1
|
Sun J, Tang S, Peng H, Saunders DMV, Doering JA, Hecker M, Jones PD, Giesy JP, Wiseman S. Combined Transcriptomic and Proteomic Approach to Identify Toxicity Pathways in Early Life Stages of Japanese Medaka (Oryzias latipes) Exposed to 1,2,5,6-Tetrabromocyclooctane (TBCO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7781-90. [PMID: 27322799 DOI: 10.1021/acs.est.6b01249] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Currently, the novel brominated flame retardant 1,2,5,6-tetrabromocyclooctane (TBCO) is considered a potential replacement for hexabromocyclododecane (HBCD). Therefore, use of TBCO could increase in the near future. To assess potential toxicological risks to aquatic organisms, embryos of Japanese medaka (Oryzias latipes) were exposed to 10, 100, or 1000 μg/L TBCO from 2 h postfertilization until 1 day post-hatch. TBCO accumulated in embryos in the order of 0.43-1.3 × 10(4)-fold, and the rate constant of accumulation was 1.7-1.8 per day. The number of days to hatch and the hatching success of embryos exposed to the medium and the greatest concentrations of TBCO were impaired. Responses of the transcriptome (RNA-seq) and proteome were characterized in embryos exposed to 100 μg/L TBCO because this was the least concentration of TBCO that caused an effect on hatching. Consistent with effects on hatching, proteins whose abundances were reduced by exposure to TBCO were enriched in embryo development and hatching pathways. Also, on the basis of the responses of transcriptome and proteome, it was predicted that TBCO might impair vision and contraction of cardiac muscle, respectively, and these effects were confirmed by targeted bioassays. This study provided a comprehensive understanding of effects of TBCO on medaka at early life stages and illustrated the power of "omics" to explain and predict phenotypic responses to chemicals.
Collapse
|
|
9 |
50 |
2
|
LaLone CA, Villeneuve DL, Doering JA, Blackwell BR, Transue TR, Simmons CW, Swintek J, Degitz SJ, Williams AJ, Ankley GT. Evidence for Cross Species Extrapolation of Mammalian-Based High-Throughput Screening Assay Results. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13960-13971. [PMID: 30351027 PMCID: PMC8283686 DOI: 10.1021/acs.est.8b04587] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High-throughput screening (HTS) and computational technologies have emerged as important tools for chemical hazard identification. The US Environmental Protection Agency (EPA) launched the Toxicity ForeCaster (ToxCast) Program, which has screened thousands of chemicals in hundreds of mammalian-based HTS assays for biological activity. The data are being used to prioritize toxicity testing on those chemicals likely to lead to adverse effects. To use HTS assays in predicting hazard to both humans and wildlife, it is necessary to understand how broadly these data may be extrapolated across species. The US EPA Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/ ) tool was used to assess conservation of the 484 protein targets represented in the suite of ToxCast assays and other HTS assays. To demonstrate the utility of the SeqAPASS data for guiding extrapolation, case studies were developed which focused on targets of interest to the US Endocrine Disruptor Screening Program and the Organisation for Economic Cooperation and Development. These case studies provide a line of evidence for conservation of endocrine targets across vertebrate species, with few exceptions, and demonstrate the utility of SeqAPASS for defining the taxonomic domain of applicability for HTS results and identifying organisms for suitable follow-up toxicity tests.
Collapse
|
research-article |
7 |
49 |
3
|
Yang D, Han J, Hall DR, Sun J, Fu J, Kutarna S, Houck KA, LaLone CA, Doering JA, Ng CA, Peng H. Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5676-5686. [PMID: 32249562 PMCID: PMC7477755 DOI: 10.1021/acs.est.0c00049] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
More than 1000 per- and polyfluoroalkyl substances (PFASs) have been discovered by nontarget analysis (NTA), but their prioritization for health concerns is challenging. We developed a method by incorporating size-exclusion column co-elution (SECC) and NTA, to screen PFASs binding to human liver fatty acid binding protein (hL-FABP). Of 74 PFASs assessed, 20 were identified as hL-FABP ligands in which eight of them have high binding affinities. Increased PFAS binding affinities correlate with stronger responses in electrospray ionization (ESI-) and longer retention times on a C18 column. This is well explained by a mechanistic model, which revealed that both polar and hydrophobic interactions are crucial for binding affinities. Encouraged by this, we then developed an SECC method to identify hL-FABP ligands, and all eight high-affinity ligands were selectively captured from 74 PFASs. The method was further applied to an aqueous film-forming foam (AFFF) product in which 31 new hL-FABP ligands were identified. Suspect and nontargeted screening revealed these ligands as analogues of perfluorosulfonic acids and homologues of alkyl ether sulfates (C8- and C10/EOn, C8H17(C2H4O)nSO4-, and C10H21(C2H4O)nSO4-). The SECC method was then applied to AFFF-contaminated surface waters. In addition to perfluorooctanesulfonic acid and perfluorohexanesulfonic acid, eight other AFFF chemicals were discovered as novel ligands, including four C14- and C15/EOn. This study implemented a high-throughput method to prioritize PFASs and revealed the existence of many previously unknown hL-FABP ligands.
