1
|
Borghans JAM, Beltman JB, De Boer RJ. MHC polymorphism under host-pathogen coevolution. Immunogenetics 2004; 55:732-9. [PMID: 14722687 DOI: 10.1007/s00251-003-0630-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 11/11/2003] [Indexed: 11/28/2022]
Abstract
The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
198 |
2
|
Tak T, Tesselaar K, Pillay J, Borghans JAM, Koenderman L. Whatˈs your age again? Determination of human neutrophil half-lives revisited. J Leukoc Biol 2013; 94:595-601. [DOI: 10.1189/jlb.1112571] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
|
12 |
188 |
3
|
van Gent R, van Tilburg CM, Nibbelke EE, Otto SA, Gaiser JF, Janssens-Korpela PL, Sanders EAM, Borghans JAM, Wulffraat NM, Bierings MB, Bloem AC, Tesselaar K. Refined characterization and reference values of the pediatric T- and B-cell compartments. Clin Immunol 2009; 133:95-107. [PMID: 19586803 DOI: 10.1016/j.clim.2009.05.020] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 05/21/2009] [Accepted: 05/27/2009] [Indexed: 11/26/2022]
Abstract
Work in the past years has led to a refined phenotypical description of functionally distinct T- and B-cell subsets. Since both lymphocyte compartments are established and undergo dramatic changes during childhood, redefined pediatric reference values of both compartments are needed. In a cohort of 145 healthy children, aged 0-18 years, the relative and absolute numbers of the various T- and B-cell subsets were determined. In addition, we found that besides thymic output, naive (CD27(+)CD45RO(-)) T-cell proliferation contributed significantly to the establishment of the naive T-cell compartment. At birth, regulatory (CD25(+)CD127(-)CD4(+)) T cells (Tregs) mainly had a naive (CD27(+)CD45RO(-)) phenotype whereas 'memory or effector-like' (CD45RO(+)) Tregs accumulated slowly during childhood. Besides the CD27(+)IgM(+)IgD(+) memory B-cell population, the recently identified CD27(-)IgG(+) and CD27(-)IgA(+) memory B-cell populations were already present at birth. These data provide reference values of the T- and B-cell compartments during childhood for studies of immunological disorders or immune reconstitution in children.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
143 |
4
|
|
|
7 |
125 |
5
|
|
Review |
22 |
124 |
6
|
Borghans JAM, Mølgaard A, de Boer RJ, Keşmir C. HLA alleles associated with slow progression to AIDS truly prefer to present HIV-1 p24. PLoS One 2007; 2:e920. [PMID: 17878955 PMCID: PMC1976389 DOI: 10.1371/journal.pone.0000920] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/16/2007] [Indexed: 12/30/2022] Open
Abstract
Background The mechanism behind the association between human leukocyte antigen (HLA) molecules and the rate of HIV-1 disease progression is still poorly understood. Recent data suggest that “protective” HLA molecules, i.e. those associated with a low HIV-1 viral load and relatively slow disease progression, tend to present epitopes from the Gag capsid protein. Although this suggests that preferential targeting of Gag delays disease progression, the apparent preference for Gag could also be a side-effect of the relatively high immunogenicity of the protein. Methods and Findings To separate cause and effect, we predicted HIV-1 epitopes from the whole genome of HIV-1, and found that protective HLA alleles have a true preference for the p24 Gag protein, while non-protective HLA alleles preferentially target HIV-1 Nef. In line with this, we found a significant negative correlation between the predicted affinity of the best-binding p24 epitopes and the relative hazard of HIV-1 disease progression for a large number of HLA molecules. When the epitopes targeted by protective HLA alleles were mapped to the known p24 structure, we found that mutations in these epitopes are likely to disturb the p24 dimer structure, which is expected to severely reduce the fitness of the virus. Conclusions Our results suggest that the intrinsic preference of different HLA molecules to present p24 peptides explains why some HLA molecules are more protective than others.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
81 |
7
|
De Boer RJ, Borghans JAM, van Boven M, Keşmir C, Weissing FJ. Heterozygote advantage fails to explain the high degree of polymorphism of the MHC. Immunogenetics 2004; 55:725-31. [PMID: 14722686 DOI: 10.1007/s00251-003-0629-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 11/11/2003] [Indexed: 11/29/2022]
Abstract
