1
|
Shaan Lakshmanappa Y, Elizaldi SR, Roh JW, Schmidt BA, Carroll TD, Weaver KD, Smith JC, Verma A, Deere JD, Dutra J, Stone M, Franz S, Sammak RL, Olstad KJ, Rachel Reader J, Ma ZM, Nguyen NK, Watanabe J, Usachenko J, Immareddy R, Yee JL, Weiskopf D, Sette A, Hartigan-O'Connor D, McSorley SJ, Morrison JH, Tran NK, Simmons G, Busch MP, Kozlowski PA, Van Rompay KKA, Miller CJ, Iyer SS. SARS-CoV-2 induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques. Nat Commun 2021; 12:541. [PMID: 33483492 PMCID: PMC7822826 DOI: 10.1038/s41467-020-20642-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
CD4 T follicular helper (Tfh) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates Tfh cells and stimulates the germinal center (GC) response is an important question as we investigate vaccine induced immunity against COVID-19. Here, we report that SARS-CoV-2 infection in rhesus macaques, either infused with convalescent plasma, normal plasma, or receiving no infusion, resulted in transient accumulation of pro-inflammatory monocytes and proliferating Tfh cells with a Th1 profile in peripheral blood. CD4 helper cell responses skewed predominantly toward a Th1 response in blood, lung, and lymph nodes. SARS-CoV-2 Infection induced GC Tfh cells specific for the SARS-CoV-2 spike and nucleocapsid proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Collectively, the data show induction of GC responses in a rhesus model of mild COVID-19.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
65 |
2
|
Van Rompay KKA, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, Immareddy R, Verma A, Shaan Lakshmanappa Y, Schmidt BA, Roh JW, Elizaldi SR, Allen AM, Muecksch F, Lorenzi JCC, Lockwood S, Pollard RE, Yee JL, Nham PB, Ardeshir A, Deere JD, Patterson J, Dang Q, Hatziioannou T, Bieniasz PD, Iyer SS, Hartigan-O’Connor DJ, Nussenzweig MC, Reader JR. Early treatment with a combination of two potent neutralizing antibodies improves clinical outcomes and reduces virus replication and lung inflammation in SARS-CoV-2 infected macaques. PLoS Pathog 2021; 17:e1009688. [PMID: 34228761 PMCID: PMC8284825 DOI: 10.1371/journal.ppat.1009688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/16/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
There is an urgent need for effective therapeutic interventions against SARS-CoV-2, including new variants that continue to arise. Neutralizing monoclonal antibodies have shown promise in clinical studies. We investigated the therapeutic efficacy of a combination of two potent monoclonal antibodies, C135-LS and C144-LS that carry half-life extension mutations, in the rhesus macaque model of COVID-19. Twelve young adult macaques (three groups of four animals) were inoculated intranasally and intra-tracheally with a high dose of SARS-CoV-2 and 24 hours later, treated intravenously with a high (40 mg/kg) or low (12 mg/kg) dose of the C135-LS and C144-LS antibody combination, or a control monoclonal antibody. Animals were monitored for 7 days. Compared to the control animals, animals treated with either dose of the anti-SARS-CoV-2 antibodies showed similarly improved clinical scores, lower levels of virus replication in upper and lower respiratory tract, and significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. In conclusion, this study provides proof-of-concept in support of further clinical development of these monoclonal antibodies against COVID-19 during early infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- COVID-19/pathology
- COVID-19/therapy
- COVID-19/virology
- Disease Models, Animal
- Female
- Lung/diagnostic imaging
- Lung/pathology
- Macaca mulatta
- Male
- Multivariate Analysis
- Radiography
- Respiratory System/virology
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Time Factors
- Treatment Outcome
- Virus Replication/immunology
Collapse
|
Research Support, N.I.H., Extramural |
4 |
16 |
3
|
Fieni F, Stone M, Ma ZM, Dutra J, Fritts L, Miller CJ. Viral RNA levels and env variants in semen and tissues of mature male rhesus macaques infected with SIV by penile inoculation. PLoS One 2013; 8:e76367. [PMID: 24146859 PMCID: PMC3795772 DOI: 10.1371/journal.pone.0076367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA) levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta) that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1–9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA) in the axillary lymph node (6.48±0.50) were significantly higher than in the genital tract tissues: testis (3.67±2.16; p<0.05), epididymis (3.08±1.19; p<0.0001), prostate (3.36±1.30; p<0.01), and seminal vesicle (2.67±1.50; p<0.0001). Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
