1
|
Litjens G, Ciompi F, Wolterink JM, de Vos BD, Leiner T, Teuwen J, Išgum I. State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC Cardiovasc Imaging 2019; 12:1549-1565. [DOI: 10.1016/j.jcmg.2019.06.009] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/13/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
|
|
6 |
194 |
2
|
Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2306-2317. [PMID: 33929957 PMCID: PMC8428775 DOI: 10.1109/tmi.2021.3075856] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided participants with data from 7,299 clinical brain scans (de-identified via a HIPAA-compliant procedure by NYU Langone Health), holding back the fully-sampled data from 894 of these scans for challenge evaluation purposes. In contrast to the 2019 challenge, we focused our radiologist evaluations on pathological assessment in brain images. We also debuted a new Transfer track that required participants to submit models evaluated on MRI scanners from outside the training set. We received 19 submissions from eight different groups. Results showed one team scoring best in both SSIM scores and qualitative radiologist evaluations. We also performed analysis on alternative metrics to mitigate the effects of background noise and collected feedback from the participants to inform future challenges. Lastly, we identify common failure modes across the submissions, highlighting areas of need for future research in the MRI reconstruction community.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
118 |
3
|
Pati S, Baid U, Edwards B, Sheller M, Wang SH, Reina GA, Foley P, Gruzdev A, Karkada D, Davatzikos C, Sako C, Ghodasara S, Bilello M, Mohan S, Vollmuth P, Brugnara G, Preetha CJ, Sahm F, Maier-Hein K, Zenk M, Bendszus M, Wick W, Calabrese E, Rudie J, Villanueva-Meyer J, Cha S, Ingalhalikar M, Jadhav M, Pandey U, Saini J, Garrett J, Larson M, Jeraj R, Currie S, Frood R, Fatania K, Huang RY, Chang K, Balaña C, Capellades J, Puig J, Trenkler J, Pichler J, Necker G, Haunschmidt A, Meckel S, Shukla G, Liem S, Alexander GS, Lombardo J, Palmer JD, Flanders AE, Dicker AP, Sair HI, Jones CK, Venkataraman A, Jiang M, So TY, Chen C, Heng PA, Dou Q, Kozubek M, Lux F, Michálek J, Matula P, Keřkovský M, Kopřivová T, Dostál M, Vybíhal V, Vogelbaum MA, Mitchell JR, Farinhas J, Maldjian JA, Yogananda CGB, Pinho MC, Reddy D, Holcomb J, Wagner BC, Ellingson BM, Cloughesy TF, Raymond C, Oughourlian T, Hagiwara A, Wang C, To MS, Bhardwaj S, Chong C, Agzarian M, Falcão AX, Martins SB, Teixeira BCA, Sprenger F, Menotti D, Lucio DR, LaMontagne P, Marcus D, Wiestler B, Kofler F, Ezhov I, Metz M, et alPati S, Baid U, Edwards B, Sheller M, Wang SH, Reina GA, Foley P, Gruzdev A, Karkada D, Davatzikos C, Sako C, Ghodasara S, Bilello M, Mohan S, Vollmuth P, Brugnara G, Preetha CJ, Sahm F, Maier-Hein K, Zenk M, Bendszus M, Wick W, Calabrese E, Rudie J, Villanueva-Meyer J, Cha S, Ingalhalikar M, Jadhav M, Pandey U, Saini J, Garrett J, Larson M, Jeraj R, Currie S, Frood R, Fatania K, Huang RY, Chang K, Balaña C, Capellades J, Puig J, Trenkler J, Pichler J, Necker G, Haunschmidt A, Meckel S, Shukla G, Liem S, Alexander GS, Lombardo J, Palmer JD, Flanders AE, Dicker AP, Sair HI, Jones CK, Venkataraman A, Jiang M, So TY, Chen C, Heng PA, Dou Q, Kozubek M, Lux F, Michálek J, Matula P, Keřkovský M, Kopřivová T, Dostál M, Vybíhal V, Vogelbaum MA, Mitchell JR, Farinhas J, Maldjian JA, Yogananda CGB, Pinho MC, Reddy D, Holcomb J, Wagner BC, Ellingson BM, Cloughesy TF, Raymond C, Oughourlian T, Hagiwara A, Wang C, To MS, Bhardwaj S, Chong C, Agzarian M, Falcão AX, Martins SB, Teixeira BCA, Sprenger F, Menotti D, Lucio DR, LaMontagne P, Marcus D, Wiestler B, Kofler F, Ezhov I, Metz M, Jain R, Lee M, Lui YW, McKinley R, Slotboom J, Radojewski P, Meier R, Wiest R, Murcia D, Fu E, Haas R, Thompson J, Ormond DR, Badve C, Sloan AE, Vadmal V, Waite K, Colen RR, Pei L, Ak M, Srinivasan A, Bapuraj JR, Rao A, Wang N, Yoshiaki O, Moritani T, Turk S, Lee J, Prabhudesai S, Morón F, Mandel J, Kamnitsas K, Glocker B, Dixon LVM, Williams M, Zampakis P, Panagiotopoulos V, Tsiganos P, Alexiou S, Haliassos I, Zacharaki EI, Moustakas K, Kalogeropoulou C, Kardamakis DM, Choi YS, Lee SK, Chang JH, Ahn SS, Luo B, Poisson L, Wen N, Tiwari P, Verma R, Bareja R, Yadav I, Chen J, Kumar N, Smits M, van der Voort SR, Alafandi