Major histocompatibility (MHC) molecules are encoded by extremely polymorphic genes and play a crucial role in vertebrate immunity. Natural selection favors MHC heterozygous hosts because individuals heterozygous at the MHC can present a larger diversity of peptides from infectious pathogens than homozygous individuals. Whether or not heterozygote advantage is sufficient to account for a high degree of polymorphism is controversial, however. Using mathematical models we studied the degree of MHC polymorphism arising when heterozygote advantage is the only selection pressure. We argue that existing models are misleading in that the fitness of heterozygotes is not related to the MHC alleles they harbor. To correct for this, we have developed novel models in which the genotypic fitness of a host directly reflects the fitness contributions of its MHC alleles. The mathematical analysis suggests that a high degree of polymorphism can only be accounted for if the different MHC alleles confer unrealistically similar fitnesses. This conclusion was confirmed by stochastic simulations, including mutation, genetic drift, and a finite population size. Heterozygote advantage on its own is insufficient to explain the high population diversity of the MHC.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
70 |
8
|
Westera L, van Hoeven V, Drylewicz J, Spierenburg G, van Velzen JF, de Boer RJ, Tesselaar K, Borghans JAM. Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell 2015; 14:219-27. [PMID: 25627171 PMCID: PMC4364834 DOI: 10.1111/acel.12311] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2014] [Indexed: 12/19/2022] Open
Abstract
In healthy humans, lymphocyte populations are maintained at a relatively constant size throughout life, reflecting a balance between lymphocyte production and loss. Given the profound immunological changes that occur during healthy aging, including a significant decline in T-cell production by the thymus, lymphocyte maintenance in the elderly is generally thought to require homeostatic alterations in lymphocyte dynamics. Surprisingly, using in vivo2H2O labeling, we find similar dynamics of most lymphocyte subsets between young adult and elderly healthy individuals. As the contribution of thymic output to T-cell production is only minor from young adulthood onward, compensatory increases in peripheral T-cell division rates are not required to maintain the T-cell pool, despite a tenfold decline in thymic output. These fundamental insights will aid the interpretation of further research into aging and clinical conditions related to disturbed lymphocyte dynamics.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
65 |
9
|
Rumpret M, Drylewicz J, Ackermans LJE, Borghans JAM, Medzhitov R, Meyaard L. Functional categories of immune inhibitory receptors. Nat Rev Immunol 2020; 20:771-780. [PMID: 32612208 DOI: 10.1038/s41577-020-0352-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 300 potential immune inhibitory receptors. The reason for this large number of receptors remains unclear. We suggest that inhibitory receptors operate as two distinct functional categories: receptors that control the signalling threshold for immune cell activation and receptors involved in the negative feedback of immune cell activation. These two categories have characteristic receptor expression patterns: 'threshold' receptors are expressed at steady state and their expression remains high or is downregulated upon activation, whereas 'negative feedback' receptors are induced upon immune cell activation. We use mathematical models to illustrate their possible modes of operation in different scenarios for different purposes. We discuss how this categorization may impact the choice of therapeutic targets for immunotherapy of malignant, infectious and autoimmune diseases.
Collapse
|
Review |
5 |
56 |
10
|
Abstract
Immunology has traditionally been a qualitative science describing the cellular and molecular components of the immune system and their functions. Only quite recently have new experimental techniques paved the way for a more quantitative approach of immunology. Lymphocyte telomere lengths have been measured to get insights into the proliferation rate of different lymphocyte subsets, T-cell receptor excision circles have been used to quantify the daily output of new T cells from the thymus, and bromodeoxyuridine and stable isotope labeling have been applied to measure proliferation and death rates of naive and memory lymphocytes. A common problem of the above techniques is the translation of the resulting data into relevant parameters, such as the typical division and death rate of the different lymphocyte populations. Theoretical immunology has contributed significantly to the interpretation of such quantitative experimental data, thereby resolving diverse controversies and, most importantly, has suggested novel experiments, allowing for more conclusive and quantitative interpretations. In this article, we review a variety of different models that have been used to interpret data on lymphocyte kinetics in healthy human subjects and discuss their contributions and limitations.