Collapse
|
research-article |
5 |
45 |
4
|
Doering JA, Giesy JP, Wiseman S, Hecker M. Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1219-1224. [PMID: 23054770 DOI: 10.1007/s11356-012-1203-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/14/2012] [Indexed: 06/01/2023]
Abstract
Dioxin-like compounds are chronically toxic to most vertebrates. However, dramatic differences in sensitivity to these chemicals exist both within and among vertebrate classes. A recent study found that in birds, critical amino acid residues in the aryl hydrocarbon receptor (AhR) ligand binding domain are predictive of sensitivity to dioxin-like compounds in a range of species. It is currently unclear whether similar predictive relationships exist for fishes, a group of animals at risk of exposure to dioxin-like compounds. Effects of dioxin-like compounds are mediated through the AhR in fishes and birds. However, AhR dynamics are more complex among fishes. Fishes possess AhRs that can be grouped within at least three distinct clades (AhR1, AhR2, AhR3) with each clade possibly containing multiple isoforms. AhR2 has been shown to be the active form in most teleosts, with AhR1 not binding dioxin-like compounds. The role of AhR3 in dioxin-like toxicity has not been established to date and this clade is only known to be expressed in some cartilaginous fishes. Furthermore, multiple mechanisms of sensitivity to dioxin-like compounds that are not relevant in birds could exist among fishes. Although, at this time, deficiencies exist for the development of such a predictive relationship for application to fishes, successfully establishing such relationships would offer a substantial improvement in assessment of risks of dioxin-like compounds for this class of vertebrates. Elucidation of such relationships would provide a mechanistic foundation for extrapolation among species to allow the identification of the most sensitive fishes, with the ultimate goal of the prediction of risk posed to endangered species that are not easily studied.
Collapse
|
Review |
12 |
39 |
5
|
Doering JA, Wiseman S, Giesy JP, Hecker M. A Cross-species Quantitative Adverse Outcome Pathway for Activation of the Aryl Hydrocarbon Receptor Leading to Early Life Stage Mortality in Birds and Fishes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7524-7533. [PMID: 29863850 DOI: 10.1021/acs.est.8b01438] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dioxin-like compounds (DLCs) elicit adverse effects through activation of the aryl hydrocarbon receptor (AHR). Prior investigations demonstrated that sensitivity to activation of AHR1 in an in vitro AHR transactivation assay is predictive of early life stage mortality among birds. The present study investigated the link between sensitivity to activation of AHR1s and AHR2s and early life stage mortality among fishes. A significant, linear relationship was demonstrated between sensitivity to activation of AHR2 and early life stage mortality among nine fishes, while no relationship was found for AHR1. The slope and y-intercept for the linear relationship between sensitivity to activation of AHR1 and early life stage mortality in birds was not statistically different from the same relationship for AHR2 in fishes. Data for fishes and birds across DLCs were expanded into four significant, linear regression models describing the relationship between sensitivity to activation of AHR and the dose to cause early life stage mortality of 0%, 10%, 50%, or 100%. These four relationships were combined to form a quantitative adverse outcome pathway which can predict dose-response curves of early life stage mortality for DLCs to any bird or fish from species- and chemical-specific responses in an in vitro AHR transactivation assay.
Collapse
|
|
7 |
33 |
6
|
Doering JA, Tang S, Peng H, Eisner BK, Sun J, Giesy JP, Wiseman S, Hecker M. High Conservation in Transcriptomic and Proteomic Response of White Sturgeon to Equipotent Concentrations of 2,3,7,8-TCDD, PCB 77, and Benzo[a]pyrene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4826-4835. [PMID: 27070345 DOI: 10.1021/acs.est.6b00490] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adverse effects associated with exposure to dioxin-like compounds (DLCs) are mediated primarily through activation of the aryl hydrocarbon receptor (AHR). However, little is known about the cascades of events that link activation of the AHR to apical adverse effects. Therefore, this study used high-throughput, next-generation molecular tools to investigate similarities and differences in whole transcriptome and whole proteome responses to equipotent concentrations of three agonists of the AHR, 2,3,7,8-TCDD, PCB 77, and benzo[a]pyrene, in livers of a nonmodel fish, the white sturgeon (Acipenser transmontanus). A total of 926 and 658 unique transcripts were up- and down-regulated, respectively, by one or more of the three chemicals. Of the transcripts shared by responses to all three chemicals, 85% of up-regulated transcripts and 75% of down-regulated transcripts had the same magnitude of response. A total of 290 and 110 unique proteins were up- and down-regulated, respectively, by one or more of the three chemicals. Of the proteins shared by responses to all three chemicals, 70% of up-regulated proteins and 48% of down-regulated proteins had the same magnitude of response. Among treatments there was 68% similarity between the global transcriptome and global proteome. Pathway analysis revealed that perturbed physiological processes were indistinguishable between equipotent concentrations of the three chemicals. The results of this study contribute toward more completely describing adverse outcome pathways associated with activation of the AHR.
Collapse
|
|
9 |
29 |
7
|
Doering JA, Farmahin R, Wiseman S, Beitel SC, Kennedy SW, Giesy JP, Hecker M. Differences in activation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4681-4689. [PMID: 25761200 DOI: 10.1021/acs.est.5b00085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dioxin-like compounds (DLCs) are pollutants of global environmental concern. DLCs elicit their adverse outcomes through activation of the aryl hydrocarbon receptor (AhR). However, there is limited understanding of the mechanisms that result in differences in sensitivity to DLCs among different species of fishes. Understanding these mechanisms is critical for protection of the diversity of fishes exposed to DLCs, including endangered species. This study investigated specific mechanisms that drive responses of two endangered fishes, white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens) to DLCs. It determined whether differences in sensitivity to activation of AhRs (AhR1 and AhR2) can be predicted based on identities of key amino acids in the ligand binding domain (LBD). White sturgeon were 3- to 30-fold more sensitive than lake sturgeon to exposure to 5 different DLCs based on activation of AhR2. There were no differences in sensitivity between white sturgeon and lake sturgeon based on activation of AhR1. Adverse outcomes as a result of exposure to DLCs have been shown to be mediated through activation of AhR2, but not AhR1, in all fishes studied to date. This indicates that white sturgeon are likely to have greater sensitivity in vivo relative to lake sturgeon. Homology modeling and in silico mutagenesis suggests that differences in sensitivity to activation of AhR2 result from differences in key amino acids at position 388 in the LBD of AhR2 of white sturgeon (Ala-388) and lake sturgeon (Thr-388). This indicates that identities of key amino acids in the LBD of AhR2 could be predictive of both in vitro activation by DLCs and in vivo sensitivity to DLCs in these, and potentially other, fishes.