A, Incekara F, Wijnenga MMJ, Kapsas G, Gahrmann R, Schouten JW, Dubbink HJ, Vincent AJPE, van den Bent MJ, French PJ, Klein S, Yuan Y, Sharma S, Tseng TC, Adabi S, Niclou SP, Keunen O, Hau AC, Vallières M, Fortin D, Lepage M, Landman B, Ramadass K, Xu K, Chotai S, Chambless LB, Mistry A, Thompson RC, Gusev Y, Bhuvaneshwar K, Sayah A, Bencheqroun C, Belouali A, Madhavan S, Booth TC, Chelliah A, Modat M, Shuaib H, Dragos C, Abayazeed A, Kolodziej K, Hill M, Abbassy A, Gamal S, Mekhaimar M, Qayati M, Reyes M, Park JE, Yun J, Kim HS, Mahajan A, Muzi M, Benson S, Beets-Tan RGH, Teuwen J, Herrera-Trujillo A, Trujillo M, Escobar W, Abello A, Bernal J, Gómez J, Choi J, Baek S, Kim Y, Ismael H, Allen B, Buatti JM, Kotrotsou A, Li H, Weiss T, Weller M, Bink A, Pouymayou B, Shaykh HF, Saltz J, Prasanna P, Shrestha S, Mani KM, Payne D, Kurc T, Pelaez E, Franco-Maldonado H, Loayza F, Quevedo S, Guevara P, Torche E, Mendoza C, Vera F, Ríos E, López E, Velastin SA, Ogbole G, Soneye M, Oyekunle D, Odafe-Oyibotha O, Osobu B, Shu'aibu M, Dorcas A, Dako F, Simpson AL, Hamghalam M, Peoples JJ, Hu R, Tran A, Cutler D, Moraes FY, Boss MA, Gimpel J, Veettil DK, Schmidt K, Bialecki B, Marella S, Price C, Cimino L, Apgar C, Shah P, Menze B, Barnholtz-Sloan JS, Martin J, Bakas S. Federated learning enables big data for rare cancer boundary detection. Nat Commun 2022; 13:7346. [PMID: 36470898 PMCID: PMC9722782 DOI: 10.1038/s41467-022-33407-5] [Show More Authors] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/16/2022] [Indexed: 12/12/2022] Open
Abstract
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
111 |
4
|
Sechopoulos I, Teuwen J, Mann R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Semin Cancer Biol 2020; 72:214-225. [PMID: 32531273 DOI: 10.1016/j.semcancer.2020.06.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
Collapse
|
Review |
5 |
105 |
5
|
Lessmann N, Sánchez CI, Beenen L, Boulogne LH, Brink M, Calli E, Charbonnier JP, Dofferhoff T, van Everdingen WM, Gerke PK, Geurts B, Gietema HA, Groeneveld M, van Harten L, Hendrix N, Hendrix W, Huisman HJ, Išgum I, Jacobs C, Kluge R, Kok M, Krdzalic J, Lassen-Schmidt B, van Leeuwen K, Meakin J, Overkamp M, van Rees Vellinga T, van Rikxoort EM, Samperna R, Schaefer-Prokop C, Schalekamp S, Scholten ET, Sital C, Stöger L, Teuwen J, Vaidhya Venkadesh K, de Vente C, Vermaat M, Xie W, de Wilde B, Prokop M, van Ginneken B. Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology 2021; 298:E18-E28. [PMID: 32729810 PMCID: PMC7393955 DOI: 10.1148/radiol.2020202439] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has spread across the globe with alarming speed, morbidity, and mortality. Immediate triage of patients with chest infections suspected to be caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. Purpose To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the COVID-19 Reporting and Data System (CO-RADS) and CT severity scoring systems. Materials and Methods The CO-RADS AI system consists of three deep-learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19, and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who underwent a nonenhanced chest CT examination because of clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic analysis, linearly weighted κ values, and classification accuracy. Results A total of 105 patients (mean age, 62 years ± 16 [standard deviation]; 61 men) and 262 patients (mean age, 64 years ± 16; 154 men) were evaluated in the internal and external test sets, respectively. The system discriminated between patients with COVID-19 and those without COVID-19, with areas under the receiver operating characteristic curve of 0.95 (95% CI: 0.91, 0.98) and 0.88 (95% CI: 0.84, 0.93), for the internal and external test sets, respectively. Agreement with the eight human observers was moderate to substantial, with mean linearly weighted κ values of 0.60 ± 0.01 for CO-RADS scores and 0.54 ± 0.01 for CT severity scores. Conclusion With high diagnostic performance, the CO-RADS AI system correctly identified patients with COVID-19 using chest CT scans and assigned standardized CO-RADS and CT severity scores that demonstrated good agreement with findings from eight independent observers and generalized well to external data. © RSNA, 2020 Supplemental material is available for this article.