Collapse
|
|
18 |
55 |
11
|
Vrisekoop N, van Gent R, de Boer AB, Otto SA, Borleffs JCC, Steingrover R, Prins JM, Kuijpers TW, Wolfs TFW, Geelen SPM, Vulto I, Lansdorp P, Tesselaar K, Borghans JAM, Miedema F. Restoration of the CD4 T Cell Compartment after Long-Term Highly Active Antiretroviral Therapy without Phenotypical Signs of Accelerated Immunological Aging. THE JOURNAL OF IMMUNOLOGY 2008; 181:1573-81. [DOI: 10.4049/jimmunol.181.2.1573] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
17 |
52 |
12
|
Miedema F, Hazenberg MD, Tesselaar K, van Baarle D, de Boer RJ, Borghans JAM. Immune activation and collateral damage in AIDS pathogenesis. Front Immunol 2013; 4:298. [PMID: 24133492 PMCID: PMC3783946 DOI: 10.3389/fimmu.2013.00298] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
In the past decade, evidence has accumulated that human immunodeficiency virus (HIV)-induced chronic immune activation drives progression to AIDS. Studies among different monkey species have shown that the difference between pathological and non-pathological infection is determined by the response of the immune system to the virus, rather than its cytopathicity. Here we review the current understanding of the various mechanisms driving chronic immune activation in HIV infection, the cell types involved, its effects on HIV-specific immunity, and how persistent inflammation may cause AIDS and the wide spectrum of non-AIDS related pathology. We argue that therapeutic relief of inflammation may be beneficial to delay HIV-disease progression and to reduce non-AIDS related pathological side effects of HIV-induced chronic immune stimulation.
Collapse
|
Review |
12 |
51 |
13
|
van Gent R, Kater AP, Otto SA, Jaspers A, Borghans JAM, Vrisekoop N, Ackermans MAT, Ruiter AFC, Wittebol S, Eldering E, van Oers MHJ, Tesselaar K, Kersten MJ, Miedema F. In vivo dynamics of stable chronic lymphocytic leukemia inversely correlate with somatic hypermutation levels and suggest no major leukemic turnover in bone marrow. Cancer Res 2009; 68:10137-44. [PMID: 19074880 DOI: 10.1158/0008-5472.can-08-2325] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although accumulating evidence indicates that chronic lymphocytic leukemia (CLL) is a disease with appreciable cell dynamics, it remains uncertain whether this also applies to patients with stable disease. In this study, (2)H(2)O was administered to a clinically homogeneous cohort of nine stable, untreated CLL patients. CLL dynamics in blood and bone marrow were determined and compared with normal B-cell dynamics in blood from five healthy individuals who underwent a similar (2)H(2)O labeling protocol. Average CLL turnover rates (0.08-0.35% of the clone per day) were approximately 2-fold lower than average B-cell turnover rates from healthy individuals (0.34-0.89%), whereas the rate at which labeled CLL cells in blood disappeared (0.00-0.39% of B cells per day) was approximately 10-fold lower compared with labeled B cells from healthy individuals (1.57-4.24% per day). Leukemic cell turnover variables inversely correlated with the level of somatic hypermutation of the CLL clone (IgVH mutations). Although CLL cells in bone marrow had a higher level of label enrichment than CLL cells in blood, no difference between proliferation rates and proapoptotic and antiapoptotic profiles of CLL cells from these compartments was observed. These data suggest that, in stable disease, there is a biological relationship between the degree of somatic hypermutation of the CLL clone and its dynamics in vivo. Furthermore, in contrast to lymph nodes, the bone marrow does not seem to be a major CLL proliferation site.