Collapse
|
Comparative Study |
10 |
28 |
8
|
Tang S, Doering JA, Sun J, Beitel SC, Shekh K, Patterson S, Crawford S, Giesy JP, Wiseman SB, Hecker M. Linking Oxidative Stress and Magnitude of Compensatory Responses with Life-Stage Specific Differences in Sensitivity of White Sturgeon (Acipenser transmontanus) to Copper or Cadmium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9717-9726. [PMID: 27509013 DOI: 10.1021/acs.est.6b03301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sensitivity of white sturgeon (Acipenser transmontanus) to copper (Cu) or cadmium (Cd) has been shown to significantly differ as a function of life-stage. This study investigated oxidative stress, metal homeostasis, and associated compensatory responses as potential mechanisms of this sensitivity pattern in three early life-stages. Sturgeon were most sensitive to Cu at 15 days post hatch (dph), which was accompanied by a significant increase in lipid peroxidation (LPO). Genes involved with amelioration of oxidative stress were significantly less inducible at this stage than in older, less sensitive fry. At 48 dph, acute lethality of sturgeon exposed to Cd was greatest and body LPO was significantly induced by 3.5-fold at 5 μg Cd/L. Moreover, there was a small but significant increase in antioxidative responses. At 139 dph, sturgeon were most tolerant to Cu and Cd and accumulation of these metals was least. Also, expression of metallothionein (MT) and apoptotic genes were greatest while expression of metal transporters was reduced and concentration of LPO was not different from controls. Our results suggest that life-stage specific sensitivity of white sturgeon to metals is complex, encompassing differences in the ability to mount compensatory responses important for metal homeostasis and combating oxidative stress and concomitant damages.
Collapse
|
|
9 |
26 |
9
|
Cheng W, Doering JA, LaLone C, Ng C. Integrative Computational Approaches to Inform Relative Bioaccumulation Potential of Per- and Polyfluoroalkyl Substances Across Species. Toxicol Sci 2021; 180:212-223. [PMID: 33483745 DOI: 10.1093/toxsci/kfab004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Predictive toxicology is increasingly reliant on innovative computational methods to address pressing questions in chemicals assessment. Of importance is the evaluation of contaminant impact differences across species to inform ecosystem protection and identify appropriate model species for human toxicity studies. Here we evaluated 2 complementary tools to predict cross-species differences in binding affinity between per- and polyfluoroalkyl substances (PFAS) and the liver fatty acid-binding protein (LFABP): the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool and molecular dynamics (MD). SeqAPASS determined that the structure of human LFABP, a key determinant of PFAS bioaccumulation, was conserved in the majority of vertebrate species, indicating these species would have similar PFAS bioaccumulation potentials. Level 3 SeqAPASS evaluation identified several potentially destabilizing amino acid differences across species, which were generally supported by DUET stability change predictions. Nine single-residue mutations and 7 whole species sequences were selected for MD evaluation. One mutation (F50V for PFNA) showed a statistically significant difference with stronger affinity than wild-type human LFABP. Predicted binding affinities for 9 different PFAS across 7 species showed human, rat, chicken, and rainbow trout had similar binding affinities to one another for each PFAS, whereas Japanese medaka and fathead minnow had significantly weaker LFABP-binding affinity for some PFAS. Based on these analyses, the combined use of SeqAPASS and MD provides rapid screening for potential species differences with deeper structural insight. This approach can be easily extended to other important biological receptors and potential ligands.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
25 |
10
|
Scholz S, Nichols JW, Escher BI, Ankley GT, Altenburger R, Blackwell B, Brack W, Burkhard L, Collette TW, Doering JA, Ekman D, Fay K, Fischer F, Hackermüller J, Hoffman JC, Lai C, Leuthold D, Martinovic-Weigelt D, Reemtsma T, Pollesch N, Schroeder A, Schüürmann G, von Bergen M. The Eco-Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:30-45. [PMID: 34714945 PMCID: PMC9104394 DOI: 10.1002/etc.5242] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 05/04/2023]
Abstract
Organisms are exposed to ever-changing complex mixtures of chemicals over the course of their lifetime. The need to more comprehensively describe this exposure and relate it to adverse health effects has led to formulation of the exposome concept in human toxicology. Whether this concept has utility in the context of environmental hazard and risk assessment has not been discussed in detail. In this Critical Perspective, we propose-by analogy to the human exposome-to define the eco-exposome as the totality of the internal exposure (anthropogenic and natural chemicals, their biotransformation products or adducts, and endogenous signaling molecules that may be sensitive to an anthropogenic chemical exposure) over the lifetime of an ecologically relevant organism. We describe how targeted and nontargeted chemical analyses and bioassays can be employed to characterize this exposure and discuss how the adverse outcome pathway concept could be used to link this exposure to adverse effects. Available methods, their limitations, and/or requirement for improvements for practical application of the eco-exposome concept are discussed. Even though analysis of the eco-exposome can be resource-intensive and challenging, new approaches and technologies make this assessment increasingly feasible. Furthermore, an improved understanding of mechanistic relationships between external chemical exposure(s), internal chemical exposure(s), and biological effects could result in the development of proxies, that is, relatively simple chemical and biological measurements that could be used to complement internal exposure assessment or infer the internal exposure when it is difficult to measure. Environ Toxicol Chem 2022;41:30-45. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