Collapse
|
Multicenter Study |
4 |
96 |
6
|
Schirris Y, Gavves E, Nederlof I, Horlings HM, Teuwen J. DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer. Med Image Anal 2022; 79:102464. [DOI: 10.1016/j.media.2022.102464] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
|
3 |
60 |
7
|
van Winkel SL, Rodríguez-Ruiz A, Appelman L, Gubern-Mérida A, Karssemeijer N, Teuwen J, Wanders AJT, Sechopoulos I, Mann RM. Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study. Eur Radiol 2021; 31:8682-8691. [PMID: 33948701 PMCID: PMC8523448 DOI: 10.1007/s00330-021-07992-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/16/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022]
Abstract
Objectives Digital breast tomosynthesis (DBT) increases sensitivity of mammography and is increasingly implemented in breast cancer screening. However, the large volume of images increases the risk of reading errors and reading time. This study aims to investigate whether the accuracy of breast radiologists reading wide-angle DBT increases with the aid of an artificial intelligence (AI) support system. Also, the impact on reading time was assessed and the stand-alone performance of the AI system in the detection of malignancies was compared to the average radiologist. Methods A multi-reader multi-case study was performed with 240 bilateral DBT exams (71 breasts with cancer lesions, 70 breasts with benign findings, 339 normal breasts). Exams were interpreted by 18 radiologists, with and without AI support, providing cancer suspicion scores per breast. Using AI support, radiologists were shown examination-based and region-based cancer likelihood scores. Area under the receiver operating characteristic curve (AUC) and reading time per exam were compared between reading conditions using mixed-models analysis of variance. Results On average, the AUC was higher using AI support (0.863 vs 0.833; p = 0.0025). Using AI support, reading time per DBT exam was reduced (p < 0.001) from 41 (95% CI = 39–42 s) to 36 s (95% CI = 35– 37 s). The AUC of the stand-alone AI system was non-inferior to the AUC of the average radiologist (+0.007, p = 0.8115). Conclusions Radiologists improved their cancer detection and reduced reading time when evaluating DBT examinations using an AI reading support system. Key Points • Radiologists improved their cancer detection accuracy in digital breast tomosynthesis (DBT) when using an AI system for support, while simultaneously reducing reading time. • The stand-alone breast cancer detection performance of an AI system is non-inferior to the average performance of radiologists for reading digital breast tomosynthesis exams. • The use of an AI support system could make advanced and more reliable imaging techniques more accessible and could allow for more cost-effective breast screening programs with DBT.
Collapse
|
Journal Article |
4 |
52 |
8
|
Balkenende L, Teuwen J, Mann RM. Application of Deep Learning in Breast Cancer Imaging. Semin Nucl Med 2022; 52:584-596. [PMID: 35339259 DOI: 10.1053/j.semnuclmed.2022.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
This review gives an overview of the current state of deep learning research in breast cancer imaging. Breast imaging plays a major role in detecting breast cancer at an earlier stage, as well as monitoring and evaluating breast cancer during treatment. The most commonly used modalities for breast imaging are digital mammography, digital breast tomosynthesis, ultrasound and magnetic resonance imaging. Nuclear medicine imaging techniques are used for detection and classification of axillary lymph nodes and distant staging in breast cancer imaging. All of these techniques are currently digitized, enabling the possibility to implement deep learning (DL), a subset of Artificial intelligence, in breast imaging. DL is nowadays embedded in a plethora of different tasks, such as lesion classification and segmentation, image reconstruction and generation, cancer risk prediction, and prediction and assessment of therapy response. Studies show similar and even better performances of DL algorithms compared to radiologists, although it is clear that large trials are needed, especially for ultrasound and magnetic resonance imaging, to exactly determine the added value of DL in breast cancer imaging. Studies on DL in nuclear medicine techniques are only sparsely available and further research is mandatory. Legal and ethical issues need to be considered before the role of DL can expand to its full potential in clinical breast care practice.
Collapse
|
Review |
3 |
50 |
9
|
Wahid KA, Ahmed S, He R, van Dijk LV, Teuwen J, McDonald BA, Salama V, Mohamed AS, Salzillo T, Dede C, Taku N, Lai SY, Fuller CD, Naser MA. Evaluation of deep learning-based multiparametric MRI oropharyngeal primary tumor auto-segmentation and investigation of input channel effects: Results from a prospective imaging registry. Clin Transl Radiat Oncol 2022; 32:6-14. [PMID: 34765748 PMCID: PMC8570930 DOI: 10.1016/j.ctro.2021.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND/PURPOSE Oropharyngeal cancer (OPC) primary gross tumor volume (GTVp) segmentation is crucial for radiotherapy. Multiparametric MRI (mpMRI) is increasingly used for OPC adaptive radiotherapy but relies on manual segmentation. Therefore, we constructed mpMRI deep learning (DL) OPC GTVp auto-segmentation models and determined the impact of input channels on segmentation performance. MATERIALS/METHODS GTVp ground truth segmentations were manually generated for 30 OPC patients from a clinical trial. We evaluated five mpMRI input channels (T2, T1, ADC, Ktrans, Ve). 3D Residual U-net models were developed and assessed using leave-one-out cross-validation. A baseline T2 model was compared to mpMRI models (T2 + T1, T2 + ADC, T2 + Ktrans, T2 + Ve, all five channels [ALL]) primarily using the Dice similarity coefficient (DSC). False-negative DSC (FND), false-positive DSC, sensitivity, positive predictive value, surface DSC, Hausdorff distance (HD), 95% HD, and mean surface distance were also assessed. For the best model, ground truth and DL-generated segmentations were compared through a blinded Turing test using three physician observers. RESULTS Models yielded mean DSCs from 0.71 ± 0.12 (ALL) to 0.73 ± 0.12 (T2 + T1). Compared to the T2 model, performance was significantly improved for FND, sensitivity, surface DSC, HD, and 95% HD for the T2 + T1 model (p < 0.05) and for FND for the T2 + Ve and ALL models (p < 0.05). No model demonstrated significant correlations between tumor size and DSC (p > 0.05). Most models demonstrated significant correlations between tumor size and HD or Surface DSC (p < 0.05), except those that included ADC or Ve as input channels (p > 0.05). On average, there were no significant differences between ground truth and DL-generated segmentations for all observers (p > 0.05). CONCLUSION DL using mpMRI provides reasonably accurate segmentations of OPC GTVp that may be comparable to ground truth segmentations generated by clinical experts. Incorporating additional mpMRI channels may increase the performance of FND, sensitivity, surface DSC, HD, and 95% HD, and improve model robustness to tumor size.