Collapse
MESH Headings
- Apoptosis/genetics
- Bone Marrow/pathology
- Child, Preschool
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Infant
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mutation
- RNA, Neoplasm/genetics
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
48 |
14
|
Hazenberg MD, Otto SA, van Rossum AMC, Scherpbier HJ, de Groot R, Kuijpers TW, Lange JMA, Hamann D, de Boer RJ, Borghans JAM, Miedema F. Establishment of the CD4+ T-cell pool in healthy children and untreated children infected with HIV-1. Blood 2004; 104:3513-9. [PMID: 15297312 DOI: 10.1182/blood-2004-03-0805] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current understanding of how the T-cell pool is established in children and how this is affected by HIV infection is limited. It is widely believed that the thymus is the main source for T cells during childhood. Here we show, however, that healthy children had an age-related increase in total body numbers of naive and memory T cells, whereas absolute numbers of T-cell receptor excision circles (TRECs) did not increase. This suggests that expansion of the naive T-cell pool after birth is more dependent on T-cell proliferation than was previously recognized. Indeed, the proportion of dividing naive T cells was high, especially in younger children, which is consistent with expansion through proliferation, in addition to antigen-mediated naive T-cell activation leading to formation of the memory T-cell pool. In untreated children infected with HIV-1, total body numbers of T cells and TRECs were low and stable, whereas T-cell division levels were significantly higher than in healthy children. We postulate that in children infected with HIV, similar to adults infected with HIV, continuous activation of naive T cells leads to erosion of the naive T-cell pool and may be a major factor in lowering CD4(+) T-cell numbers.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
48 |
15
|
Borghans JAM, Noest AJ, De Boer RJ. Thymic selection does not limit the individual MHC diversity. Eur J Immunol 2003; 33:3353-8. [PMID: 14635043 DOI: 10.1002/eji.200324365] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The number of different major histocompatibility (MHC) molecules expressed per individual is widely believed to represent a trade-off between maximizing the detection of foreign antigens, and minimizing the loss of T cell clones due to self-tolerance induction. Using a mathematical model we here show that this argument fails to explain why individuals typically express of the order of 1020 different MHC molecules. Expression of extra MHC types decreases the number of clones surviving negative selection, but increases the number of positively selected clones. Based on experimental parameter estimates, we show that the number of clones in the functional T cell repertoire would in fact increase if the MHC diversity within an individual were to exceed its normal value, until more than one hundred different MHC molecules would be expressed. Since additional MHC types also increase the number of presented pathogen peptides, resistance against pathogens only decreases at unrealistically high MHC diversities exceeding 1,500 different MHC molecules per individual.
Collapse
|
|
22 |
46 |
16
|
Nobile M, Correa R, Borghans JAM, D'Agostino C, Schneider P, De Boer RJ, Pantaleo G. De novo T-cell generation in patients at different ages and stages of HIV-1 disease. Blood 2004; 104:470-7. [PMID: 15059846 DOI: 10.1182/blood-2003-12-4265] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed de novo T-cell generation by determining T-cell receptor-rearrangement excision circles (TRECs) based on patient age and on stage of HIV-1 infection. TRECs were measured in purified CD4 and CD8 T cells of a large cohort of HIV-1-infected subjects (n = 297) with chronic infection but no previous antiretroviral treatment and of a control group of HIV-negative subjects (n = 120). HIV-1-infected subjects were stratified on the basis of CD4 T-cell counts in 3 groups, early-stage disease (more than 500 CD4 T cells), intermediate-stage disease (200-500 CD4 T cells), and late-stage disease (fewer than 200 CD4 T cells). Compared with the control group, CD8 TREC contents were severely reduced (P <.001) in HIV-1-infected subjects regardless of the stage of HIV disease. In contrast, CD4 TREC contents were significantly increased (P =.003) in HIV-1-infected subjects during early-stage disease, similar at intermediate-stage disease, and severely reduced only at late-stage disease. We show that the increase in CD4 TRECs was mostly limited to younger (younger than 45 years) patients at early-stage disease. Our results demonstrate a dichotomy between TREC contents in CD4 and CD8 T-cell populations in HIV-1 infection and indicate that thymus function in younger subjects is preserved at early and intermediate stages of HIV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
43 |
17
|
Borghans JAM, Tesselaar K, de Boer RJ. Current best estimates for the average lifespans of mouse and human leukocytes: reviewing two decades of deuterium-labeling experiments. Immunol Rev 2019; 285:233-248. [PMID: 30129193 DOI: 10.1111/imr.12693] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deuterium is a non-toxic, stable isotope that can safely be administered to humans and mice to study their cellular turnover rates in vivo. It is incorporated into newly synthesized DNA strands during cell division, without interference with the kinetics of cells, and the accumulation and loss of deuterium in the DNA of sorted (sub-)populations of leukocytes can be used to estimate their cellular production rates and lifespans. In the past two decades, this powerful technology has been used to estimate the turnover rates of various types of leukocytes. Although it is the most reliable technique currently available to study leukocyte turnover, there are remarkable differences between the cellular turnover rates estimated by some of these studies. We have recently established that part of this variation is due to (a) difficulties in estimating deuterium availability in some deuterium-labeling studies, and (b) assumptions made by the mathematical models employed to fit the data. Being aware of these two problems, we here aim to approach a consensus on the life expectancies of different types of T cells, B cells, monocytes, and neutrophils in mice and men. We address remaining outstanding problems whenever appropriate and discuss for which immune subpopulations we currently have too little information to draw firm conclusions about their turnover.
