1
|
Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R, Meggers E. Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J Am Chem Soc 2009; 130:15764-5. [PMID: 18973295 DOI: 10.1021/ja805555a] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy for targeting protein kinases with large ATP-binding sites by using bulky and rigid octahedral ruthenium complexes as structural scaffolds is presented. A highly potent and selective GSK3 and Pim1 half-sandwich complex NP309 was successfully converted into a PAK1 inhibitor by making use of the large octahedral compounds Lambda-FL172 and Lambda-FL411 in which the cyclopentadienyl moiety of NP309 is replaced by a chloride and sterically demanding diimine ligands. A 1.65 A cocrystal structure of PAK1 with Lambda-FL172 reveals how the large coordination sphere of the ruthenium complex matches the size of the active site and serves as a yardstick to discriminate between otherwise closely related binding sites.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
166 |
2
|
Aase K, Ernkvist M, Ebarasi L, Jakobsson L, Majumdar A, Yi C, Birot O, Ming Y, Kvanta A, Edholm D, Aspenström P, Kissil J, Claesson-Welsh L, Shimono A, Holmgren L. Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes Dev 2007; 21:2055-68. [PMID: 17699752 PMCID: PMC1948860 DOI: 10.1101/gad.432007] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of the embryonic vascular system into a highly ordered network requires precise control over the migration and branching of endothelial cells (ECs). We have previously identified angiomotin (Amot) as a receptor for the angiogenesis inhibitor angiostatin. Furthermore, DNA vaccination targeting Amot inhibits angiogenesis and tumor growth. However, little is known regarding the role of Amot in physiological angiogenesis. We therefore investigated the role of Amot in embryonic neovascularization during zebrafish and mouse embryogenesis. Here we report that knockdown of Amot in zebrafish reduced the number of filopodia of endothelial tip cells and severely impaired the migration of intersegmental vessels. We further show that 75% of Amot knockout mice die between embryonic day 11 (E11) and E11.5 and exhibit severe vascular insufficiency in the intersomitic region as well as dilated vessels in the brain. Furthermore, using ECs differentiated from embryonic stem (ES) cells, we demonstrate that Amot-deficient cells have intact response to vascular endothelial growth factor (VEGF) in regard to differentiation and proliferation. However, the chemotactic response to VEGF was abolished in Amot-deficient cells. We provide evidence that Amot is important for endothelial polarization during migration and that Amot controls Rac1 activity in endothelial and epithelial cells. Our data demonstrate a critical role for Amot during vascular patterning and endothelial polarization.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
124 |
3
|
Buffenstein R, Amoroso V, Andziak B, Avdieiev S, Azpurua J, Barker AJ, Bennett NC, Brieño‐Enríquez MA, Bronner GN, Coen C, Delaney MA, Dengler‐Crish CM, Edrey YH, Faulkes CG, Frankel D, Friedlander G, Gibney PA, Gorbunova V, Hine C, Holmes MM, Jarvis JUM, Kawamura Y, Kutsukake N, Kenyon C, Khaled WT, Kikusui T, Kissil J, Lagestee S, Larson J, Lauer A, Lavrenchenko LA, Lee A, Levitt JB, Lewin GR, Lewis Hardell KN, Lin TD, Mason MJ, McCloskey D, McMahon M, Miura K, Mogi K, Narayan V, O'Connor TP, Okanoya K, O'Riain MJ, Park TJ, Place NJ, Podshivalova K, Pamenter ME, Pyott SJ, Reznick J, Ruby JG, Salmon AB, Santos‐Sacchi J, Sarko DK, Seluanov A, Shepard A, Smith M, Storey KB, Tian X, Vice EN, Viltard M, Watarai A, Wywial E, Yamakawa M, Zemlemerova ED, Zions M, Smith ESJ. The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology. Biol Rev Camb Philos Soc 2022; 97:115-140. [PMID: 34476892 PMCID: PMC9277573 DOI: 10.1111/brv.12791] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
52 |
4
|
Kim CFB, Jackson EL, Kirsch DG, Grimm J, Shaw AT, Lane K, Kissil J, Olive KP, Sweet-Cordero A, Weissleder R, Jacks T. Mouse models of human non-small-cell lung cancer: raising the bar. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:241-50. [PMID: 16869760 DOI: 10.1101/sqb.2005.70.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lung cancer is a devastating disease that presents a challenge to basic research to provide new steps toward therapeutic advances. The cell-type-specific responses to oncogenic mutations that initiate and regulate lung cancer remain poorly defined. A better understanding of the relevant signaling pathways and mechanisms that control therapeutic outcome could also provide new insight. Improved conditional mouse models are now available as tools to improve the understanding of the cellular and molecular origins of adenocarcinoma. These models have already proven their utility in proof-of-principle experiments with new technologies including genomics and imaging. Integrated thinking to apply technological advances while using the appropriate mouse model is likely to facilitate discoveries that will significantly improve lung cancer detection and intervention.