16 |
4
|
Deere JD, Carroll TD, Dutra J, Fritts L, Sammak RL, Yee JL, Olstad KJ, Reader JR, Kistler A, Kamm J, Di Germanio C, Shaan Lakshmanappa Y, Elizaldi SR, Roh JW, Simmons G, Watanabe J, Pollard RE, Usachenko J, Immareddy R, Schmidt BA, O’Connor SL, DeRisi J, Busch MP, Iyer SS, Van Rompay KKA, Hartigan-O’Connor DJ, Miller CJ. SARS-CoV-2 Infection of Rhesus Macaques Treated Early with Human COVID-19 Convalescent Plasma. Microbiol Spectr 2021; 9:e0139721. [PMID: 34817208 PMCID: PMC8612156 DOI: 10.1128/spectrum.01397-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Human clinical studies investigating use of convalescent plasma (CP) for treatment of coronavirus disease 2019 (COVID-19) have produced conflicting results. Outcomes in these studies may vary at least partly due to different timing of CP administration relative to symptom onset. The mechanisms of action of CP include neutralizing antibodies but may extend beyond virus neutralization to include normalization of blood clotting and dampening of inflammation. Unresolved questions include the minimum therapeutic titer in the CP units or CP recipient as well as the optimal timing of administration. Here, we show that treatment of macaques with CP within 24 h of infection does not reduce viral shedding in nasal or lung secretions compared to controls and does not detectably improve any clinical endpoint. We also demonstrate that CP administration does not impact viral sequence diversity in vivo, although the selection of a viral sequence variant in both macaques receiving normal human plasma was suggestive of immune pressure. Our results suggest that CP, administered to medium titers, has limited efficacy, even when given very early after infection. Our findings also contribute information important for the continued development of the nonhuman primate model of COVID-19. These results should inform interpretation of clinical studies of CP in addition to providing insights useful for developing other passive immunotherapies and vaccine strategies. IMPORTANCE Antiviral treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain very limited. One treatment that was explored beginning early in the pandemic (and that is likely to be tested early in future pandemics) is plasma collected from people who have recovered from coronavirus disease 2019 (COVID-19), known as convalescent plasma (CP). We tested if CP reduces viral shedding or disease in a nonhuman primate model. Our results demonstrate that administration of CP 1 day after SARS-CoV-2 infection had no significant impact on viral loads, clinical disease, or sequence diversity, although treatment with normal human plasma resulted in selection of a specific viral variant. Our results demonstrate that passive immunization with CP, even during early infection, provided no significant benefit in a nonhuman primate model of SARS-CoV-2 infection.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
12 |
5
|
Verma A, Hawes CE, Lakshmanappa YS, Roh JW, Schmidt BA, Dutra J, Louie W, Liu H, Ma ZM, Watanabe JK, Usachenko JL, Immareddy R, Sammak RL, Pollard R, Reader JR, Olstad KJ, Coffey LL, Kozlowski PA, Hartigan-O'Connor DJ, Nussenzweig M, Van Rompay KKA, Morrison JH, Iyer SS. Monoclonal antibodies protect aged rhesus macaques from SARS-CoV-2-induced immune activation and neuroinflammation. Cell Rep 2021; 37:109942. [PMID: 34706272 PMCID: PMC8523485 DOI: 10.1016/j.celrep.2021.109942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Anti-viral monoclonal antibody (mAb) treatments may provide immediate but short-term immunity from coronavirus disease 2019 (COVID-19) in high-risk populations, such as people with diabetes and the elderly; however, data on their efficacy in these populations are limited. We demonstrate that prophylactic mAb treatment blocks viral replication in both the upper and lower respiratory tracts in aged, type 2 diabetic rhesus macaques. mAb infusion dramatically curtails severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated stimulation of interferon-induced chemokines and T cell activation, significantly reducing development of interstitial pneumonia. Furthermore, mAb infusion significantly dampens the greater than 3-fold increase in SARS-CoV-2-induced effector CD4 T cell influx into the cerebrospinal fluid. Our data show that neutralizing mAbs administered preventatively to high-risk populations may mitigate the adverse inflammatory consequences of SARS-CoV-2 exposure.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