Collapse
|
Review |
6 |
39 |
18
|
van Tilburg CM, van Gent R, Bierings MB, Otto SA, Sanders EAM, Nibbelke EE, Gaiser JF, Janssens-Korpela PL, Wolfs TFW, Bloem AC, Borghans JAM, Tesselaar K. Immune reconstitution in children following chemotherapy for haematological malignancies: a long-term follow-up. Br J Haematol 2010; 152:201-10. [PMID: 21114483 DOI: 10.1111/j.1365-2141.2010.08478.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modern intensive chemotherapy for childhood haematological malignancies has led to high cure rates, but has detrimental effects on the immune system. There is little knowledge concerning long-term recovery of the adaptive immune system. Here we studied the long-term reconstitution of the adaptive immune system in 31 children treated for haematological malignancies between July 2000 and October 2006. We performed detailed phenotypical and functional analyses of the various B and T cell subpopulations until 5 years after chemotherapy. We show that recovery of newly-developed transitional B cells and naive B and T cells occurred rapidly, within months, whereas recovery of the different memory B and T cell subpopulations was slower and incomplete, even after 5 years post-chemotherapy. The speed of B and T cell recovery was age-independent, despite a significant contribution of the thymus to T cell recovery. Plasmablast B cell levels remained above normal and immunoglobulin levels normalised within 1 week. Functional T cell responses were normal, even within the first year post-chemotherapy. This study shows that after intensive chemotherapy for haematological malignancies in children, numbers of several memory B and T cell subpopulations were decreased on the long term, while functional T cell responses were not compromised.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
37 |
19
|
Baliu-Piqué M, Verheij MW, Drylewicz J, Ravesloot L, de Boer RJ, Koets A, Tesselaar K, Borghans JAM. Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells. Front Immunol 2018; 9:2054. [PMID: 30254637 PMCID: PMC6141715 DOI: 10.3389/fimmu.2018.02054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Memory T-cells are essential to maintain long-term immunological memory. It is widely thought that the bone marrow (BM) plays an important role in the long-term maintenance of memory T-cells. There is controversy however on the longevity and recirculating kinetics of BM memory T-cells. While some have proposed that the BM is a reservoir for long-lived, non-circulating memory T-cells, it has also been suggested to be the preferential site for memory T-cell self-renewal. In this study, we used in vivo deuterium labeling in goats to simultaneously quantify the average turnover rates—and thereby expected lifespans—of memory T-cells from BM, blood and lymph nodes (LN). While the fraction of Ki-67 positive cells, a snapshot marker for recent cell division, was higher in memory T-cells from blood compared to BM and LN, in vivo deuterium labeling revealed no substantial differences in the expected lifespans of memory T-cells between these compartments. Our results support the view that the majority of memory T-cells in the BM are self-renewing as fast as those in the periphery, and are continuously recirculating between the blood, BM, and LN.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
30 |
20
|
Ganusov VV, Borghans JAM, De Boer RJ. Explicit kinetic heterogeneity: mathematical models for interpretation of deuterium labeling of heterogeneous cell populations. PLoS Comput Biol 2010; 6:e1000666. [PMID: 20140186 PMCID: PMC2816685 DOI: 10.1371/journal.pcbi.1000666] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 12/30/2009] [Indexed: 12/11/2022] Open
Abstract
Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three most common models, which are based on quite different biological assumptions, actually predict mathematically identical labeling curves with one parameter for the exponential up and down slope, and one parameter defining the maximum labeling level. By extending these previous models, we here propose a novel approach for the analysis of data from deuterium labeling experiments. We construct a model of “kinetic heterogeneity” in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a novel way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length. Understanding of cellular processes is impossible without quantitative estimates of how quickly cells in an organism divide and die. The most widely used approach to measure rates of cell turnover in humans is by labeling dividing cells with deuterium given in the form of deuterated glucose or heavy water. Surprisingly, quantitative estimates of the rates of cell turnover obtained from accumulation and decay of the labeled nucleotides in the cell population varied between different studies. We demonstrate that these differences were not likely to arise because of different mathematical models used in data fitting, since the previously used models have an identical mathematical structure. We extend these previous models to allow for cell populations with different rates of turnover and show how such a new explicit kinetic heterogeneity model can be applied to simulated and experimental data. The new model opens a new way of interpreting data from deuterium labeling experiments and will likely lead to new insights into how infections and/or treatments affect cell turnover in humans.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