research-article |
3 |
22 |
11
|
Vardy DW, Tompsett AR, Sigurdson JL, Doering JA, Zhang X, Giesy JP, Hecker M. Effects of subchronic exposure of early life stages of white sturgeon (Acipenser transmontanus) to copper, cadmium, and zinc. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2497-2505. [PMID: 21805501 DOI: 10.1002/etc.638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/07/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
Populations of sturgeon (Acipenseridae) are declining in many places in the world because of several potential factors, including overharvesting, habitat alteration, and pollution. In North America, populations of the white sturgeon (Acipenser transmontanus) have been experiencing poor annual recruitment in major river systems for more than three decades. Metal pollution has been hypothesized as a potential contributing factor to the poor recruitment in some of the water bodies. In general, little is known about the toxicity of metals such as Cu, Cd, and Zn to white sturgeon and their potential influence on survival of embryos and juveniles. The present study was conducted to establish baseline toxicity data for the subchronic exposure of early life stages of white sturgeon to Cu, Cd, and Zn that can be used in metal-related risk assessments. Embryos, larvae, and fry were exposed to increasing concentrations of dissolved Cu, Cd, or Zn for 66 d using laboratory-based flow-through exposure systems. Hatching success was greater than 79% for all controls, and no significant differences were observed among treatment groups or between treatments and controls. Chronic lethal concentrations at which 20% mortality occurred (LC20s) for Cd (1.5 µg/L), Cu (5.5 µg/L), and Zn (112 µg/L) obtained for white sturgeon in the present study were comparable to those of sensitive salmonid species. Based on LC20 values for 19 or 58 d posthatch white sturgeon, the United States national ambient water quality criteria and the Canadian water quality guidelines for the protection of aquatic life that have been established for Cd, Cu, and Zn protect white sturgeon early life stages.
Collapse
|
|
14 |
21 |
12
|
Doering JA, Farmahin R, Wiseman S, Kennedy SW, Giesy JP, Hecker M. Functionality of aryl hydrocarbon receptors (AhR1 and AhR2) of white sturgeon (Acipenser transmontanus) and implications for the risk assessment of dioxin-like compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8219-8226. [PMID: 24950391 DOI: 10.1021/es502054h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Worldwide, populations of sturgeons are endangered, and it is hypothesized that anthropogenic chemicals, including dioxin-like compounds (DLCs), might be contributing to the observed declines in populations. DLCs elicit their toxic action through activation of the aryl hydrocarbon receptor (AhR), which is believed to regulate most, if not all, adverse effects associated with exposure to these chemicals. Currently, risk assessment of DLCs in fishes uses toxic equivalency factors (TEFs) developed for the World Health Organization (WHO) that are based on studies of embryo-lethality with salmonids. However, there is a lack of knowledge of the sensitivity of sturgeons to DLCs, and it is uncertain whether TEFs developed by the WHO are protective of these fishes. Sturgeons are evolutionarily distinct from salmonids, and the AhRs of sturgeons differ from those of salmonids. Therefore, this study investigated the sensitivity of white sturgeon (Acipenser transmontanus) to DLCs in vitro via the use of luciferase reporter gene assays using COS-7 cells transfected with AhR1 or AhR2 of white sturgeon. Specifically, activation and relative potencies (RePs) of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachloro-dibenzofuran, 2,3,7,8-tetrachloro-dibenzofuran, 3,3',4,4',5-pentachlorobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, and 2,3,3',4,4'-pentachlorobiphenyl were determined for each AhR. It was demonstrated that white sturgeon expresses AhR1s and AhR2s that are both activated by DLCs with EC50 values for 2,3,7,8-TCDD that are lower than those of any other AhR of vertebrates tested to date. Both AhRs of white sturgeon had RePs for polychlorinated dibenzofurans more similar to TEFs for birds, while RePs for polychlorinated biphenyls were most similar to TEFs for fishes. Measured concentrations of select DLCs in tissues of white sturgeon from British Columbia, Canada, were used to calculate toxic equivalents (TEQs) by use of TEFs for fishes used by the WHO and TCDD equivalents (TCDD-EQs) via the use of RePs for AhR2 of white sturgeon as determined by transfected COS-7 cells. TCDD-EQs calculated for endangered populations of white sturgeon were approximately 10-fold greater than TEQs and were within ranges known to cause adverse effects in other fishes, including other species of sturgeons. Therefore, TEFs used by the WHO might not adequately protect white sturgeon, illuminating the need for additional investigation into the sensitivity of these fish to DLCs.