7 |
6
|
Van Rompay KKA, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, Immareddy R, Roh JW, Verma A, Shaan Lakshmanappa Y, Schmidt BA, Di Germanio C, Rizvi N, Stone M, Simmons G, Dumont LJ, Allen AM, Lockwood S, Pollard RE, de Assis RR, Yee JL, Nham PB, Ardeshir A, Deere JD, Patterson J, Jain A, Felgner PL, Iyer SS, Hartigan-O'Connor DJ, Busch MP, Reader JR. Early post-infection treatment of SARS-CoV-2 infected macaques with human convalescent plasma with high neutralizing activity reduces lung inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.09.01.458520. [PMID: 34494025 DOI: 10.1101/2021.08.06.455491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
UNLABELLED Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT 50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable levels of antiviral antibodies after infusion. In comparison to the control animals, they had similar levels of virus replication in the upper and lower respiratory tract, but had significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses. AUTHOR SUMMARY The results of treating SARS-CoV-2 infected hospitalized patients with COVID-19 convalescent plasma (CCP), collected from survivors of natural infection, have been disappointing. The available data from various studies indicate at best moderate clinical benefits only when CCP with high titer of neutralizing antibodies was infused early in infection. The macaque model of SARS-CoV-2 infection can be useful to gain further insights in the value of CCP therapy. In this study, animals were infected with SARS-CoV-2 and the next day, were infused with pooled human convalescent plasma, selected to have a very high titer of neutralizing antibodies. While administration of CCP did not result in a detectable reduction in virus replication in the respiratory tract, it significantly reduced lung inflammation. These data, combined with the results of monoclonal antibody studies, emphasize the need to use products with high titers of neutralizing antibodies, and guide the future development of CCP-based therapies.
Collapse
|
Preprint |
4 |
6 |
7
|
Van Rompay KKA, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, Immareddy R, Roh JW, Verma A, Shaan Lakshmanappa Y, Schmidt BA, Di Germanio C, Rizvi N, Liu H, Ma ZM, Stone M, Simmons G, Dumont LJ, Allen AM, Lockwood S, Pollard RE, Ramiro de Assis R, Yee JL, Nham PB, Ardeshir A, Deere JD, Jain A, Felgner PL, Coffey LL, Iyer SS, Hartigan-O’Connor DJ, Busch MP, Reader JR. Early post-infection treatment of SARS-CoV-2 infected macaques with human convalescent plasma with high neutralizing activity had no antiviral effects but moderately reduced lung inflammation. PLoS Pathog 2022; 18:e1009925. [PMID: 35443018 PMCID: PMC9060337 DOI: 10.1371/journal.ppat.1009925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/02/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
6 |
8
|
Elizaldi SR, Lakshmanappa YS, Roh JW, Schmidt BA, Carroll TD, Weaver KD, Smith JC, Deere JD, Dutra J, Stone M, Sammak RL, Olstad KJ, Reader JR, Ma ZM, Nguyen NK, Watanabe J, Usachaenko J, Immareddy R, Yee JL, Weiskopf D, Sette A, Hartigan-O’Connor D, McSorley SJ, Morrison JH, Tran NK, Simmons G, Busch MP, Kozlowski PA, Van Rompay KK, Miller CJ, Iyer SS. SARS-CoV-2 infection induces germinal center responses with robust stimulation of CD4 T follicular helper cells in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.07.191007. [PMID: 32676606 PMCID: PMC7359530 DOI: 10.1101/2020.07.07.191007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD4 T follicular helper (T fh ) cells are important for the generation of long-lasting and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that, following infection with SARS-CoV-2, adult rhesus macaques exhibited transient accumulation of activated, proliferating T fh cells in their peripheral blood on a transitory basis. The CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes, reflective of the interferon-rich cytokine environment following infection. We also observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies but delayed or absent IgA antibodies. Our data suggest that a vaccine promoting Th1-type Tfh responses that target the S protein may lead to protective immunity.