Collapse
|
research-article |
3 |
25 |
10
|
Hou R, Grimm LJ, Mazurowski MA, Marks JR, King LM, Maley CC, Lynch T, van Oirsouw M, Rogers K, Stone N, Wallis M, Teuwen J, Wesseling J, Hwang ES, Lo JY. Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features. Radiology 2022; 303:54-62. [PMID: 34981975 DOI: 10.1148/radiol.210407] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Improving diagnosis of ductal carcinoma in situ (DCIS) before surgery is important in choosing optimal patient management strategies. However, patients may harbor occult invasive disease not detected until definitive surgery. Purpose To assess the performance and clinical utility of mammographic radiomic features in the prediction of occult invasive cancer among women diagnosed with DCIS on the basis of core biopsy findings. Materials and Methods In this Health Insurance Portability and Accountability Act-compliant retrospective study, digital magnification mammographic images were collected from women who underwent breast core-needle biopsy for calcifications that was performed at a single institution between September 2008 and April 2017 and yielded a diagnosis of DCIS. The database query was directed at asymptomatic women with calcifications without a mass, architectural distortion, asymmetric density, or palpable disease. Logistic regression with regularization was used. Differences across training and internal test set by upstaging rate, age, lesion size, and estrogen and progesterone receptor status were assessed by using the Kruskal-Wallis or χ2 test. Results The study consisted of 700 women with DCIS (age range, 40-89 years; mean age, 59 years ± 10 [standard deviation]), including 114 with lesions (16.3%) upstaged to invasive cancer at subsequent surgery. The sample was split randomly into 400 women for the training set and 300 for the testing set (mean ages: training set, 59 years ± 10; test set, 59 years ± 10; P = .85). A total of 109 radiomic and four clinical features were extracted. The best model on the test set by using all radiomic and clinical features helped predict upstaging with an area under the receiver operating characteristic curve of 0.71 (95% CI: 0.62, 0.79). For a fixed high sensitivity (90%), the model yielded a specificity of 22%, a negative predictive value of 92%, and an odds ratio of 2.4 (95% CI: 1.8, 3.2). High specificity (90%) corresponded to a sensitivity of 37%, positive predictive value of 41%, and odds ratio of 5.0 (95% CI: 2.8, 9.0). Conclusion Machine learning models that use radiomic features applied to mammographic calcifications may help predict upstaging of ductal carcinoma in situ, which can refine clinical decision making and treatment planning. © RSNA, 2022.
Collapse
|
|
3 |
24 |
11
|
Garrett Fernandes M, Bussink J, Stam B, Wijsman R, Schinagl DAX, Monshouwer R, Teuwen J. Deep learning model for automatic contouring of cardiovascular substructures on radiotherapy planning CT images: Dosimetric validation and reader study based clinical acceptability testing. Radiother Oncol 2021; 165:52-59. [PMID: 34688808 DOI: 10.1016/j.radonc.2021.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Large radiotherapy (RT) planning imaging datasets with consistently contoured cardiovascular structures are essential for robust cardiac radiotoxicity research in thoracic cancers. This study aims to develop and validate a highly accurate automatic contouring model for the heart, cardiac chambers, and great vessels for RT planning computed tomography (CT) images that can be used for dose-volume parameter estimation. MATERIALS AND METHODS A neural network model was trained using a dataset of 127 expertly contoured planning CT images from RT treatment of locally advanced non-small-cell lung cancer (NSCLC) patients. Evaluation of geometric accuracy and quality of dosimetric parameter estimation was performed on 50 independent scans with contrast and without contrast enhancement. The model was further evaluated regarding the clinical acceptability of the contours in 99 scans randomly sampled from the RTOG-0617 dataset by three experienced radiation oncologists. RESULTS Median surface dice at 3 mm tolerance for all dedicated thoracic structures was 90% in the test set. Median absolute difference between mean dose computed with model contours and expert contours was 0.45 Gy averaged over all structures. The mean clinical acceptability rate by majority vote in the RTOG-0617 scans was 91%. CONCLUSION This model can be used to contour the heart, cardiac chambers, and great vessels in large datasets of RT planning thoracic CT images accurately, quickly, and consistently. Additionally, the model can be used as a time-saving tool for contouring in clinic practice.