Collapse
|
|
11 |
20 |
13
|
Beitel SC, Doering JA, Patterson SE, Hecker M. Assessment of the sensitivity of three North American fish species to disruptors of steroidogenesis using in vitro tissue explants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:273-283. [PMID: 24800870 DOI: 10.1016/j.aquatox.2014.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
There is concern regarding exposure of aquatic organisms to chemicals that interfere with the endocrine system. One critical mechanism of endocrine disruption is impairment of steroidogenesis that can lead to altered hormone levels, altered or delayed sexual development, and ultimately reproductive failure. With the current large gap in knowledge and a high degree of uncertainty regarding the sensitivity of fishes native to northern ecosystems to endocrine disrupting chemicals (EDCs), the aim of this study was to develop an in vitro gonadal explant assay enabling the assessment of EDCs on sex-steroid production in wild fish species native to North America. Northern pike (Esox lucius), walleye (Sander vitreus), and white sucker (Catostomus commeroni) were sampled from a reference location in Lake Diefenbaker, Saskatchewan, Canada, at spawn and multiple post-spawn time points. Gonads were excised and immediately exposed for 24h to a model inducer (forskolin) or inhibitor (prochloraz) of steroidogenesis in L-15 supplemented media. Furthermore, seasonal profiles of plasma 11-ketotestosterone (11-KT) and 17-β estradiol (E2) concentrations were characterized. Enzyme-linked immunosorbent assays were used to quantify hormone concentrations in plasma and media. The seasonal profile of plasma hormones was significantly correlated with basal in vitro hormone production. Gonad tissue exposed to forskolin showed a concentration-dependent increase in E2 and a general increase in 11-KT. Gonad tissue exposed to prochloraz resulted in a decrease of concentrations of 11-KT and E2. These results illustrated that gonadal tissue is undergoing steroidogenesis in an in vitro setting that is comparable to in vivo hormone profiles, and which is responsive to chemical exposure in a concentration-dependent manner. The seasonal time point during which gonad explants were excised and exposed had an impact on the potency and magnitude of responses, resulting in a seasonal effect on sensitivity. Male and female white sucker showed greatest sensitivity to forskolin, while male and female walleye showed greatest sensitivity to prochloraz. Also, gonad explants from these species were found to have greater sensitivity than responses previously reported for in vitro explants of other fish species such as the fathead minnow (Pimephales promelas), and stable cell lines currently used as screening applications to detect chemicals that might disrupt the endocrine system. Therefore, current approaches that use stable cell lines or tissue explants from standardized small bodied laboratory species might not be protective of some wild fish species. Future research is required that investigates whether this in vitro gonadal explant assay is predictive of in vivo effects in wild species of fishes.
Collapse
|
|
11 |
20 |
14
|
Doering JA, Beitel SC, Eisner BK, Heide T, Hollert H, Giesy JP, Hecker M, Wiseman SB. Identification and response to metals of metallothionein in two ancient fishes: white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens). Comp Biochem Physiol C Toxicol Pharmacol 2015; 171:41-8. [PMID: 25795035 DOI: 10.1016/j.cbpc.2015.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/31/2023]
Abstract
White sturgeon (Acipenser transmontanus) are among the most sensitive species of fishes to Cu, Cd, and Zn, but there is no information about sensitivity of lake sturgeon (Acipenser fulvescens). To begin to elucidate molecular mechanism(s) of sensitivity of sturgeons to metals a cDNA encoding metallothionein (MT) was amplified from livers of white sturgeon (WS-MT) and lake sturgeon (LS-MT), and expression in response to Cu, Cd, or Zn was characterized in liver explants from each species. The primary structure of WS-MT and LS-MT contained 20 cysteine residues, which is the same as MTs of teleost fishes. However, the primary structure of WS-MT and LS-MT contained 63 amino acids, which is longer than any MT identified in teleost fishes. Abundance of transcripts of WS-MT in explants exposed to 0.3, 3, 30, or 100 μg/L of Cu was 1.7-, 1.7-, 2.1-, and 2.6-fold less than in controls, respectively. In contrast, abundances of transcripts of WS-MT were 3.3- and 2.4-fold greater in explants exposed to 30 μg/L of Cd and 1000 μg/L of Zn, respectively. Abundance of transcripts of LS-MT was not significantly different at any concentration of Cu, Cd, or Zn. MT is hypothesized to represent a critical mechanism for detoxification of metals. Therefore, results of this study suggest that sensitivity of sturgeons to exposure to Cu, Cd, or Zn might be a result of the relatively lesser maximal response of MT to metals. The study also suggestslake sturgeon might be more sensitive than white sturgeon to metals.
Collapse
|
Comparative Study |
10 |
16 |
15
|
Doering JA, Lee S, Kristiansen K, Evenseth L, Barron MG, Sylte I, LaLone CA. In Silico Site-Directed Mutagenesis Informs Species-Specific Predictions of Chemical Susceptibility Derived From the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Tool. Toxicol Sci 2019; 166:131-145. [PMID: 30060110 DOI: 10.1093/toxsci/kfy186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemical hazard assessment requires extrapolation of information from model organisms to all species of concern. The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed as a rapid, cost-effective method to aid cross-species extrapolation of susceptibility to chemicals acting on specific protein targets through evaluation of protein structural similarities and differences. The greatest resolution for extrapolation of chemical susceptibility across species involves comparisons of individual amino acid residues at key positions involved in protein-chemical interactions. However, a lack of understanding of whether specific amino acid substitutions among species at key positions in proteins affect interaction with chemicals made manual interpretation of alignments time consuming and potentially inconsistent. Therefore, this study used in silico site-directed mutagenesis coupled with docking simulations of computational models for acetylcholinesterase (AChE) and ecdysone receptor (EcR) to investigate how specific amino acid substitutions impact protein-chemical interaction. This study found that computationally derived substitutions in identities of key amino acids caused no change in protein-chemical interaction if residues share the same side chain functional properties and have comparable molecular dimensions, while differences in these characteristics can change protein-chemical interaction. These findings were considered in the development of capabilities for automatically generated species-specific predictions of chemical susceptibility in SeqAPASS. These predictions for AChE and EcR were shown to agree with SeqAPASS predictions comparing the primary sequence and functional domain sequence of proteins for more than 90% of the investigated species, but also identified dramatic species-specific differences in chemical susceptibility that align with results from standard toxicity tests. These results provide a compelling line of evidence for use of SeqAPASS in deriving screening level, species-specific, susceptibility predictions across broad taxonomic groups for application to human and ecological hazard assessment.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
14 |
16
|
Zhang L, Jin Y, Han Z, Liu H, Shi L, Hua X, Doering JA, Tang S, Giesy JP, Yu H. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:780-787. [PMID: 29027256 DOI: 10.1002/etc.4000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/11/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC.
