Torres-Rodriguez J, Gutierrez-Cano V, Menelaou M, Kaštyl J, Cihlář J, Tkachenko S, González JA, Kalmár J, Fábián I, Lázár I, Čelko L, Kaiser J. Rare-Earth Zirconate Ln
2Zr
2O
7 (Ln: La, Nd, Gd, and Dy) Powders, Xerogels, and Aerogels: Preparation, Structure, and Properties.
Inorg Chem 2019;
58:14467-14477. [PMID:
31613608 DOI:
10.1021/acs.inorgchem.9b01965]
[Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physicochemical properties of rare-earth zirconates can be tuned by the rational modification of their structures and phase compositions. In the present work, La3+-, Nd3+-, Gd3+-, and Dy3+-zirconate nanostructured materials were prepared by different synthetic protocols, leading to powders, xerogels, and, for the first time, monolithic aerogels. Powders were synthesized by the co-precipitation method, while xerogels and aerogels were synthesized by the sol-gel technique, followed by ambient and supercritical drying, respectively. Their microstructures, thermogravimetric profiles, textural properties, and crystallographic structures are reported. The co-precipitation method led to dense powders (SBET < 1 m2 g-1), while the sol-gel technique resulted in large surface area xerogels (SBET = 144 m2 g-1) and aerogels (SBET = 168 m2 g-1). In addition, the incorporation of lanthanide ions into the zirconia lattice altered the crystal structures of the powders, xerogels, and aerogels. Single-phase pyrochlores were obtained for La2Zr2O7 and Nd2Zr2O7 powders and xerogels, while defect fluorite structures formed in the case of Gd2Zr2O7 and Dy2Zr2O7. All aerogels contain a mixture of cubic and tetragonal ZrO2 phases. Thus, a direct effect is shown between the drying conditions and the resulting crystalline phases of the nanostructured rare-earth zirconates.
Collapse