Collapse
|
|
4 |
23 |
12
|
Ayatollahi F, Shokouhi SB, Mann RM, Teuwen J. Automatic breast lesion detection in ultrafast DCE-MRI using deep learning. Med Phys 2021; 48:5897-5907. [PMID: 34370886 DOI: 10.1002/mp.15156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 01/23/2023] Open
Abstract
PURPOSE We propose a deep learning-based computer-aided detection (CADe) method to detect breast lesions in ultrafast DCE-MRI sequences. This method uses both the 3D spatial information and temporal information obtained from the early-phase of the dynamic acquisition. METHODS The proposed CADe method, based on a modified 3D RetinaNet model, operates on ultrafast T1 weighted sequences, which are preprocessed for motion compensation, temporal normalization, and are cropped before passing into the model. The model is optimized to enable the detection of relatively small breast lesions in a screening setting, focusing on detection of lesions that are harder to differentiate from confounding structures inside the breast. RESULTS The method was developed based on a dataset consisting of 489 ultrafast MRI studies obtained from 462 patients containing a total of 572 lesions (365 malignant, 207 benign) and achieved a detection rate, sensitivity, and detection rate of benign lesions of 0.90 (0.876-0.934), 0.95 (0.934-0.980), and 0.81 (0.751-0.871) at four false positives per normal breast with 10-fold cross-testing, respectively. CONCLUSIONS The deep learning architecture used for the proposed CADe application can efficiently detect benign and malignant lesions on ultrafast DCE-MRI. Furthermore, utilizing the less visible hard-to-detect lesions in training improves the learning process and, subsequently, detection of malignant breast lesions.
Collapse
|
Journal Article |
4 |
21 |
13
|
Rodriguez-Ruiz A, Teuwen J, Vreemann S, Bouwman RW, van Engen RE, Karssemeijer N, Mann RM, Gubern-Merida A, Sechopoulos I. New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers. Acta Radiol 2018; 59:1051-1059. [PMID: 29254355 PMCID: PMC6088454 DOI: 10.1177/0284185117748487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background The image quality of digital breast tomosynthesis (DBT) volumes depends
greatly on the reconstruction algorithm. Purpose To compare two DBT reconstruction algorithms used by the Siemens Mammomat
Inspiration system, filtered back projection (FBP), and FBP with iterative
optimizations (EMPIRE), using qualitative analysis by human readers and
detection performance of machine learning algorithms. Material and Methods Visual grading analysis was performed by four readers specialized in breast
imaging who scored 100 cases reconstructed with both algorithms (70
lesions). Scoring (5-point scale: 1 = poor to 5 = excellent quality) was
performed on presence of noise and artifacts, visualization of skin-line and
Cooper’s ligaments, contrast, and image quality, and, when present, lesion
visibility. In parallel, a three-dimensional deep-learning convolutional
neural network (3D-CNN) was trained (n = 259 patients, 51 positives with
BI-RADS 3, 4, or 5 calcifications) and tested (n = 46 patients, nine
positives), separately with FBP and EMPIRE volumes, to discriminate between
samples with and without calcifications. The partial area under the receiver
operating characteristic curve (pAUC) of each 3D-CNN was used for
comparison. Results EMPIRE reconstructions showed better contrast (3.23 vs. 3.10,
P = 0.010), image quality (3.22 vs. 3.03,
P < 0.001), visibility of calcifications (3.53 vs.
3.37, P = 0.053, significant for one reader), and fewer
artifacts (3.26 vs. 2.97, P < 0.001). The 3D-CNN-EMPIRE
had better performance than 3D-CNN-FBP (pAUC-EMPIRE = 0.880 vs.
pAUC-FBP = 0.857; P < 0.001). Conclusion The new algorithm provides DBT volumes with better contrast and image
quality, fewer artifacts, and improved visibility of calcifications for
human observers, as well as improved detection performance with
deep-learning algorithms.
Collapse
|
Journal Article |
7 |
19 |
14
|
Thagaard J, Broeckx G, Page DB, Jahangir CA, Verbandt S, Kos Z, Gupta R, Khiroya R, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado‐Cabrero I, Amgad M, Azmoudeh‐Ardalan F, Badve S, Baharun NB, Balslev E, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Chardas A, Chon U Cheang M, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dahl AB, Dantas Portela FL, Deman F, Demaria S, Doré Hansen J, Dudgeon SN, Ebstrup T, Elghazawy M, Fernandez‐Martín C, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez‐Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hauberg S, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm A, Lang‐Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Manur Narasimhamurthy V, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault‐Llorca F, Perera RD, Pinard CJ, Pinto‐Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis‐Filho JS, et alThagaard J, Broeckx G, Page DB, Jahangir CA, Verbandt S, Kos Z, Gupta R, Khiroya R, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado‐Cabrero I, Amgad M, Azmoudeh‐Ardalan F, Badve S, Baharun NB, Balslev E, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Chardas A, Chon U Cheang M, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dahl AB, Dantas Portela FL, Deman F, Demaria S, Doré Hansen J, Dudgeon SN, Ebstrup T, Elghazawy M, Fernandez‐Martín C, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez‐Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hauberg S, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm A, Lang‐Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Manur Narasimhamurthy V, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault‐Llorca F, Perera RD, Pinard CJ, Pinto‐Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis‐Filho JS, Ribeiro JM, Rimm D, Roslind A, Vincent‐Salomon A, Salto‐Tellez M, Saltz J, Sayed S, Scott E, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Fineberg S, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, van Diest PJ, Verghese GE, Viale G, Vieth M, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Zin RM, Adams S, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Salgado R, Specht Stovgaard E. Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J Pathol 2023; 260:498-513. [PMID: 37608772 PMCID: PMC10518802 DOI: 10.1002/path.6155] [Show More Authors] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 08/24/2023]
Abstract
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
Review |
2 |
19 |
15
|
Beauferris Y, Teuwen J, Karkalousos D, Moriakov N, Caan M, Yiasemis G, Rodrigues L, Lopes A, Pedrini H, Rittner L, Dannecker M, Studenyak V, Gröger F, Vyas D, Faghih-Roohi S, Kumar Jethi A, Chandra Raju J, Sivaprakasam M, Lasby M, Nogovitsyn N, Loos W, Frayne R, Souza R. Multi-Coil MRI Reconstruction Challenge-Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Front Neurosci 2022; 16:919186. [PMID: 35873808 PMCID: PMC9298878 DOI: 10.3389/fnins.2022.919186] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: (1) to compare different MRI reconstruction models on this dataset and (2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design and summarize the results of a set of baseline and state-of-the-art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code, and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction.