Collapse
|
|
7 |
13 |
17
|
Ankley GT, Blackwell BR, Cavallin JE, Doering JA, Feifarek DJ, Jensen KM, Kahl MD, LaLone CA, Poole ST, Randolph EC, Saari TW, Villeneuve DL. Adverse Outcome Pathway Network-Based Assessment of the Interactive Effects of an Androgen Receptor Agonist and an Aromatase Inhibitor on Fish Endocrine Function. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:913-922. [PMID: 31965587 PMCID: PMC7357796 DOI: 10.1002/etc.4668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 05/21/2023]
Abstract
Predictive approaches to assessing the toxicity of contaminant mixtures have been largely limited to chemicals that exert effects through the same biological molecular initiating event. However, by understanding specific pathways through which chemicals exert effects, it may be possible to identify shared "downstream" nodes as the basis for forecasting interactive effects of chemicals with different molecular initiating events. Adverse outcome pathway (AOP) networks conceptually support this type of analysis. We assessed the utility of a simple AOP network for predicting the effects of mixtures of an aromatase inhibitor (fadrozole) and an androgen receptor agonist (17β-trenbolone) on aspects of reproductive endocrine function in female fathead minnows. The fish were exposed to multiple concentrations of fadrozole and 17β-trenbolone individually or in combination for 48 or 96 h. Effects on 2 shared nodes in the AOP network, plasma 17β-estradiol (E2) concentration and vitellogenin (VTG) production (measured as hepatic vtg transcripts) responded as anticipated to fadrozole alone but were minimally impacted by 17β-trenbolone alone. Overall, there were indications that 17β-trenbolone enhanced decreases in E2 and vtg in fadrozole-exposed fish, as anticipated, but the results often were not statistically significant. Failure to consistently observe hypothesized interactions between fadrozole and 17β-trenbolone could be due to several factors, including lack of impact of 17β-trenbolone, inherent biological variability in the endpoints assessed, and/or an incomplete understanding of interactions (including feedback) between different pathways within the hypothalamic-pituitary-gonadal axis. Environ Toxicol Chem 2020;39:913-922. © 2020 SETAC.
Collapse
|
research-article |
5 |
13 |
18
|
Doering JA, Villeneuve DL, Fay KA, Randolph EC, Jensen KM, Kahl MD, LaLone CA, Ankley GT. Differential Sensitivity to In Vitro Inhibition of Cytochrome P450 Aromatase (CYP19) Activity Among 18 Freshwater Fishes. Toxicol Sci 2020; 170:394-403. [PMID: 31099392 DOI: 10.1093/toxsci/kfz115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is significant concern regarding potential impairment of fish reproduction associated with endocrine disrupting chemicals. Aromatase (CYP19) is a steroidogenic enzyme involved in the conversion of androgens to estrogens. Inhibition of aromatase by chemicals can result in reduced concentrations of estrogens leading to adverse reproductive effects. These effects have been extensively investigated in a small number of laboratory model fishes, such as fathead minnow (Pimephales promelas), Japanese medaka (Oryzias latipes), and zebrafish (Danio rerio). But, differences in sensitivity among species are largely unknown. Therefore, this study took a first step toward understanding potential differences in sensitivity to aromatase inhibitors among fishes. Specifically, a standard in vitro aromatase inhibition assay using subcellular fractions of whole tissue homogenates was used to evaluate the potential sensitivity of 18 phylogenetically diverse species of freshwater fish to the nonsteroidal aromatase inhibitor fadrozole. Sensitivity to fadrozole ranged by more than 52-fold among these species. Five species were further investigated for sensitivity to up to 4 additional nonsteroidal aromatase inhibitors, letrozole, imazalil, prochloraz, and propiconazole. Potencies of each of these chemicals relative to fadrozole ranged by up to 2 orders of magnitude among the 5 species. Fathead minnow, Japanese medaka, and zebrafish were among the least sensitive to all the investigated chemicals; therefore, ecological risks of aromatase inhibitors derived from these species might not be adequately protective of more sensitive native fishes. This information could guide more objective ecological risk assessments of native fishes to chemicals that inhibit aromatase.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
12 |
19
|
Vardy DW, Oellers J, Doering JA, Hollert H, Giesy JP, Hecker M. Sensitivity of early life stages of white sturgeon, rainbow trout, and fathead minnow to copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:139-147. [PMID: 23124699 DOI: 10.1007/s10646-012-1010-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 06/01/2023]
Abstract
Populations of white sturgeon (WS; Acipenser transmontanus) are in decline in several parts of the United States and Canada, attributed primarily to poor recruitment caused by degradation of habitats, including pollution with contaminants such as metals. Little is known about sensitivity of WS to contaminants or metals such as copper (Cu). Here, acute (96 h) mortalities of WS early life stages due to exposure to Cu under laboratory conditions are reported. Two standard test species, rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas), were exposed in parallel to determine relative sensitivity among species. Swim-up larvae [15 days post-hatch (dph)] and early juveniles (40-45 dph) of WS were more sensitive to Cu (LC(50) = 10 and 9-17 μg/L, respectively) than were yolksac larvae (8 dph; LC(50) = 22 μg/L) and the later juvenile life stage (100 dph; LC(50) = 54 μg/L). WS were more sensitive to Cu than rainbow trout and fathead minnow at all comparable life stages tested. Yolksac larvae of rainbow trout and fathead minnow were 1.8 and 4.6 times, respectively, more tolerant than WS, while swim-up and juvenile life stages of rainbow trout were between 1.4- and 2.4-times more tolerant than WS. When plotted in a species sensitivity distribution with other fishes, the mean acute toxicity value for early life stage WS was ranked between the 1st and 2nd centile. The WS life stage of greatest Cu sensitivity coincides with the beginning of active feeding and close association with sediment, possibly increasing risk. WS early life stages are sensitive to aqueous copper exposure and site-specific water quality guidelines and criteria should be evaluated closely to ensure adequate protection.