29 |
21
|
Scheltema NM, Kavelaars XM, Thorburn K, Hennus MP, van Woensel JB, van der Ent CK, Borghans JAM, Bont LJ, Drylewicz J. Potential impact of maternal vaccination on life-threatening respiratory syncytial virus infection during infancy. Vaccine 2018; 36:4693-4700. [PMID: 29941327 DOI: 10.1016/j.vaccine.2018.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is an important cause of infant mortality. Here, we estimated the potential impact of maternal vaccination against RSV on life-threatening RSV infection in infants. METHODS We developed a mathematical model for maternal vaccine-induced antibody dynamics and used characteristics of a maternal RSV vaccine currently in phase 3 of clinical development. The model was applied to data from two cohorts of children younger than 12 months with RSV-related paediatric intensive care unit (PICU) admission in the United Kingdom (n = 370) and the Netherlands (n = 167), and a cohort of 211 children younger than 12 months with RSV-related in-hospital death from 20 countries worldwide. RESULTS Our model predicted that, depending on vaccine efficiency, maternal vaccination at 30 weeks' gestational age could have prevented 62-75% of RSV-related PICU admissions in the United Kingdom and 76-87% in the Netherlands. For the global mortality cohort, the model predicted that maternal vaccination could have prevented 29-48% of RSV-related in-hospital deaths. Preterm children and children with comorbidities were predicted to benefit less than (healthy) term children. CONCLUSIONS Maternal vaccination against RSV may substantially decrease life-threatening RSV infections in infants.
Collapse
|
Journal Article |
7 |
28 |
22
|
Schellens IMM, Borghans JAM, Jansen CA, De Cuyper IM, Geskus RB, van Baarle D, Miedema F. Abundance of early functional HIV-specific CD8+ T cells does not predict AIDS-free survival time. PLoS One 2008; 3:e2745. [PMID: 18648514 PMCID: PMC2447878 DOI: 10.1371/journal.pone.0002745] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/22/2008] [Indexed: 12/04/2022] Open
Abstract
Background T-cell immunity is thought to play an important role in controlling HIV infection, and is a main target for HIV vaccine development. HIV-specific central memory CD8+ and CD4+ T cells producing IFNγ and IL-2 have been associated with control of viremia and are therefore hypothesized to be truly protective and determine subsequent clinical outcome. However, the cause-effect relationship between HIV-specific cellular immunity and disease progression is unknown. We investigated in a large prospective cohort study involving 96 individuals of the Amsterdam Cohort Studies with a known date of seroconversion whether the presence of cytokine-producing HIV-specific CD8+ T cells early in infection was associated with AIDS-free survival time. Methods and Findings The number and percentage of IFNγ and IL-2 producing CD8+ T cells was measured after in vitro stimulation with an overlapping Gag-peptide pool in T cells sampled approximately one year after seroconversion. Kaplan-Meier survival analysis and Cox proportional hazard models showed that frequencies of cytokine-producing Gag-specific CD8+ T cells (IFNγ, IL-2 or both) shortly after seroconversion were neither associated with time to AIDS nor with the rate of CD4+ T-cell decline. Conclusions These data show that high numbers of functional HIV-specific CD8+ T cells can be found early in HIV infection, irrespective of subsequent clinical outcome. The fact that both progressors and long-term non-progressors have abundant T cell immunity of the specificity associated with low viral load shortly after seroconversion suggests that the more rapid loss of T cell immunity observed in progressors may be a consequence rather than a cause of disease progression.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
27 |
23
|
van den Berg SPH, Warmink K, Borghans JAM, Knol MJ, van Baarle D. Effect of latent cytomegalovirus infection on the antibody response to influenza vaccination: a systematic review and meta-analysis. Med Microbiol Immunol 2019; 208:305-321. [PMID: 30949763 PMCID: PMC6647367 DOI: 10.1007/s00430-019-00602-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