Collapse
|
methods-article |
3 |
17 |
16
|
Teuwen J, Moriakov N, Fedon C, Caballo M, Reiser I, Bakic P, García E, Diaz O, Michielsen K, Sechopoulos I. Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation. Med Image Anal 2021; 71:102061. [PMID: 33910108 DOI: 10.1016/j.media.2021.102061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learning-based reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density <±3%; dose <±20%) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
14 |
17
|
Page DB, Broeckx G, Jahangir CA, Verbandt S, Gupta RR, Thagaard J, Khiroya R, Kos Z, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dantas Portela FL, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Ely S, Femandez-Martín C, Fineberg S, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hardas A, Hart SN, Hartman J, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm AV, Lang-Schwarz C, Larsirnont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis-Filho JS, Ribeiro JM, Rimm D, Vincent-Salomon A, Salto-Tellez M, et alPage DB, Broeckx G, Jahangir CA, Verbandt S, Gupta RR, Thagaard J, Khiroya R, Kos Z, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dantas Portela FL, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Ely S, Femandez-Martín C, Fineberg S, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hardas A, Hart SN, Hartman J, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm AV, Lang-Schwarz C, Larsirnont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis-Filho JS, Ribeiro JM, Rimm D, Vincent-Salomon A, Salto-Tellez M, Saltz J, Sayed S, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, van Diest PJ, Verghese GE, Viale G, Vieth M, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Adams S, Bartlett JMS, Loibl S, Denkert C, Savas P, Loi S, Salgado R, Specht Stovgaard E. Spatial analyses of immune cell infiltration in cancer: current methods and future directions: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J Pathol 2023; 260:514-532. [PMID: 37608771 PMCID: PMC11288334 DOI: 10.1002/path.6165] [Show More Authors] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 08/24/2023]
Abstract
Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
|
Review |
2 |
14 |
18
|
Caballo M, Hernandez AM, Lyu SH, Teuwen J, Mann RM, van Ginneken B, Boone JM, Sechopoulos I. Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic features. J Med Imaging (Bellingham) 2021; 8:024501. [PMID: 33796604 DOI: 10.1117/1.jmi.8.2.024501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose: A computer-aided diagnosis (CADx) system for breast masses is proposed, which incorporates both handcrafted and convolutional radiomic features embedded into a single deep learning model. Approach: The model combines handcrafted and convolutional radiomic signatures into a multi-view architecture, which retrieves three-dimensional (3D) image information by simultaneously processing multiple two-dimensional mass patches extracted along different planes through the 3D mass volume. Each patch is processed by a stream composed of two concatenated parallel branches: a multi-layer perceptron fed with automatically extracted handcrafted radiomic features, and a convolutional neural network, for which discriminant features are learned from the input patches. All streams are then concatenated together into a final architecture, where all network weights are shared and the learning occurs simultaneously for each stream and branch. The CADx system was developed and tested for diagnosis of breast masses ( N = 284 ) using image datasets acquired with independent dedicated breast computed tomography systems from two different institutions. The diagnostic classification performance of the CADx system was compared against other machine and deep learning architectures adopting handcrafted and convolutional approaches, and three board-certified breast radiologists. Results: On a test set of 82 masses (45 benign, 37 malignant), the proposed CADx system performed better than all other model architectures evaluated, with an increase in the area under the receiver operating characteristics curve (AUC) of 0.05 ± 0.02 , and achieving a final AUC of 0.947, outperforming the three radiologists ( AUC = 0.814 - 0.902 ). Conclusions: In conclusion, the system demonstrated its potential usefulness in breast cancer diagnosis by improving mass malignancy assessment.