Collapse
|
|
12 |
12 |
20
|
Doering JA, Villeneuve DL, Poole ST, Blackwell BR, Jensen KM, Kahl MD, Kittelson AR, Feifarek DJ, Tilton CB, LaLone CA, Ankley GT. Quantitative Response-Response Relationships Linking Aromatase Inhibition to Decreased Fecundity are Conserved Across Three Fishes with Asynchronous Oocyte Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10470-10478. [PMID: 31386814 DOI: 10.1021/acs.est.9b02606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative adverse outcome pathways (qAOPs) describe quantitative response-response relationships that can predict the probability or severity of an adverse outcome for a given magnitude of chemical interaction with a molecular initiating event. However, the taxonomic domain of applicability for these predictions is largely untested. The present study began defining this applicability for a previously described qAOP for aromatase inhibition leading to decreased fecundity developed using data from fathead minnow (Pimephales promelas). This qAOP includes quantitative response-response relationships describing plasma 17β-estradiol (E2) as a function of plasma fadrozole, plasma vitellogenin (VTG) as a function of plasma E2, and fecundity as a function of plasma VTG. These quantitative response-response relationships simulated plasma E2, plasma VTG, and fecundity measured in female zebrafish (Danio rerio) exposed to fadrozole for 21 days but not these responses measured in female Japanese medaka (Oryzias latipes). However, Japanese medaka had different basal levels of plasma E2, plasma VTG, and fecundity. Normalizing basal levels of each measurement to equal those of female fathead minnow enabled the relationships to accurately simulate plasma E2, plasma VTG, and fecundity measured in female Japanese medaka. This suggests that these quantitative response-response relationships are conserved across these three fishes when considering relative change rather than absolute measurements. The present study represents an early step toward defining the appropriate taxonomic domain of applicability and extending the regulatory applications of this qAOP.
Collapse
|
|
6 |
10 |
21
|
Fujita KK, Doering JA, Stock E, Lu Z, Montina T, Wiseman S. Effects of dietary 2-(2H-benzotriazol-2-yl)-4-methylphenol (UV-P) exposure on Japanese medaka (Oryzias latipes) in a short-term reproduction assay. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106206. [PMID: 35635984 DOI: 10.1016/j.aquatox.2022.106206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BZT-UVs) are added to various products to prevent damage caused by UV light and have emerged as contaminants of concern. Although BZT-UVs are detected in aquatic biota globally, few studies have assessed their potential toxic effects. The objective of the present study was to assess effects of 2-(2H-Benzotriazol-2-yl)-4-methylphenol (UV-P) on reproductive success of Japanese medaka (Oryzias latipes) in a standard 21-day reproduction assay. Japanese medaka were exposed to dietary UV-P at concentrations of 0, 36, 158, and 634 ng UV-P/g food, for a total of 28 days which included 7 days of exposure prior to the start of the 21-day reproduction assay. No significant effect on egg production or fertilization success was observed. Abundances of transcripts of erα, vtgI, cyp1a, or cyp3a4 were not significantly different in livers from male or female fish exposed to UV-P. However, abundances of transcripts of cyp11a and cyp19a were significantly lower in gonads from female fish. There was a trend of increasing concentrations of E2 and a non-significant increase of T in the 634 ng/g treatment in plasma from female fish exposed to UV-P. Concentrations of 11-KT were unchanged in plasma from males exposed to UV-P. These responses suggest weak perturbation of steroidogenesis, consistent with an antiandrogenic mode of action. However, this perturbation was insufficient to impair reproductive performance. Metabolomics analysis of female livers suggests altered concentrations of various metabolites and biological pathways, including glutathione metabolism, suggesting that UV-P might cause responses related to oxidative stress or phase II metabolism. However, metabolomics revealed no obvious mechanism of toxicity. Overall, results of this study indicate that dietary exposure to UV-P up to 634 ng/g food does not significantly impact reproductive performance of Japanese medaka but impacts on steroidogenesis could indicate a potential mechanism of toxicity which might lead to reproductive impairment in more sensitive species.
Collapse
|
|
3 |
10 |
22
|
Doering JA, Wiseman S, Beitel SC, Giesy JP, Hecker M. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:27-35. [PMID: 24632312 DOI: 10.1016/j.aquatox.2014.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following exposure to βNF, and both AhRs having greatest similarity to AhRs known to bind DLCs, it is hypothesized that both AhR1 and AhR2 of white sturgeon might mediate effects of DLCs in this species. Since current risk assessments are based on data derived largely from highly divergent fishes within the Salmonidae, presence of two functional AhRs in white sturgeon, one of which has greatest similarity to AhRs of birds, might have significant implications for the sensitivity of sturgeons to DLCs compared to other fishes.
