropism and host-responses elicited by pandemic H1N1pdm and seasonal H1N1 influenza viruses in ex vivo cultures of human conjunctiva, nasopharynx, bronchus, and lung, as well as in vitro cultures of human nasopharyngeal, bronchial, and alveolar epithelial cells. We found comparable replication and host-responses in seasonal and pandemic H1N1 viruses. However, pandemic H1N1pdm virus differs from seasonal H1N1 influenza virus in its ability to replicate in human conjunctiva, suggesting subtle differences in its receptor-binding profile and highlighting the potential role of the conjunctiva as an additional route of infection with H1N1pdm. A greater viral replication competence in bronchial epithelium at 33 degrees C may also contribute to the slight increase in virulence of the pandemic influenza virus. In contrast with highly pathogenic influenza H5N1 virus, pandemic H1N1pdm does not differ from seasonal influenza virus in its intrinsic capacity for cytokine dysregulation. Collectively, these results suggest that pandemic H1N1pdm virus differs in modest but subtle ways from seasonal H1N1 virus in its intrinsic virulence for humans, which is in accord with the epidemiology of the pandemic to date. These findings are therefore relevant for understanding transmission and therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
101 |
24
|
Poon LLM, Guan Y, Nicholls JM, Yuen KY, Peiris JSM. The aetiology, origins, and diagnosis of severe acute respiratory syndrome. THE LANCET. INFECTIOUS DISEASES 2004; 4:663-71. [PMID: 15522678 PMCID: PMC7106534 DOI: 10.1016/s1473-3099(04)01172-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a new infectious disease that first emerged in Guangdong province, China, in November, 2002. A novel coronavirus was later identified in patients with SARS. The detection of the virus in these patients, its absence in healthy controls or other patients with atypical pneumonia, and the reproduction of a similar disease in a relevant animal model fulfilled Koch's postulates for implicating this coronavirus as the causal agent of SARS. The full genome sequence was determined within weeks of the virus's identification. The rapid progress in the aetiology, the development of laboratory diagnostic tests, and the defining of routes of viral transmission were facilitated through a unique WHO-coordinated virtual network of laboratories, which shared information on a real-time basis through daily teleconferences. Subsequent studies have indicated that the SARS coronavirus is of animal origin, that its precursor is still present in animal populations within the region, and that live-animal markets in southern China may have provided the animal-human interphase that allowed this precursor virus to adapt to human-human transmission. These findings underscore the potential for the re-emergence of SARS and the need for laboratory tests for early diagnosis. However, the low viral load in the respiratory tract makes early diagnosis of SARS a diagnostic challenge, although improvements in the sensitivity of molecular diagnostic methods continue to be made.
Collapse
|
Review |
21 |
100 |
25
|
Lee SMY, Cheung CY, Nicholls JM, Hui KPY, Leung CYH, Uiprasertkul M, Tipoe GL, Lau YL, Poon LLM, Ip NY, Guan Y, Peiris JSM. Hyperinduction of cyclooxygenase-2-mediated proinflammatory cascade: a mechanism for the pathogenesis of avian influenza H5N1 infection. J Infect Dis 2008; 198:525-35. [PMID: 18613795 DOI: 10.1086/590499] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mechanism for the pathogenesis of H5N1 infection in humans remains unclear. This study reveals that cyclooxygenase-2 (COX-2) was strongly induced in H5N1-infected macrophages in vitro and in epithelial cells of lung tissue samples obtained during autopsy of patients who died of H5N1 disease. Novel findings demonstrated that COX-2, along with tumor necrosis factor alpha and other proinflammatory cytokines were hyperinduced in epithelial cells by secretory factors from H5N1-infected macrophages in vitro. This amplification of the proinflammatory response is rapid, and the effects elicited by the H5N1-triggered proinflammatory cascade are broader than those arising from direct viral infection. Furthermore, selective COX-2 inhibitors suppress the hyperinduction of cytokines in the proinflammatory cascade, indicating a regulatory role for COX-2 in the H5N1-hyperinduced host proinflammatory cascade. These data provide a basis for the possible development of novel therapeutic interventions for the treatment of H5N1 disease, as adjuncts to antiviral drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
97 |