Collapse
|
|
4 |
8 |
19
|
Sanderink WBG, Teuwen J, Appelman L, Moy L, Heacock L, Weiland E, Karssemeijer N, Baltzer PAT, Sechopoulos I, Mann RM. Comparison of simultaneous multi-slice single-shot DWI to readout-segmented DWI for evaluation of breast lesions at 3T MRI. Eur J Radiol 2021; 138:109626. [PMID: 33711569 DOI: 10.1016/j.ejrad.2021.109626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE To compare diffusion-weighted imaging of the breast performed with a conventional readout-segmented echo-planar imaging (rs-EPI) sequence to when using a prototype simultaneous multi-slice single-shot EPI (SMS-ss-EPI) acquisition. METHOD From September 2017 to December 2018, 26 women with histologically proven breast cancer were scanned with the conventional rs-EPI and the SMS-ss-EPI at 3 T during the same imaging examination. Four breast radiologists (4-13 years of experience) independently scored both acquired series of 25 women (one case was used for training) for overall image quality (1: extremely poor to 9: excellent) and artifacts (1: very disturbing to 5: not present). All lesions (n = 52; 40 malignant, 12 benign) were also evaluated for visibility (1: not visible, 2: visible if location is given, 3: visible). In addition, lesion characteristics were rated, and a BI-RADS score was given. Results were analyzed using visual grading characteristics and the resulting area under the curve (AUCVGC), weighted kappa, McNemar test, and dependent-samples t-test when appropriate. RESULTS Overall, radiologists significantly preferred the image quality in rs-EPI over that of SMS-ss-EPI (AUCVGC: 0.698, P = 0.002). Infolding and ghosting, and distortion artifacts were significantly less apparent in the rs-EPI (AUCVGC: 0.660, P = 0.022 and AUCVGC: 0.700 P = 0.002, respectively). Lesions were, however, significantly better visible on the SMS-ss-EPI images (AUCVGC: 0.427, P = 0.016). Malignant lesions had significantly higher visibility with SMS-ss-EPI (P = 0.035). Sensitivity and specificity were comparable between both sequences (P = 0.760 and P = 0.549, respectively). CONCLUSIONS Despite the perceived lower image quality and the increased presence of artifacts in the SMS-ss-EPI sequence, malignant lesions are better visualized using this sequence.
Collapse
|
Journal Article |
4 |
7 |
20
|
Ayatollahi F, Shokouhi SB, Teuwen J. Differentiating benign and malignant mass and non-mass lesions in breast DCE-MRI using normalized frequency-based features. Int J Comput Assist Radiol Surg 2019; 15:297-307. [PMID: 31838643 DOI: 10.1007/s11548-019-02103-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE In this study, we propose a new computer-aided diagnosis (CADx) to distinguish between malign and benign mass and non-mass lesions in breast DCE-MRI. For this purpose, we introduce new frequency textural features. METHODS In this paper, we propose novel normalized frequency-based features. These are obtained by applying the dual-tree complex wavelet transform to MRI slices containing a lesion for specific decomposition levels. The low-pass and band-pass frequency coefficients of the dual-tree complex wavelet transform represent the general shape and texture features, respectively, of the lesion. The extraction of these features is computationally efficient. We employ a support vector machine to classify the lesions, and investigate modified cost functions and under- and oversampling strategies to handle the class imbalance. RESULTS The proposed method has been tested on a dataset of 80 patients containing 103 lesions. An area under the curve of 0.98 for the mass and 0.94 for the non-mass lesions is obtained. Similarly, accuracies of 96.9% and 89.8%, sensitivities of 93.8% and 84.6% and specificities of 98% and 92.3% are obtained for the mass and non-mass lesions, respectively. CONCLUSION Normalized frequency-based features can characterize benign and malignant lesions efficiently in both mass- and non-mass-like lesions. Additionally, the combination of normalized frequency-based features and three-dimensional shape descriptors improves the CADx performance.
Collapse
|
Journal Article |
6 |
6 |
21
|
Kootstra T, Teuwen J, Goudsmit J, Nijboer T, Dodd M, Van der Stigchel S. Machine learning-based classification of viewing behavior using a wide range of statistical oculomotor features. J Vis 2021; 20:1. [PMID: 32876676 PMCID: PMC7476673 DOI: 10.1167/jov.20.9.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Since the seminal work of Yarbus, multiple studies have demonstrated the influence of task-set on oculomotor behavior and the current cognitive state. In more recent years, this field of research has expanded by evaluating the costs of abruptly switching between such different tasks. At the same time, the field of classifying oculomotor behavior has been moving toward more advanced, data-driven methods of decoding data. For the current study, we used a large dataset compiled over multiple experiments and implemented separate state-of-the-art machine learning methods for decoding both cognitive state and task-switching. We found that, by extracting a wide range of oculomotor features, we were able to implement robust classifier models for decoding both cognitive state and task-switching. Our decoding performance highlights the feasibility of this approach, even invariant of image statistics. Additionally, we present a feature ranking for both models, indicating the relative magnitude of different oculomotor features for both classifiers. These rankings indicate a separate set of important predictors for decoding each task, respectively. Finally, we discuss the implications of the current approach related to interpreting the decoding results.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
4 |
22
|
Gao Y, Ventura-Diaz S, Wang X, He M, Xu Z, Weir A, Zhou HY, Zhang T, van Duijnhoven FH, Han L, Li X, D'Angelo A, Longo V, Liu Z, Teuwen J, Kok M, Beets-Tan R, Horlings HM, Tan T, Mann R. An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer. Nat Commun 2024; 15:9613. [PMID: 39511143 PMCID: PMC11544255 DOI: 10.1038/s41467-024-53450-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Multi-modal image analysis using deep learning (DL) lays the foundation for neoadjuvant treatment (NAT) response monitoring. However, existing methods prioritize extracting multi-modal features to enhance predictive performance, with limited consideration on real-world clinical applicability, particularly in longitudinal NAT scenarios with multi-modal data. Here, we propose the Multi-modal Response Prediction (MRP) system, designed to mimic real-world physician assessments of NAT responses in breast cancer. To enhance feasibility, MRP integrates cross-modal knowledge mining and temporal information embedding strategy to handle missing modalities and remain less affected by different NAT settings. We validated MRP through multi-center studies and multinational reader studies. MRP exhibited comparable robustness to breast radiologists, outperforming humans in predicting pathological complete response in the Pre-NAT phase (ΔAUROC 14% and 10% on in-house and external datasets, respectively). Furthermore, we assessed MRP's clinical utility impact on treatment decision-making. MRP may have profound implications for enrolment into NAT trials and determining surgery extensiveness.