Collapse
|
Preprint |
5 |
4 |
9
|
Elizaldi S, Lakshmanappa YS, Roh J, Schmidt B, Carroll T, Weaver K, Smith J, Deere J, Dutra J, Stone M, Franz S, Sammak R, Olstad K, Reader JR, Ma ZM, Nguyen N, Watanabe J, Usachenko J, Immareddy R, Yee J, Weiskopf D, Sette A, Hartigan-O'Connor D, McSorley S, Morrison J, Tran N, Simmons G, Busch M, Kozlowsk P, van Rompay K, Miller C, Iyer S. SARS-CoV-2 infection induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques. RESEARCH SQUARE 2020:rs.3.rs-51545. [PMID: 32818217 PMCID: PMC7430596 DOI: 10.21203/rs.3.rs-51545/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CD4 T follicular helper (T fh ) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that SARS-CoV-2 infection resulted in transient accumulation of pro-inflammatory monocytes and proliferating T fh cells with a T h 1 profile in peripheral blood. CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes. We observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Our data suggest that a vaccine promoting T h 1-type T fh responses that target the S protein may lead to protective immunity.
Collapse
|
Preprint |
5 |
3 |
10
|
Van Rompay KK, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, Immareddy R, Roh JW, Verma A, Shaan Lakshmanappa Y, Schmidt BA, Di Germanio C, Rizvi N, Stone M, Simmons G, Dumont LJ, Allen AM, Lockwood S, Pollard RE, de Assis RR, Yee JL, Nham PB, Ardeshir A, Deere JD, Patterson J, Jain A, Felgner PL, Iyer SS, Hartigan-O’Connor DJ, Busch MP, Reader JR. Early post-infection treatment of SARS-CoV-2 infected macaques with human convalescent plasma with high neutralizing activity reduces lung inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.09.01.458520. [PMID: 34494025 PMCID: PMC8423222 DOI: 10.1101/2021.09.01.458520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT 50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable levels of antiviral antibodies after infusion. In comparison to the control animals, they had similar levels of virus replication in the upper and lower respiratory tract, but had significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses. AUTHOR SUMMARY The results of treating SARS-CoV-2 infected hospitalized patients with COVID-19 convalescent plasma (CCP), collected from survivors of natural infection, have been disappointing. The available data from various studies indicate at best moderate clinical benefits only when CCP with high titer of neutralizing antibodies was infused early in infection. The macaque model of SARS-CoV-2 infection can be useful to gain further insights in the value of CCP therapy. In this study, animals were infected with SARS-CoV-2 and the next day, were infused with pooled human convalescent plasma, selected to have a very high titer of neutralizing antibodies. While administration of CCP did not result in a detectable reduction in virus replication in the respiratory tract, it significantly reduced lung inflammation. These data, combined with the results of monoclonal antibody studies, emphasize the need to use products with high titers of neutralizing antibodies, and guide the future development of CCP-based therapies.
Collapse
|
Preprint |
4 |
3 |
11
|
Deere JD, Merriam D, Leggat KM, Chang WLW, Méndez-Lagares G, Kieu H, Dutra J, Fontaine J, Lu W, Chin N, Chen C, Tran BCT, Salinas J, Miller CN, Deeks SG, Lifson JD, Engelman K, Magnani D, Reimann K, Stevenson M, Hartigan-O'Connor DJ. SIV clearance from neonatal macaques following transient CCR5 depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.533682. [PMID: 37205470 PMCID: PMC10187202 DOI: 10.1101/2023.05.01.533682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Treatment of people with HIV (PWH) with antiretroviral therapy (ART) results in sustained suppression of viremia, but HIV persists indefinitely as integrated provirus in CD4-expressing cells. Intact persistent provirus, the "rebound competent viral reservoir" (RCVR), is the primary obstacle to achieving a cure. Most variants of HIV enter CD4 + T cells by binding to the chemokine receptor, CCR5. The RCVR has been successfully depleted only in a handful of PWH following cytotoxic chemotherapy and bone marrow transplantation from donors with a mutation in CCR5 . Here we show that long-term SIV remission and apparent cure can be achieved for infant macaques via targeted depletion of potential reservoir cells that express CCR5. Neonatal rhesus macaques were infected with virulent SIVmac251, then treated with ART beginning one week after infection, followed by treatment with either a CCR5/CD3-bispecific or a CD4-specific antibody, both of which depleted target cells and increased the rate of plasma viremia decrease. Upon subsequent cessation of ART, three of seven animals treated with CCR5/CD3-bispecific antibody rebounded quickly and two rebounded 3 or 6 months later. Remarkably, the other two animals remained aviremic and efforts to detect replication-competent virus were unsuccessful. Our results show that bispecific antibody treatment can achieve meaningful SIV reservoir depletion and suggest that functional HIV cure might be achievable for recently infected individuals having a restricted reservoir.