Collapse
|
Review |
20 |
49 |
5
|
Einheber S, Meng X, Rubin M, Lam I, Mohandas N, An X, Shrager P, Kissil J, Maurel P, Salzer JL. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Glia 2012; 61:240-53. [PMID: 23109359 DOI: 10.1002/glia.22430] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022]
Abstract
Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
41 |
6
|
Fera D, Schultz DC, Hodawadekar S, Reichman M, Donover PS, Melvin J, Troutman S, Kissil J, Huryn DM, Marmorstein R. Identification and characterization of small molecule antagonists of pRb inactivation by viral oncoproteins. CHEMISTRY & BIOLOGY 2012; 19:518-28. [PMID: 22520758 PMCID: PMC3334872 DOI: 10.1016/j.chembiol.2012.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/21/2012] [Accepted: 03/01/2012] [Indexed: 11/23/2022]
Abstract
The retinoblastoma protein pRb is essential for regulating many cellular activities through its binding and inhibition of E2F transcription activators, and pRb inactivation leads to many cancers. pRb activity can be perturbed by viral oncoproteins including human papillomavirus (HPV) that share an LxCxE motif. Because there are no treatments for existing HPV infection leading to nearly all cervical cancers and other cancers to a lesser extent, we screened for compounds that inhibit the ability of HPV-E7 to disrupt pRb/E2F complexes. This lead to the identification of thiadiazolidinedione compounds that bind to pRb with mid-high nanomolar dissociation constants, are competitive with the binding of viral oncoproteins containing an LxCxE motif, and are selectively cytotoxic in HPV-positive cells alone and in mice. These inhibitors provide a promising scaffold for the development of therapies to treat HPV-mediated pathologies.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
24 |
7
|
Kota S, Hou S, Guerrant W, Madoux F, Troutman S, Fernandez-Vega V, Alekseeva N, Madala N, Scampavia L, Kissil J, Spicer TP. A novel three-dimensional high-throughput screening approach identifies inducers of a mutant KRAS selective lethal phenotype. Oncogene 2018; 37:4372-4384. [PMID: 29743592 PMCID: PMC6138545 DOI: 10.1038/s41388-018-0257-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
The RAS proteins are the most frequently mutated oncogenes in cancer, with highest frequency found in pancreatic, lung, and colon tumors. Moreover, the activity of RAS is required for the proliferation and/or survival of these tumor cells and thus represents a high-value target for therapeutic development. Direct targeting of RAS has proven challenging for multiple reasons stemming from the biology of the protein, the complexity of downstream effector pathways and upstream regulatory networks. Thus, significant efforts have been directed at identifying downstream targets on which RAS is dependent. These efforts have proven challenging, in part due to confounding factors such as reliance on two-dimensional adherent monolayer cell cultures that inadequately recapitulate the physiologic context to which cells are exposed in vivo. To overcome these issues, we implemented a High Throughput Screening (HTS) approach using a spheroid-based 3-dimensional culture format, thought to more closely reflect conditions experienced by cells in vivo. Using isogenic cell pairs, differing in the status of KRAS, we identified Proscillaridin A as a selective inhibitor of cells harboring the oncogenic KRasG12V allele. Significantly, the identification of Proscillaridin A was facilitated by the 3D screening platform and would not have been discovered employing standard 2D culturing methods.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
18 |
8
|
Coleman N, Kissil J. Recent advances in the development of p21-activated kinase inhibitors. CELLULAR LOGISTICS 2014; 2:132-135. [PMID: 23162744 PMCID: PMC3490963 DOI: 10.4161/cl.21667] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The p21-activated kinases (PAKs) are downstream effectors of the small G-proteins of the Rac and cdc42 family and have been implicated as essential for cell proliferation and survival. Recent studies have also demonstrated the promise of PAKs as therapeutic targets in various types of cancers. The PAKs are divided into two major groups (group I and II) based on sequence similarities. Although the different roles the PAK groups might play are not well understood, recent efforts have focused on the identification of kinase inhibitors that can discriminate between the two groups. In this review these efforts and newly identified inhibitors will be described and future directions discussed.
Collapse
|
Journal Article |
11 |
16 |
9
|
Amirifar P, Kissil J. The role of Motin family proteins in tumorigenesis-an update. Oncogene 2023; 42:1265-1271. [PMID: 36973516 DOI: 10.1038/s41388-023-02677-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The Motin protein family consists of three members: AMOT (p80 and p130 isoforms), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). The family members play an important role in processes such as cell proliferation, migration, angiogenesis, tight junction formation, and cell polarity. These functions are mediated through the involvement of the Motins in the regulation of different signal transduction pathways, including those regulated by small G-proteins and the Hippo-YAP pathway. One of the more characterized aspects of Motin family function is their role in regulating signaling through the Hippo-YAP pathway, and while some studies suggest a YAP-inhibitory function other studies indicate the Motins are required for YAP activity. This duality is also reflected in previous reports, often contradictory, that suggest the Motin proteins can function as oncogenes or tumor suppressors in tumorigenesis. In this review we summarize recent findings and integrate that with the existing work describing the multifunctional role of the Motins in different cancers. The emerging picture suggests that the Motin protein function is cell-type and context dependent and that further investigation in relevant cell types and whole organism models is required for the elucidation of the function of this protein family.