Collapse
|
Multicenter Study |
1 |
4 |
23
|
Olaciregui-Ruiz I, Torres-Xirau I, Teuwen J, van der Heide UA, Mans A. A Deep Learning-based correction to EPID dosimetry for attenuation and scatter in the Unity MR-Linac system. Phys Med 2020; 71:124-131. [DOI: 10.1016/j.ejmp.2020.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/08/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022] Open
|
|
5 |
4 |
24
|
van Leeuwen MM, Doyle S, van den Belt-Dusebout AW, van der Mierden S, Loo CE, Mann RM, Teuwen J, Wesseling J. Clinicopathological and prognostic value of calcification morphology descriptors in ductal carcinoma in situ of the breast: a systematic review and meta-analysis. Insights Imaging 2023; 14:213. [PMID: 38051355 DOI: 10.1186/s13244-023-01529-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/22/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Calcifications on mammography can be indicative of breast cancer, but the prognostic value of their appearance remains unclear. This systematic review and meta-analysis aimed to evaluate the association between mammographic calcification morphology descriptors (CMDs) and clinicopathological factors. METHODS A comprehensive literature search in Medline via Ovid, Embase.com, and Web of Science was conducted for articles published between 2000 and January 2022 that assessed the relationship between CMDs and clinicopathological factors, excluding case reports and review articles. The risk of bias and overall quality of evidence were evaluated using the QUIPS tool and GRADE. A random-effects model was used to synthesize the extracted data. This systematic review is reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). RESULTS Among the 4715 articles reviewed, 29 met the inclusion criteria, reporting on 17 different clinicopathological factors in relation to CMDs. Heterogeneity between studies was present and the overall risk of bias was high, primarily due to small, inadequately described study populations. Meta-analysis demonstrated significant associations between fine linear calcifications and high-grade DCIS [pooled odds ratio (pOR), 4.92; 95% confidence interval (CI), 2.64-9.17], (comedo)necrosis (pOR, 3.46; 95% CI, 1.29-9.30), (micro)invasion (pOR, 1.53; 95% CI, 1.03-2.27), and a negative association with estrogen receptor positivity (pOR, 0.33; 95% CI, 0.12-0.89). CONCLUSIONS CMDs detected on mammography have prognostic value, but there is a high level of bias and variability between current studies. In order for CMDs to achieve clinical utility, standardization in reporting of CMDs is necessary. CRITICAL RELEVANCE STATEMENT Mammographic calcification morphology descriptors (CMDs) have prognostic value, but in order for CMDs to achieve clinical utility, standardization in reporting of CMDs is necessary. SYSTEMATIC REVIEW REGISTRATION CRD42022341599 KEY POINTS: • Mammographic calcifications can be indicative of breast cancer. • The prognostic value of mammographic calcifications is still unclear. • Specific mammographic calcification morphologies are related to lesion aggressiveness. • Variability between studies necessitates standardization in calcification evaluation to achieve clinical utility.
Collapse
|
Review |
2 |
2 |
25
|
Moriakov N, Peters J, Mann R, Karssemeijer N, van Dijck J, Broeders M, Teuwen J. Improving lesion volume measurements on digital mammograms. Med Image Anal 2024; 97:103269. [PMID: 39024973 DOI: 10.1016/j.media.2024.103269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Lesion volume is an important predictor for prognosis in breast cancer. However, it is currently impossible to compute lesion volumes accurately from digital mammography data, which is the most popular and readily available imaging modality for breast cancer. We make a step towards a more accurate lesion volume measurement on digital mammograms by developing a model that allows to estimate lesion volumes on processed mammogram. Processed mammograms are the images routinely used by radiologists in clinical practice as well as in breast cancer screening and are available in medical centers. Processed mammograms are obtained from raw mammograms, which are the X-ray data coming directly from the scanner, by applying certain vendor-specific non-linear transformations. At the core of our volume estimation method is a physics-based algorithm for measuring lesion volumes on raw mammograms. We subsequently extend this algorithm to processed mammograms via a deep learning image-to-image translation model that produces synthetic raw mammograms from processed mammograms in a multi-vendor setting. We assess the reliability and validity of our method using a dataset of 1778 mammograms with an annotated mass. Firstly, we investigate the correlations between lesion volumes computed from mediolateral oblique and craniocaudal views, with a resulting Pearson correlation of 0.93 [95% confidence interval (CI) 0.92 - 0.93]. Secondly, we compare the resulting lesion volumes from true and synthetic raw data, with a resulting Pearson correlation of 0.998 [95%CI 0.998 - 0.998] . Finally, for a subset of 100 mammograms with a malignant mass and concurrent MRI examination available, we analyze the agreement between lesion volume on mammography and MRI, resulting in an intraclass correlation coefficient of 0.81 [95%CI 0.73 - 0.87] for consistency and 0.78 [95%CI 0.66 - 0.86] for absolute agreement. In conclusion, we developed an algorithm to measure mammographic lesion volume that reached excellent reliability and good validity, when using MRI as ground truth. The algorithm may play a role in lesion characterization and breast cancer prognostication on mammograms.
Collapse
|
|
1 |
1 |