Collapse
|
Preprint |
2 |
1 |
12
|
Mies-Filho A, Dutra J, Endler JO, Caldas de Sousa JA, Jondet R. Insémination de la brebis avec du sperme congelé en contre-saison. ACTA ACUST UNITED AC 1984. [DOI: 10.4267/2042/64963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
41 |
1 |
13
|
Schindler S, Nayar R, Dutra J, Bedrossian CW. Diagnostic challenges in aspiration cytology of the salivary glands. Semin Diagn Pathol 2001; 18:124-46. [PMID: 11403256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The main goal of fine-needle aspiration (FNA) of salivary gland lesions is to assist the clinician in the management of patients who present with a mass lesion. Cytologic examination aims to determine, if a process is inflammatory and/or reactive, benign or malignant neoplasm and if possible renders a specific diagnosis. It has been argued that in the area of salivary gland tumors, surgical management relies less heavily on a specific preoperative diagnosis, because almost all neoplastic salivary gland lesions will undergo surgical excision. However, knowing beforehand if a lesion is malignant or benign, will aid in planning surgery and may prompt or postpone decisions for surgical intervention. The salivary glands are unique in their histologic complexity and morphological variability of tumors, which is reflected in the cytologic material. In addition to the overlapping morphologic patterns of salivary gland tumors, they also represent relatively rare lesions, thus making it more difficult to acquire diagnostic expertise in FNA. Other than approaching salivary gland tumors by a description of single entities in their benign and malignant categories, we favor a more practical approach to diagnosis based on the key morphologic features noted in FNAs. This article addresses differential diagnoses according to the predominant cytologic presentation with attention to the cell type and size, nature of the cytoplasm, and the smear background.
Collapse
MESH Headings
- Adenocarcinoma/diagnosis
- Adenocarcinoma/pathology
- Adenolymphoma/diagnosis
- Adenolymphoma/pathology
- Adenoma/diagnosis
- Adenoma/pathology
- Adenoma, Oxyphilic/diagnosis
- Adenoma, Oxyphilic/pathology
- Adenoma, Pleomorphic/diagnosis
- Adenoma, Pleomorphic/pathology
- Aged
- Biopsy, Needle/methods
- Carcinoma, Adenoid Cystic/diagnosis
- Carcinoma, Adenoid Cystic/pathology
- Carcinoma, Mucoepidermoid/diagnosis
- Carcinoma, Mucoepidermoid/pathology
- Cytodiagnosis
- Diagnosis, Differential
- Humans
- Middle Aged
- Salivary Gland Diseases/diagnosis
- Salivary Gland Diseases/pathology
- Salivary Gland Neoplasms/diagnosis
- Salivary Gland Neoplasms/pathology
- Salivary Glands/pathology
- Sensitivity and Specificity
Collapse
|
Review |
24 |
|
14
|
Dutra J, Mudge EM, Moothoo HL, Thomas A, Applequist WL, Brown PN. Phytochemical comparison of elderberry collections grown in Missouri. Am J Transl Res 2018. [DOI: 10.1055/s-0038-1644961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
|
7 |
|
15
|
Stone M, Keele BF, Ma Z, Bailes E, Dutra J, Hahn BH, Shaw GM, Miller CJ. P20-13. Identification and characterization of early founder populations in Rhesus macaques vaginally infected with SIVmac251. Retrovirology 2009. [PMCID: PMC2767896 DOI: 10.1186/1742-4690-6-s3-p383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
16 |
|