Abstract
Latent infection with cytomegalovirus (CMV) is thought to accelerate aging of the immune system. With age, influenza vaccine responses are impaired. Although several studies investigated the effect of CMV infection on antibody responses to influenza vaccination, this led to contradicting conclusions. Therefore, we investigated the relation between CMV infection and the antibody response to influenza vaccination by performing a systematic review and meta-analysis. All studies on the antibody response to influenza vaccination in association with CMV infection were included (n = 17). The following outcome variables were extracted: (a) the geometric mean titer pre-/post-vaccination ratio (GMR) per CMV serostatus group, and in addition (b) the percentage of subjects with a response per CMV serostatus group and (c) the association between influenza- and CMV-specific antibody titers. The influenza-specific GMR revealed no clear evidence for an effect of CMV seropositivity on the influenza vaccine response in young or old individuals. Meta-analysis of the response rate to influenza vaccination showed a non-significant trend towards a negative effect of CMV seropositivity. However, funnel plot analysis suggests that this is a consequence of publication bias. A weak negative association between CMV antibody titers and influenza antibody titers was reported in several studies, but associations could not be analyzed systematically due to the variety of outcome variables. In conclusion, by systematically integrating the available studies, we show that there is no unequivocal evidence that latent CMV infection affects the influenza antibody response to vaccination. Further studies, including the level of CMV antibodies, are required to settle on the potential influence of latent CMV infection on the influenza vaccine response.
Collapse
|
Meta-Analysis |
6 |
27 |
24
|
van Asten L, Danisman F, Otto SA, Borghans JAM, Hazenberg MD, Coutinho RA, Prins M, Miedema F. Pre-seroconversion immune status predicts the rate of CD4 T cell decline following HIV infection. AIDS 2004; 18:1885-93. [PMID: 15353974 DOI: 10.1097/00002030-200409240-00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To study whether immune status prior to HIV seroconversion predicts CD4 T cell decline during HIV infection. DESIGN Prospective cohort study including 51 injecting drug users (IDU) who were HIV negative at study entry and seroconverted for HIV during follow-up. METHODS Cryopreserved peripheral blood mononuclear cells obtained before HIV seroconversion were used to measure naive (CD45RO-CD27+), memory (CD45RO+CD27+), and total CD4 T cell numbers, the fraction of dividing Ki67+CD4+ T cells, and CD4 T cell receptor excision circles (TREC). The effect of pre-seroconversion immune status, as defined by these markers, on the rate of CD4 T cell decline during HIV infection was assessed using linear regression for repeated measurements. RESULTS IDU with low pre-seroconversion CD4 T cell TREC contents lost CD4 T cells at a significantly faster rate during HIV infection than those with a high CD4 T cell TREC content. IDU with higher pre-seroconversion CD4 T cell numbers had a significantly steeper CD4 T cell decline in the first 3 months of HIV infection, but their CD4 T cell counts remained higher throughout HIV infection. Intermediate levels of pre-seroconversion dividing Ki67+CD4+ T cells were associated with a significantly steeper CD4 cell decline than high levels. IDU with the highest pre-seroconversion drug-injecting frequencies showed slower CD4 T cell decline than those who injected less. No correlation was present between pre-seroconversion immune markers and the pre-seroconversion duration or intensity of drug use. CONCLUSION Among IDU, immune status prior to HIV infection as measured by TREC content affects the disease course after HIV seroconversion.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
26 |
25
|
Asquith B, Borghans JAM, Ganusov VV, Macallan DC. Lymphocyte kinetics in health and disease. Trends Immunol 2009; 30:182-9. [PMID: 19286425 DOI: 10.1016/j.it.2009.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 12/22/2022]
Abstract
Quantitative understanding of immunology requires the development of experimental and mathematical techniques for estimation of rates of division and death of lymphocytes under different conditions. Here, we review the advantages and limitations of several labelling methods that are currently used to quantify turnover of lymphocytes in vivo. In addition to highlighting insights into lymphocyte kinetics which have recently been gained thanks to the development of novel techniques, we discuss important directions for future experimental and theoretical work in the field of lymphocyte turnover.
Collapse
|
Review |
16 |
25 |