Collapse
|
|
11 |
9 |
23
|
Doering JA, Wiseman S, Beitel SC, Tendler BJ, Giesy JP, Hecker M. Tissue specificity of aryl hydrocarbon receptor (AhR) mediated responses and relative sensitivity of white sturgeon (Acipenser transmontanus) to an AhR agonist. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:125-133. [PMID: 22446824 DOI: 10.1016/j.aquatox.2012.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 05/31/2023]
Abstract
Sturgeons are endangered in some parts of the world. Due to their benthic nature and longevity sturgeon are at greater risk of exposure to bioaccumulative contaminants such as dioxin-like compounds that are associated with sediments. Despite their endangered status, little research has been conducted to characterize the relative responsiveness of sturgeon to dioxin-like compounds. In an attempt to study the biological effects and possible associated risks of exposure to dioxin-like compounds in sturgeon, the molecular and biochemical responses of white sturgeon (Acipenser transmontanus) to a model aryl hydrocarbon receptor (AhR) agonist, β-naphthoflavone (βNF) were investigated. White sturgeon were injected intraperitoneally with one of three doses of βNF (0, 50, or 500mg/kg, bw). Rainbow trout (Oncorhynchus mykiss) were used as a reference species since their responses have been well characterized in the past. Three days following injection with βNF, fish were euthanized and livers, gills, and intestines collected for biochemical and molecular analyses. White sturgeon exposed to βNF had significantly greater ethoxyresorufin O-deethylase (EROD) activity in liver (up to 37-fold), gill (up to 41-fold), and intestine (up to 36-fold) than did unexposed controls. Rainbow trout injected with βNF exhibited EROD activity that was significantly greater in liver (88-fold), than that of controls, but was undetectable in gills or intestine. Abundance of CYP1A transcript displayed a comparable pattern of tissue-specific induction with intestine (up to 189-fold), gills (up to 53-fold), and liver (up to 21-fold). Methoxyresorufin O-deethylase (MROD) and pentoxyresorufin O-deethylase (PROD) activities were undetectable in unexposed white sturgeon tissues while exposed tissues displayed MROD activity that was only moderately greater than the activity that could be detected. Differential inducibility among liver, gill, and intestine following exposure to an AhR agonist is likely associated with tissue-specific regulation of the AhR signalling pathway. Liver and gill of white sturgeon had significantly greater AhR transcript abundance than did the intestine, however following exposure to βNF, significantly greater induction in AhR transcript abundance was detected in intestine (up to 35-fold) compared to liver (up to 5-fold) or gills (up to 11-fold). It was shown that white sturgeon are responsive to AhR agonists in the liver, gill, and intestine and could be among the more sensitive fish species with regard to inducibility of CYP1A.
Collapse
|
|
13 |
9 |
24
|
Doering JA, Dubiel J, Wiseman S. Predicting Early Life Stage Mortality in Birds and Fishes from Exposure to Low-Potency Agonists of the Aryl Hydrocarbon Receptor: A Cross-Species Quantitative Adverse Outcome Pathway Approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2055-2064. [PMID: 32648946 DOI: 10.1002/etc.4816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Dioxin-like compounds (DLCs) cause early life stage mortality of vertebrates through activation of the aryl hydrocarbon receptor (AhR). A prior study developed a cross-species quantitative adverse outcome pathway (qAOP) which can predict full dose-response curves of early life stage mortality for any species of bird or fish exposed to DLCs using the species- and chemical-specific 50% effect concentration (EC50) from an in vitro AhR transactivation assay with COS-7 cells. However, calculating a reliable EC50 for input into this qAOP requires the maximal response of the concentration-response curve to be known, which is not always possible for low-potency agonists, such as some polychlorinated biphenyls (PCBs). To enable predictions for these low-potency agonists, the present study revised this qAOP to use the effect concentration threshold (ECThreshold ) from the in vitro AhR transactivation assay as input. Significant linear relationships were demonstrated between ECThreshold and the dose to cause 0, 10, 50, or 100% mortality among early life stages of 3 species of birds and 7 species of fish for 4 DLCs: 2,3,7,8-tetrachlorodibenzo-p-dioxin, PCB 126, PCB 77, and PCB 105. These 4 linear relationships were combined to form the revised qAOP. This qAOP using the ECThreshold enables prediction of experimental dose-response curves for lower-potency agonists to within an order of magnitude on average, but the prior qAOP using EC50 predicts experimental dose-response curves for higher-potency agonists with greater accuracy. Environ Toxicol Chem 2020;39:2055-2064. © 2020 SETAC.
Collapse
|
Meta-Analysis |
5 |
7 |
25
|
Wu Y, Doering JA, Ma Z, Tang S, Liu H, Zhang X, Wang X, Yu H. Identification of androgen receptor antagonists: In vitro investigation and classification methodology for flavonoid. CHEMOSPHERE 2016; 158:72-79. [PMID: 27258897 DOI: 10.1016/j.chemosphere.2016.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
A tremendous gap exists between the number of potential endocrine disrupting chemicals (EDCs) possibly in the environment and the limitation of traditional regulatory testing. In this study, the anti-androgenic potencies of 21 flavonoids were analyzed in vitro, and another 32 flavonoids from the literature were selected as additional chemicals. Molecular dynamic simulations were employed to obtain four different separation approaches based on the different behaviors of ligands and receptors during the process of interaction. Specifically, ligand-receptor complex which highlighted the discriminating features of ligand escape or retention via "mousetrap" mechanism, hydrogen bonds formed during simulation times, ligand stability and the stability of the helix-12 of the receptor were investigated. Together, a methodology was generated that 87.5% of flavonoids could be discriminated as active versus inactive antagonists, and over 90% inactive antagonists could be filtered out before QSAR study. This methodology could be used as a "proof of concept" to identify inactive anti-androgenic flavonoids, as well could be beneficial for rapid risk assessment and regulation of multiple new chemicals for androgenicity.
Collapse
|
|
9 |
4 |