Collapse
|
Review |
2 |
8 |
10
|
Yi C, Kissil J. Abstract 1128: The tumor suppressive function of Merlin/Nf2 is mediated by a novel tight junction-associated protein complex. Cancer Res 2010. [DOI: 10.1158/1538-7445.am10-1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Mutations in the NF2 tumor suppressor gene lead to inherited cancer-disorder Neurofibromatosis Type 2 (NF2) and other sporadic nerve-sheath tumors. Merlin, the protein product of the NF2 gene, suppresses cell proliferation and tumorigenesis by regulating multiple signaling pathways including the Ras-MAPK pathway. Through affinity purification, we have identified a novel tight-junction-associated protein complex comprising Merlin and a number of tight junction associated proteins. We show that Merlin directly interacts and co-localizes with one of these tight junction proteins through their mutual coiled-coil domains in epithelial and Schwann cells. Furthermore, the two proteins co-localize to paranodes and Schmidt-Lantermann incisures in myelinated peripheral nerve, the most frequent site of tumor development caused by Nf2 inactivation. We establish that the novel Merlin-binding protein functions downstream of Merlin as a positive regulator of Rac1 activity and the Ras-MAPK signaling. Importantly, we are able to demonstrate that depletion of this Merlin-interacting protein in Nf2-/- schwannoma cells down-regulates the Ras-MAPK signaling pathway, and impedes cellular proliferation in vitro and tumor development in vivo. Taken together with our observations that several NF2 patient-derived mutant Merlin proteins exhibit diminished association with this protein and that its level is elevated in 9 out of 10 human schwannoma samples examined, we conclude that the novel Merlin-binding partner identified in this study mediates the tumor suppressive function of Merlin and represents a potential therapeutic target for NF2 related tumors.
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 1128.
Collapse
|
|
15 |
|
11
|
Carper M, Troutman S, Schaub F, Musicant A, Li W, Henry E, Kissil J, Cleveland J, Amelio AL. Abstract LB-137: Developing preclinical mouse models that employ fluorophore-nanoLuc BRET reporters (LumiFluor) for monitoring tumorigenesis and response to therapy. Cancer Res 2017. [DOI: 10.1158/1538-7445.am2017-lb-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Fluorescent proteins are widely used to study molecular and cellular events, yet this traditionally relies on delivery of excitation light, which can trigger autofluorescence, photoxicity, and photobleaching, impairing their use in vivo. Accordingly, chemiluminescent light sources such as those generated by luciferases have emerged, as they do not require excitation light. However, current luciferase reporters lack the brightness needed to visualize events in deep tissues. We recently reported the creation of chimeric eGFP-NanoLuc (GpNLuc) and LSSmOrange-NanoLuc (OgNLuc) fusion reporter proteins coined LumiFluors, which combine the benefits of eGFP or LSSmOrange fluorescent proteins with the bright, glow-type bioluminescent light generated by an enhanced small luciferase subunit (NanoLuc) of the deep sea shrimp Oplophorus gracilirostris. The intramolecular bioluminescence resonance energy transfer (BRET) that occurs between NanoLuc and the fused fluorophore generates the brightest bioluminescent signal known to date, enabling greatly improved spatio-temporal monitoring of very small numbers of tumor cells via in vivo optical imaging while also allowing isolation and analysis of single cells by flow cytometry. Here we report the generation of an inducible and conditional knockin reporter mouse (Rosa26-LSL-GpNLuc) and the application of this mouse to creating preclinical mouse models suitable for the noninvasive evaluation of therapeutic interventions. To model NSCLC, Rosa26-LSL-GpNLuc were crossed to LSL-KRasG12D and initiated tumorigenesis by intra-nasal administration of adenovirus expressing Cre-recombinase. Longitudinal monitoring of disease progression using bioluminescent imaging detected extremely early lesions corresponding to points in time characteristic of atypical adenomatous hyperplastic lesions. The ability to identify pre-neoplastic lesions at an early stage will enable the development of more precise preclinical models suitable for evaluating responses to drug treatment. Ongoing studies are aimed at modeling HPV-induced HNSCC by crossing Rosa26-LSL-GpNLuc to KRT14-CreERT2;LSL-E6/E7 for monitoring oral tumorigenesis and response to novel treatment strategies. Thus, LumiFluor reporters are inexpensive, robust, non-invasive tools that allow for markedly improved in vivo optical imaging of tumorigenic processes and response to therapy.
Note: This abstract was not presented at the meeting.
Citation Format: Miranda Carper, Scott Troutman, Franz Schaub, Adele Musicant, Weimin Li, Erin Henry, Joseph Kissil, John Cleveland, Antonio L. Amelio. Developing preclinical mouse models that employ fluorophore-nanoLuc BRET reporters (LumiFluor) for monitoring tumorigenesis and response to therapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-137. doi:10.1158/1538-7445.AM2017-LB-137
Collapse
|
|
8 |
|